Multi-Faceted Role of Naturally Occurring Autoantibodies in Fighting Pathogens

  • Hicham BouhlalEmail author
  • Srini Kaveri
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 750)


Naturally occurring antibodies (NAbs) play a vital role in the first line of defense against bacterial and viral infections. Most studies in mice and man have attributed this role to NAbs of the IgM isotype. However, there is also a significant amount of data on the anti-infectious function of NAbs of the IgG isotype. Most of these observations are derived from studies using a privileged source of NAbs, the pooled human IgG for intravenous application, IVIG. In addition to its use as a replacement in humoral immunodeficiencies, IVIG is extensively used in autoimmune and inflammatory diseases. The properties of NAbs, the principal components of IVIG, are considered crucial for their immune-regulatory properties, owing to their ability to recognize self-antigens and even autoantibodies. By virtue of these specificities for several cellular antigens, including exposed proteins that act as receptors for a variety of pathogens, certain NAbs in IVIG have a therapeutic role in preventing or modulating infections. We summarize in this chapter several examples that highlight the importance of NAbs in the control of certain bacterial and viral infections.


Human Immunodeficiency Virus Type Respiratory Syncytial Virus Dengue Hemorrhagic Fever Dengue Shock Syndrome Dengue Virus Infection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Coutinho A, Kazatchkine MD, Avrameas S. Natural autoantibodies. Curr Opin Immunol 1995; 7:812–8. doi: 10.1016/0952-7915(95)80053-0 PMID:8679125PubMedCrossRefGoogle Scholar
  2. 2.
    Hayakawa K, Asano M, Shinton SA et al. Positive selection of natural autoreactive B cells. Science 1999; 285:113–6. doi:10.1126/science.285.5424.113 PMID: 10390361PubMedCrossRefGoogle Scholar
  3. 3.
    Ochsenbein AF, Fehr T, Lutz C et al. Control of early viral and bacterial distribution and disease by natural antibodies. Science 1999; 286:2156–9. doi: 10.1126/science.286.5447.2156 PMID: 10591647PubMedCrossRefGoogle Scholar
  4. 4.
    Bartlett JG, Perl TM. The new Clostridium difficile-what does it mean? N Engl J Med 2005; 353:2503–5. doi: 10.1056/NEJMe058221 PMID: 16322604PubMedCrossRefGoogle Scholar
  5. 5.
    Wilcox MH. Descriptive study of intravenous immunoglobulin for the treatment of recurrent Clostridium difficile diarrhea. J Antimicrob Chemother 2004; 53:882–4. doi:10.1093/jac/dkh176 PMID:15073160PubMedCrossRefGoogle Scholar
  6. 6.
    McPherson S, Rees CJ, Ellis R et al. Intravenous immunoglobulin for the treatment of severe, refractory, and recurrent Clostridiumdifficile diarrhea. Dis Colon Rectum 2006; 49:640–5. doi:10.1007/sl0350-006-0511-8 PMID: 16525744PubMedCrossRefGoogle Scholar
  7. 7.
    Hassett J, Meyers S, McFarland L et al. Recurrent Clostridium difficile infection in a patient with selective IgGl deficiency treated with intravenous immune globulin and Saccharomyces boulardii. Clin Infect Dis 1995; 20:S266–8. doi:10.1093/clinids/20.Supplement_2.S266 PMID:7548571PubMedCrossRefGoogle Scholar
  8. 8.
    Gerding DN, Muto CA, Owens RC Jr. Treatment of Clostridium difficile infection. Clin Infect Dis 2008; 46:S32–42. doi: 10.1086/521860 PMID: 18177219PubMedCrossRefGoogle Scholar
  9. 9.
    WHO. Dengue haemorrhagic fever: diagnosis, treatment, prevention and control. 2nd ed. Geneva: World Health Organization; 1997.Google Scholar
  10. 10.
    Halstead SB. Dengue. Lancet 2007; 370:1644–52. doi:10.1016/S0140-6736(07)61687-0 PMID: 17993365PubMedCrossRefGoogle Scholar
  11. 11.
    Schexneider KI, Reedy EA. Thrombocytopenia in dengue fever. Curr Hematol Rep 2005; 4:145–8. PMID: 15720964PubMedGoogle Scholar
  12. 12.
    McMillan R. Chronicidiopathic thrombocytopenic purpura. N Engl J Med 1981; 304:1135–47. doi:10.1056/NEJM198105073041904 PMID:7012619PubMedCrossRefGoogle Scholar
  13. 13.
    Cines DB, Blanchette VS. Immune thrombocytopenic purpura. N Engl J Med 2002; 346:995–1008. doi: 10.1056/NEJMra010501 PMID: 11919310PubMedCrossRefGoogle Scholar
  14. 14.
    Oishi K, Inoue S, Cinco MT et al. Correlation between increased platelet-associated IgG and thrombocytopenia insecondary dengue virus infections. J Med Virol 2003; 71:259–64. doi: 10.1002/jmv. 10478 PMID: 12938201PubMedCrossRefGoogle Scholar
  15. 15.
    Saito M, Oishi K, Inoue S et al. Association of increased platelet-associated immunoglobulins with thrombocytopenia and the severity of disease in secondary dengue virus infections. Clin Exp Immunol 2004; 138:299–303. doi: 10.1111/J.1365-2249.2004.02626.X PMID:15498040PubMedCrossRefGoogle Scholar
  16. 16.
    Honda S, Saito M, Dimaano EM et al. Increased Phagocytosis of Platelets from Patients with Secondary Dengue Virus Infection by Human Macrophages. Am J Trop Med Hyg 2009; 80:841–5. PMID: 19407135PubMedGoogle Scholar
  17. 17.
    Ascher DP, Laws HF, Haves CG. The use of intravenous gammaglobulin in dengue fever, a case report. Southeast Asian J Trop Med Public Health 1989; 20:549–54. PMID:2484144PubMedGoogle Scholar
  18. 18.
    Ostronoff M, Ostronoff F, Florencio R et al. Serious thrombocytopenia due to dengue hemorrhagic fever treated with high dosages of immunoglobulin. Clin Infect Dis 2003; 36:1623–4. doi: 10.1086/374870 PMID: 12802766PubMedCrossRefGoogle Scholar
  19. 19.
    Dimaano EM, Saito M, Honda S et al. Lack of efficacy of high-dose intravenous immunoglobulin treatment of severe thrombocytopenia in patients with secondary dengue virus infection. Am J Trop Med Hyg 2007; 77:1135–8. PMID:18165536PubMedGoogle Scholar
  20. 20.
    Lin CF, Lei HY, Liu CC et al. Generation of IgM anti-platelet autoantibody in dengue patients. J Med Virol 2001; 63:143–9. doi:10.1002/1096-9071(20000201)63:2<143::AID-JMV1009>3.0.CO;2-L PMID: 11170051PubMedCrossRefGoogle Scholar
  21. 21.
    Sibéril S, Elluru SR, Negi VS et al. Intravenous immunoglobulin in autoimmune andinflammatory diseases: more than mere transfer of antibodies. Transfus Apheresis Sci 2007; 37:103–7 doi: 10.1016/j.transci.2007.01.012.CrossRefGoogle Scholar
  22. 22.
    Andersson U, Bjork L, Skansen-Saphir U et al. Pooled human IgG modulates cytokine production in lymphocytes and monocytes. Immunol Rev 1994; 139:21–42. doi: 10.111 l/j.l600-065X.1994.tb00855.x PMID:7927412PubMedCrossRefGoogle Scholar
  23. 23.
    Cines DB, Bussel JB, Liebman HA et al. The ITP syndrome: pathogenic and clinical diversity. Blood 2009; 113:6511–21. doi:10.1182/blood-2009-01-129155 PMID:19395674PubMedCrossRefGoogle Scholar
  24. 24.
    Avirutnan P, Punyanadee N, Noisaran S et al. Vascular leakage in severe dengue virus infections: a potential role for the nonstructural viral protein NS1 and complement. J Infect Dis 2006; 193:1078–88. doi: 10.1086/500949 PMID: 16544248PubMedCrossRefGoogle Scholar
  25. 25.
    Kurane I. Dengue hemorrhagic fever with special emphasis on immunopathogenesis. Comp Immunol Microbiol Infect Dis 2007; 30:329–40. doi:10.1016/j.cimid.2007.05.010 PMID: 17645944PubMedCrossRefGoogle Scholar
  26. 26.
    Malasit P. Complement and dengue hemorrhagic fever/dengue shock syndrome. Southeast Asian J Trop Med Public Health 1987; 18:316–20. PMID:3501613PubMedGoogle Scholar
  27. 27.
    Morrison TE, Heise MT. The host complement system and arbovirus pathogenesis. Curr Drug Targets 2008; 9:165–72. doi: 10.2174/138945008783502485 PMID:18288968PubMedCrossRefGoogle Scholar
  28. 28.
    Bokisch VA, Muller-Eberhard HJ, Dixon FJ. The role of complement in hemorrhagic shock syndrome (dengue). Trans Assoc Am Physicians 1973; 86:102–10. PMID:4132983PubMedGoogle Scholar
  29. 29.
    Avirutnan P, Punyadee N, Noisakran S et al. Vascular leakage in severe dengue virus infections: a potential role for the nonstructural viral protein NS1 and complement. J Infect Dis 2006; 193:1078–88. doi: 10.1086/500949 PMID: 16544248PubMedCrossRefGoogle Scholar
  30. 30.
    Avirutnan P, Fuchs A, Hauhart RE et al. Antagonism of the complement component C4 by flavivirus nonstructural protein NS1. J Exp Med 2010; 207:793–806. doi:10.1084/jem.20092545 PMID:20308361PubMedCrossRefGoogle Scholar
  31. 31.
    Green S, Rothman A. Immunopathological mechanisms in dengue and dengue hemorrhagic fever. Curr Opin Infect Dis 2006; 19:429–36. doi:10.1097/01.qco.0000244047.31135.faPMID:16940865PubMedCrossRefGoogle Scholar
  32. 32.
    Lin CF, Lei HY, Shiau AL et al. Antibodies from dengue patient sera cross-react with endothelial cells and induce damage. J Med Virol 2003; 69:82–90. doi: 10.1002/jmv. 10261 PMID: 12436482PubMedCrossRefGoogle Scholar
  33. 33.
    Morris SK, Dzolganovski B, Beyene J et al. A meta-analysis of the effect of antibody therapy for the prevention of severe respiratory syncytial virus infection. BMC Infect Dis 2009; 9:106–14. doi:10.1186/1471-2334-9-106 PMID:19575815PubMedCrossRefGoogle Scholar
  34. 34.
    Razonable RR, Emery VC. Management of CMV infection and disease in transplant patients. Herpes 2004; 11:77–86. PMID: 15960905PubMedGoogle Scholar
  35. 35.
    Razonable RR, Paya CV. Herpesvirus infections in transplant recipients: current challenges in the clinical management of cytomegalovirus and Epstein-Barr virus infections. Herpes 2003; 10:60–5. PMID: 14759337PubMedGoogle Scholar
  36. 36.
    Bowman JS, Green M, Scnatlebury V et al. OKT3 and viral disease in pediatric liver transplant recipients. Clin Transplant 1991; 5:294–300. PMID:21170278PubMedGoogle Scholar
  37. 37.
    Gane E, Saliba F, Valdecasea G et al. Randomised trial of efficiacy and safety of oral ganciclovir in the prevention of cytomegalovirus disease in liver transplant recipients. Lancet 1997; 350:1729–33. doi: 10.1016/S0140-6736(97)05535-9PMID:9413463PubMedCrossRefGoogle Scholar
  38. 38.
    Campbell AL, Herold BC. Strategies for the prevention of cytomegalovirus infection and disease in pediatric livertransplantationrecipients. Pediatr Transplant 2004; 8:619–27. doi: 10.1111/j.1399-3046.2004.00242.X PMID: 15598337PubMedCrossRefGoogle Scholar
  39. 39.
    Snydman DR, McIver J, Leszczynski J et al. A pilot trial of a novel cytomegalovirus immune globulin in renal transplant recipients. Transplantation 1984; 38:553–7. doi: 10.1097/00007890-198411000-00026 PMID:6093299PubMedCrossRefGoogle Scholar
  40. 40.
    Green M. Viral infections and pediatric liver transplantation. Pediatr Transplant 2002; 6:20–4. doi: 10.1034/j. 1399-3046.2002. 1p048.x PMID: 11906638PubMedCrossRefGoogle Scholar
  41. 41.
    Snydman DR, Werner BG, Dougherty NN et al. Cytomegalovirus immune globulin prophylaxis in liver transplantation. A randomized, double-blind, placebo-controlled trial. Ann Intern Med 1993; 119:984–91. PMID:8214995PubMedGoogle Scholar
  42. 42.
    Hurez V, Kaveri SV, Mouhoub A et al. Anti-CD4 activity of normal human immunoglobulin G for therapeutic use (intravenous immunoglobulin, IVIG). Ther Immunol 1994; 1:269–77. PMID:7584501PubMedGoogle Scholar
  43. 43.
    Kazatchkine MD, Kaveri SV. Immunomodulation of auto-immune and inflammatory diseases with intravenous immune globulin. N Engl J Med 2001; 345:747–55. doi:10.1056/NEJMra993360 PMID: 11547745PubMedCrossRefGoogle Scholar
  44. 44.
    Bouhlal H, Hocini H, Quillent-Gregoire C et al. Antibodies to C-C chemokine receptor 5 in normal human IgG block infection of macrophages and lymphocytes with primary R5-tropic strains of HIV-1. J Immunol 2001; 166:7606–11. PMID:11390517PubMedGoogle Scholar
  45. 45.
    Requena M, Bouhlal H, Nasreddine N et al. Inhibition of HIV-1 transmission in trans from dendritic cells to CD4+ T lymphocytes by natural antibodies to the CRD domain of DC-SIGN purified from breast milk and intravenous immunoglobulins. Immunology 2008; 123:508–18. doi:10.1111/j. 1365-2567.2007.02717.X PMID: 17999675PubMedCrossRefGoogle Scholar
  46. 46.
    Moore JP, Trkola A, Dragic T. Co-receptors for HIV-1 entry. Curr Opin Immunol 1997; 9:551–62. doi:10.1016/S0952-7915(97)80110-0PMID:9287172PubMedCrossRefGoogle Scholar
  47. 47.
    Deng, H., Liu R, Ellmeier W et al. Identification of a major co-receptor for primary isolates of HIV-1. Nature 1996; 381:661–6. doi:10.1038/381661a0 PMID:8649511PubMedCrossRefGoogle Scholar
  48. 48.
    van’t Wout AB, Kootstra NA, Mulder-Kampinga GA et al. Macrophage-tropic variants initiate human immunodeficiency virus type 1 infection after sexual, parenteral, and vertical transmission. J Clin Invest 1994; 94:2060–7. doi:10.1172/JCI117560 PMID:7962552CrossRefGoogle Scholar
  49. 49.
    Connor RI, Sheridan KE, Ceradini D et al. Change in coreceptor use correlates with disease progression in HIV-1-infected individuals. J Exp Med 1997; 185:621–8. doi:10.1084/jem.l85.4.621 PMID:9034141PubMedCrossRefGoogle Scholar
  50. 50.
    Rana S, Besson G, Cook DG et al. Role of CCR5 in infection of primary macrophages and lymphocytes by macrophage-tropic strains of human immunodeficiency virus: resistance to patient-derived and prototype isolates re-suiting from the ccr5 mutation. J Virol 1997; 71:3219–27. PMID:9060685PubMedGoogle Scholar
  51. 51.
    Samson M, Libert F, Doranz BJ et al. Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 1996; 382:722–5. doi:10.1038/382722a0 PMID:8751444PubMedCrossRefGoogle Scholar
  52. 52.
    Liu R, Paxton WA, Choe S et al. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 1996; 86:367–77. doi:10.1016/S0092-8674(00)80110-5 PMID:8756719PubMedCrossRefGoogle Scholar
  53. 53.
    Cairns JS, D’Souza MP. Chemokines and HIV-1 second receptors: the therapeutic connection. Nat Med 1998; 4:563–8. doi:10.1038/nm0598-563 PMID:9585229PubMedCrossRefGoogle Scholar
  54. 54.
    Clerici M, Barassi C, Devito C et al. Serum IgA of HIV-exposed uninfected individuals inhibit HIV through recognition of a region within the alpha-helix of gp41. AIDS 2002; 16:1731–41. doi: 10.1097/00002030-200209060-00004 PMID: 12218383PubMedCrossRefGoogle Scholar
  55. 55.
    Lopalco L, Pastori C, Cosma A et al. Anti-cell antibodies in exposed seronegative individuals with HIV type 1-neutralizing activity. AIDS Res Hum Retroviruses 2000; 16:109–15. doi: 10.1089/088922200309458 PMID: 10659050PubMedCrossRefGoogle Scholar
  56. 56.
    Lopalco L, Magnani Z, Confetti C et al. Anti-CD4 antibodies in exposed seronegative adults and in newborns of HIV type 1-seropositive mothers: a follow-up study. AIDS Res Hum Retroviruses 1999; 15:1079–85. doi:10.1089/088922299310377 PMID:10461828PubMedCrossRefGoogle Scholar
  57. 57.
    Ditzel HJ, Rosenkilde MM, Garred P et al. The CCR5 receptor acts as an alloantigen in CCR5A32 homozygous individuals: identification of chemokine and HIV-1-blocking human antibodies. Proc Natl Acad Sci USA 1998; 95:5241–5. doi:10.1073/pnas.95.9.5241 PMID:9560260PubMedCrossRefGoogle Scholar
  58. 58.
    Barassi C, Soprana E, Pastori C et al. Induction of murine mucosal CCR5-reactive antibodies as an anti-human immunodeficiency virus strategy. J Virol 2005; 79:6848–58. doi: 10.1128/JVI.79.11.6848-6858.2005 PMID: 15890924PubMedCrossRefGoogle Scholar
  59. 59.
    Royce RA, Sena A, Cates W et al. Sexual transmissionofHIV. N Engl J Med 1997; 336:1072–8. doi:10.1056/NEJM199704103361507 PMID:9091805PubMedCrossRefGoogle Scholar
  60. 60.
    Reece JC, Handley AJ, Anstee EJ et al. HIV-1 selection by epidermal dendritic cells during trans-mission across human skin. J Exp Med 1998; 187:1623–31. doi:10.1084/jem.l87.10.1623 PMID:9584140PubMedCrossRefGoogle Scholar
  61. 61.
    Kahn JO, Walker BD. Acute human immunodeficiency virus type 1 infection. N Engl J Med 1998; 339:33–9. doi:10.1056/NEJM199807023390107 PMID:9647878PubMedCrossRefGoogle Scholar
  62. 62.
    Hirsch VM, Sharkey ME, Brown CR et al. Vpx is required for dissemination and pathogenesis of SIV(SM) PBj: evidence of macrophage-dependent viral amplification. Nat Med 1998; 4:1401–8. doi:10.1038/3992 PMID:9846578PubMedCrossRefGoogle Scholar
  63. 63.
    Zhang Z, Schuler T, Zupancic M et al. Sexual transmission and propagation of SIV and HIV in resting and activated CD4+T cells. Science 1999; 286:1353–7. doi: 10.1126/science.286.5443.1353 PMID:10558989PubMedCrossRefGoogle Scholar
  64. 64.
    Olson WC, Rabut GE, Nagashima KA et al. Differential inhibition of human immunodeficiency virus type 1 fusion, gp120 binding, and CC-chemokine activity by monoclonal antibodies to CCR5. J Virol 1999; 73:4145–55. PMID:10196311PubMedGoogle Scholar
  65. 65.
    Hurez V, Kaveri SV, Mouhoub A et al. Anti-CD4 activity of normal human immunoglobulins G for therapeutic use (intravenous immunoglobulin, IVIG). Ther Immunol 1994; 1:269–77. PMID:7584501PubMedGoogle Scholar
  66. 66.
    Piguet V, Blauvelt A. Essential roles for dendritic cells in the pathogenesis and potential treatment of HIV disease. J Invest Dermatol 2002; 119:365–9. doi:10.1046/j.l523-1747.2002.01840.xPMID:12190858PubMedCrossRefGoogle Scholar
  67. 67.
    Belyakov IM, Berzofsky JA. Immunobiology of mucosal HIV infection and the basis for development of anew generation of mucosal AIDS vaccines. Immunity 2004; 20:247–53. doi: 10.1016/S1074-7613(04)00053-6 PMID: 15030769PubMedCrossRefGoogle Scholar
  68. 68.
    Turville SG, Arthos J, Donald KM et al. HIV gpl20 receptors on human dendritic cells. Blood 2001; 98:2482–8. doi: 10.1182/blood.V98.8.2482 PMID: 11588046PubMedCrossRefGoogle Scholar
  69. 69.
    Moris A, Nobile C, Buseyne F et al. DC-SIGN promotes exogenous MHC-I-restricted HIV-1 antigen presentation. Blood 2004; 103:2648–54. doi: 10.1182/blood-2003-07-2532 PMID: 14576049PubMedCrossRefGoogle Scholar
  70. 70.
    Buseyne F, Le Gall S, Boccaccio C et al. MHC-I-restricted presentation of HIV-1 virion antigens without viral replication. Nat Med 2001; 7:344–9. doi: 10.1038/85493 PMID: 11231634PubMedCrossRefGoogle Scholar
  71. 71.
    Geijtenbeek TB, Engering A, Van Kooyk Y. DC-SIGN, a C-type lectin on dendritic cells that unveils many aspects of dendritic cell biology. J Leukoc Biol 2002; 71:921–31. PMID:12050176PubMedGoogle Scholar
  72. 72.
    Geijtenbeek TB, Kwon DS, Torensma R et al. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 2000; 100:587–97. doi:10.1016/S0092-8674(00)80694-7 PMID: 10721995PubMedCrossRefGoogle Scholar
  73. 73.
    Jameson B, Baribaud F, Pohlmann S et al. Expression of DC-SIGN by dendritic cells of intestinal and genital mucosae in humans and rhesus macaques. J Virol 2002; 76:1866–75. doi: 10.1128/JVI.76.4.1866-1875.2002 PMID:11799181PubMedCrossRefGoogle Scholar
  74. 74.
    Geijtenbeek TB, Torensma R, van Vliet SJ et al. Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell 2000; 100:575–85. doi: 10.1016/S0092-8674(00)80693-5 PMID: 10721994PubMedCrossRefGoogle Scholar
  75. 75.
    Geijtenbeek TB, van Duijnhoven GC, van Vliet SJ et al. Identification of different binding sites in the dendritic cell-specific receptor DC-SIGN for intercellular adhesion molecule 3 and HIV-1. J Biol Chem 2002; 277:11314–20. doi: 10.1074/jbc.M111532200 PMID: 11799126PubMedCrossRefGoogle Scholar
  76. 76.
    Dalgleish AG. The immune response to HIV: potential for immunotherapy? Immunol Today 1995; 16:356–8. doi: 10.1016/0167-5699(95)80156-1 PMID:7576075PubMedCrossRefGoogle Scholar
  77. 77.
    Matsuyama T, Kobayashi N, Yamamoto N. Cytokines and HIV infection: is AIDS a tumor necrosis factor disease? AIDS 1991; 5:1405–17. doi: 10.1097/00002030-199112000-00001 PMID:1814326PubMedCrossRefGoogle Scholar
  78. 78.
    Aukrust P, Liabakk NB, Muller F et al. Serum levels of tumor necrosis factor-a (TNF-a) and soluble TNF receptors in human immunodeficiency virus type 1 infection. Correlation to clinical, immunologie, and virologie parameters. J Infect Dis 1994; 169:420–4. doi: 10.1093/infdis/169.2.420 PMID:7906293PubMedCrossRefGoogle Scholar
  79. 79.
    Godfried MH, van der Poll T, Weverling GJ et al. Soluble receptors for tumor necrosis factor as predictor of progression to AIDS in asymptomatic human immunodeficiency virus type 1 infection. J Infect Dis 1994; 169:739–45. doi: 10.1093/infdis/169.4.739 PMID:7907641PubMedCrossRefGoogle Scholar
  80. 80.
    Aukrust P, Frøland SS, Liabakk NB et al. Release of cytokines, soluble cytokine receptors, and interleukin-1 receptor antagonist after intravenous immunoglobulin administration in vivo. Blood 1994; 84:2136–43. PMID:7919327PubMedGoogle Scholar
  81. 81.
    Achiron A, Margalit R, Hershkoviz R et al. Intravenous immunoglobulin treatment of experimental T-cell-mediated autoimmune disease. J Clin Invest 1994; 93:600–5. doi:10.1172/JCI117012 PMID:8113397PubMedCrossRefGoogle Scholar
  82. 82.
    Aukrust P, Frøland SS, Liabakk NB et al. Release of cytokines, soluble cytokine receptors, and interleukin-1 receptor antagonist after intravenous immunoglobulin administration in vivo. Blood 1994; 84:2136–43. PMID:7919327PubMedGoogle Scholar
  83. 83.
    Olsson I, Lantz M, Nilsson E et al. Isolation and characterization of a tumor necrosis factor binding protein from human urine. Eur J Haematol 1989; 42:270–5. doi:10.1111/j.1600-0609.1989.tb00111.× PMID:2924890PubMedCrossRefGoogle Scholar
  84. 84.
    Van Zee KJ, Kohno T, Fischer E et al. Tumor necrosis factor soluble receptors circulate during experimental and clinical inflammation and protect against excessive tumor necrosis factor-a in vitro and in vivo. Proc Natl Acad Sci USA 1992; 89:4845–9. PMID:1317575PubMedCrossRefGoogle Scholar
  85. 85.
    Vandenabeele P, Declercq W, Beyaert R et al. Two tumor necrosis factor receptors: structure and function. Trends Cell Biol 1995; 5:392–9. doi:10.1016/S0962-8924(00)89088-1 PMID:14732063PubMedCrossRefGoogle Scholar
  86. 86.
    Mofenson LM, Bethel J, Moye J et al. Effect of intravenous immunoglobulin (IVIG) on CD4/ lymphocyte decline in HIV infected children in a clinical trial of IVIG infection prophylaxis. J Acquir Immune Defic Syndr 1993; 6:1103–13. PMID:8105072PubMedGoogle Scholar
  87. 87.
    Palella FJJ, Delaney KM, Moorman AC et al. Declining mor-bidity and mortality among patients with advanced human immunodeficiency virus infection. HIV Outpatient Study Investigators. N Engl J Med 1998; 338:853–60. doi:10.1056/NEJM199803263381301 PMID:9516219PubMedCrossRefGoogle Scholar
  88. 88.
    Mocroft A, Ledergerber B, Katlama C et al. Decline in the AIDS and death rates in the EuroSIDA study: An observational study. Lancet 2003; 362:22–9. doi:10.1016/S0140-6736(03)13802.0 PMID:12853195PubMedCrossRefGoogle Scholar
  89. 89.
    Rutschmann OT, Opravil M, Iten A et al. A placebo-controlled trial of didanosine plus stavudine, with and without hydroxyurea, for HIV infection. The Swiss HIV Cohort Study. AIDS 1998; 12:F71–7. doi:10.1097/00002030-199808000-00003 PMID:9631134PubMedCrossRefGoogle Scholar
  90. 90.
    Kaplan G, Thomas S, Fierer DS et al. Thalidomide for the treat-ment of AIDS-associated wasting. AIDS Res Hum Retroviruses 2000; 16:1345–55. doi:10.1089/08892220050140892 PMID:11018854PubMedCrossRefGoogle Scholar
  91. 91.
    Rizzardi GP, Vaccarezza M, Capiluppi B et al. Cyclosporin A in combination with HAART in primary HIV-1 infection. J Biol Regul Homeost Agents 2000; 14:79–81. PMID:10763900PubMedGoogle Scholar
  92. 92.
    Vermeulen JN, Prins JM, Bunnik E et al. Intravenous immunoglobulin (IVIG) treatment for modulation of immune activation in human immunodeficiency virus type 1 infected therapy-naive individuals. AIDS Res Hum Retroviruses 2007; 23:1348–53. doi:10.1089/aid.2006.0210 PMID:18184076PubMedCrossRefGoogle Scholar
  93. 93.
    Yap PL et al. Does intravenous immune globulin have a role in HIV-infected patients?. Clin Exp Immunol 1994; 97(supp 1):59–67. PMID:8033437Google Scholar
  94. 94.
    Mofenson LM, Moye Jr J, Bethel J et al. Prophylactic intravenous immunoglobulin in HIV-infected children with CD4þ counts of 0.20 × 10(9)/L or more. Effect on viral, opportunistic, and bacterial infections. JAMA 1992; 268:483–8. doi:10.1001/jama.268.4.483 PMID:1352363PubMedCrossRefGoogle Scholar
  95. 95.
    Spector SA, Gelber RD, McGrath N et al. A controlled trial of intravenous immune globulin for the prevention of serious bacterial infections in children receiving zidovudine for advanced human immunodeficiency virus infection. Pediatric AIDS Clinical Trials Group. N Engl J Med 1994; 331:1181–7. doi:10.1056/NEJM199411033311802 PMID:7935655PubMedCrossRefGoogle Scholar
  96. 96.
    Kiehl MG, Stoll R, Broder M et al. controlled trial of intravenous immune globulin for the prevention of serious infections in adults with advanced human immunodeficiency virus infection. Arch Intern Med 1996; 156:2545–50. doi:10.1001/archinte.156.22.2545 PMID:8951297PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2012

Authors and Affiliations

  1. 1.INSERM UMR 925AmiensFrance
  2. 2.Université Jules Verne Picardie (UPJV), UFR de MédecineAmiensFrance
  3. 3.Unité 872, INSERMParisFrance
  4. 4.Centre de Recherche des Cordeliers, Equipe 16 — Immunopathology and Therapeutic ImmunointerventionUniversité Pierre et Marie Curie — Paris 6, UMR S 872ParisFrance
  5. 5.Université Paris Descartes, UMR S 872ParisFrance
  6. 6.International Associated Laboratory IMPACT, INSERM, France — Indian Council of Medical ResearchIndia

Personalised recommendations