Naturally Occurring Antibodies Directed Against Carbohydrate Tumor Antigens

  • Reinhard Schwartz-Albiez
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 750)


Healthy persons carry within their pool of circulating antibodies immunoglobulins preferentially of IgM isotype, which are directed against a variety of tumor-associated antigens. In closer scrutiny of their nature, some of these antibodies could be defined as naturally occurring antibodies due to the germline configuration of the variable immunoglobulin region. The majority of these immunoglobulins recognize carbohydrate antigens which can be classified as oncofetal antigens. Many of these IgM antibodies present in the peripheral blood circulation can bind to tumor cells and of these a minor portion are also able to destroy tumor cells by several mechanisms, as for instance complement-mediated cytolysis or apoptosis. It was postulated that anti-carbohydrate antibodies are part of an anti-tumor immune response, while their presence in the peripheral blood of healthy donors is still waiting for a plausible explanation. It may be that recognition of defined epitopes, including carbohydrate sequences, by naturally occurring antibodies constitutes the humoral arm of an anti-tumor immune response as part of the often postulated tumor surveillance. The cytotoxic capacity of these antibodies inspired several research groups and pharmaceutical companies to design novel strategies of immunoglobulin-based anti-tumor immunotherapy.


Decay Accelerate Factor Cytotoxic Antibody Oncofetal Antigen Cytotoxic Capacity Polyreactive Antibody 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    An HJ, Miyamoto S, Lancaster KS et al. Profiling of glycans in serum forthe discovery ofpotential biomarkers for ovarian cancer. J Proteome Res 2006; 5:1626–35. PMID:16823970 doi:10.1021/pr060010kPubMedCrossRefGoogle Scholar
  2. 2.
    Blixt O, Head S, Mondala T et al. Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proc Natl Acad Sci USA 2004; 101:17033–8. PMID:15563589 doi:10.1073/pnas.0407902101PubMedCrossRefGoogle Scholar
  3. 3.
    Huflejt ME, Vuskovic M, Vasiliu D et al. Anti-carbohydrate antibodies of normal sera: findings, surprises and challenges. Mol Immunol 2009; 46:3037–49. PMID:19608278 doi:10.1016/j.molimm.2009.06.010PubMedCrossRefGoogle Scholar
  4. 4.
    Lekakh IV, Bovin NV, Bezyaeva GP et al. Natural hidden autoantibodies react with negatively charged carbohydrates andxenoantigen Bdi. Biochem (Moscow) 2001; 66:163–167 doi: 10.1023/A: 1002887430209.CrossRefGoogle Scholar
  5. 5.
    Yasuda T, Ueno J, Naito Y et al. Antiglycolipid antibodies in human sera. Adv Exp Med Biol 1982; 152:457–65. PMID:7136929PubMedGoogle Scholar
  6. 6.
    Agostino M, Sandrin MS, Thompson PE et al. In silico analysis of antibody-carbohydrate interactions and its application to xenoreactive antibodies. Mol Immunol 2009; 47:233–46. PMID:19828202 doi:10.1016/j. molimm.2009.09.031PubMedCrossRefGoogle Scholar
  7. 7.
    Macher BA, Galili U. The Galα1,3Galβ1,4GlcNAc-R (α-Gal) epitope: A carbohydrate of unique evolution and clinical relevance. Biochim Biophys Acta 2008; 1780:75–88. PMID:18047841PubMedCrossRefGoogle Scholar
  8. 8.
    Ghaderi D, Taylor RE, Padler-Karavani V et al. Implications of the presence of N-glycolylneuraminic acid in recombinant therapeutic glycoproteins. Nat Biotechnol 2010; 28:863–7. PMID:20657583 doi:10.1038/nbt.1651PubMedCrossRefGoogle Scholar
  9. 9.
    Jakóbisiak M, Lasek W, Golab J. Natural mechanisms protecting against cancer. Immunol Lett 2003; 90:103–22. PMID:14687712 doi:10.1016/j.imlet.2003.08.005PubMedCrossRefGoogle Scholar
  10. 10.
    Bohn J. Are natural antibodies involved in tumour defence? Immunol Lett 1999; 69:317–20. PMID: 10528795 doi:10.1016/S0165-2478(99)00111-XPubMedCrossRefGoogle Scholar
  11. 11.
    Lutz HU, Binder CJ, Kaveri S. Naturally occurring auto-antibodies in homeostasis and disease. Trends Immunol 2009; 30:43–51. PMID:19058756 doi:10.1016/ Scholar
  12. 12.
    Siminovitch KA, Misener V, Kwong PC et al. A natural autoantibody is encoded by germline heavy and lambda light chain variable region genes without somatic mutations. J Clin Invest 1989; 84:1675–8. PMID:2509520 doi:10.1172/JCI114347PubMedCrossRefGoogle Scholar
  13. 13.
    Vollmers HP, Brändlein S. The “early birds”: natural IgM antibodies and immune surveillance. Histol Histopathol 2005; 20:927–37. PMID:15944943PubMedGoogle Scholar
  14. 14.
    Gagneux P, Varki A. Evolutionary considerations in relating oligosaccharide diversity to biological functions. Glycobiology 1999; 9:747–55. PMID:10406840 doi:10.1093/glycob/9.8.747PubMedCrossRefGoogle Scholar
  15. 15.
    Hooper LV, Gordon JI. Glycans as legislators of host-microbial interactions: spanning the spectrum from symbiosis topathogenicity. Glycobiology 2001; 11:1R–10R. PMID: 11287395 doi: 10.1093/glycob/1 1.2.1RPubMedCrossRefGoogle Scholar
  16. 16.
    Patsos G, Corfield A. Management of the human mucosal defensive barrier: evidence for glycan legislation. Biol Chem 2009; 390:581–90. PMID:19335202 doi:10.1515/BC.2009.052PubMedCrossRefGoogle Scholar
  17. 17.
    Aarnoudse CA, Garcia-Vallejo JJ, Saeland E et al. Recognition of tumor glycans by antigen-presenting cells. Curr Opin Immunol 2006; 18:105–11. PMID:16303292 doi:10.1016/j.coi.2005.11.001PubMedCrossRefGoogle Scholar
  18. 18.
    van Kooyk Y, Rabinovich GA. Proteinvan-glycan interactions in the control of innate and adaptive immune responses. Nat Immunol 2008; 9:593–601. PMID:18490910 doi:10.1038/ni.f.203PubMedCrossRefGoogle Scholar
  19. 19.
    Varki A. Multiple changes in sialic acid biology during human evolution. Glycoconj J 2009; 26:231–45. PMID:18777136 doi:10.1007/s10719-008-9183-zPubMedCrossRefGoogle Scholar
  20. 20.
    Bode L. Human milk oligosaccharides: prebiotics and beyond. Nutr Rev 2009; 67(Suppl 2):S183–91. PMID:19906222 doi:10.1111/j.1753-4887.2009.00239.xPubMedCrossRefGoogle Scholar
  21. 21.
    Khan AS, Kniep B, Oelschlaeger TA et al. Receptor structure for F1C fimbriae of uropathogenic Escherichia coli. Infect Immun 2000; 68:3541–7. PMID:10816509 doi:10.1128/IAI.68.6.3541-3547.2000PubMedCrossRefGoogle Scholar
  22. 22.
    Pashov A, Monzavi-Karbassi B, Kieber-Emmons T. Immune surveillance and immunotherapy: lessons from carbohydrate mimotopes. Vaccine 2009; 27:3405–15. PMID: 19200843 doi:10.1016/j.vaccine.2009.01.074PubMedCrossRefGoogle Scholar
  23. 23.
    Griffin DO, Holodick NE, Rothstein TL. Human B1 cells in umbilical cord and adult peripheral blood express thenovelphenotypeCD20+CD27+CD43+CD70-. J Exp Med 2011; 208:67–80. PMID:21220451 doi:10.1084/jem.20101499PubMedCrossRefGoogle Scholar
  24. 24.
    Foote JB, Kearney JF. Generation of B cell memory to the bacterial polysaccharide alpha-1,3 dextran. J Immunol 2009; 183:6359–68. PMID:19841173 doi:10.4049/jimmunol.0902473PubMedCrossRefGoogle Scholar
  25. 25.
    Roy B, Shukla S, Lyszikiewicz M et al. Somatic hypermutation in peritoneal B1b cells. Mol Immunol 2009; 46:1613–9. PMID:19327839 doi:10.1016/j.molimm.2009.02.026PubMedCrossRefGoogle Scholar
  26. 26.
    Duan B, Morel L. Role of B1a cells in autoimmunity. Autoimmun Rev 2006; 5:403–8. PMID: 16890894 doi:10.1016/j.autrev.2005.10.007PubMedCrossRefGoogle Scholar
  27. 27.
    Schatz N, Brändlein S, Rückl K et al. Diagnostic and therapeutic potential of a human antibody cloned from a cancer patient that binds to a tumor-specific variant of transcription factor TASF15. Cancer Res 2010; 70:398–408. PMID:20048082 doi:10.1158/0008-5472.CAN-09-2186PubMedCrossRefGoogle Scholar
  28. 28.
    Chen ZJ, Wheeler CJ, Shi W et al. Polyreactive antigen-binding B cells are the predominant cell type in the newborn B cell repertoire. Eur JImmunol 1998; 28:989–94. PMID:9541594 doi:10.1002/(SICI)1521-4141(199803)28:03<989::AID-IMMU989>3.0.CO;2-1CrossRefGoogle Scholar
  29. 29.
    Notkins AL. Polyreactivity of antibody molecules. Trends Immunol 2004; 25:174–9. PMID: 15039043 doi:10.1016/ Scholar
  30. 30.
    Oyelaran O, Li Q, Farnsworth D et al. Microarrays with varying carbohydrate density reveal distinct subpopulations of serum antibodies. J Proteome Res 2009; 8:3529–38. PMID:19366269 doi:10.1021/pr9002245PubMedCrossRefGoogle Scholar
  31. 31.
    Nores GA, Lardone RD, Comín R et al. Anti-GM1 antibodies as a model of the immune response to self-glycans. Biochim Biophys Acta 2008; 1780:538–545. PMID: 18029096PubMedCrossRefGoogle Scholar
  32. 32.
    Kurtenkov O, Klaamas K, Sergeyev B et al. Better survival of Helicobacter pylori infected patients with early gastric cancer is related to a higher level of Thomsen-Friedenreich antigen-specific antibodies. Immunol Invest 2003; 32:83–93. PMID:12722944 doi:10.1081/IMM-120019210PubMedCrossRefGoogle Scholar
  33. 33.
    Taylor RE, Gregg CJ, Padler-Karavani V et al. Novel mechanism for the generation of human xeno-autoantibodies against the nonhuman sialic acid N-glycolylneuraminic acid. J Exp Med 2010; 207:1637–46. PMID:20624889 doi:10.1084/jem.20100575PubMedCrossRefGoogle Scholar
  34. 34.
    Kannagi R, Izawa M, Koike T et al. Carbohydrate-mediated cell adhesion in cancer metastasis and angiogenesis. Cancer Sci 2004; 95:377–84. PMID:15132763 doi:10.1111/j.1349-7006.2004.tb03219.xPubMedCrossRefGoogle Scholar
  35. 35.
    Kobata A, Amano J. Altered glycosylation of proteins produced by malignant cells, and application for the diagnosis and immunotherapy of tumours. Immunol Cell Biol 2005; 83:429–39. PMID: 16033539 doi:10.1111/j.1440-1711.2005.01351.xPubMedCrossRefGoogle Scholar
  36. 36.
    Cao Y, Karsten U, Otto G et al. Expression of MUC1, Thomsen-Friedenreich antigen, Tn, sialosyl-Tn, and alpha2,6-linked sialic acid in hepatocellular carcinomas and preneoplastic hepatocellular lesions. Virchows Arch 1999; 434:503–9. PMID:10394884 doi:10.1007/s004280050375PubMedCrossRefGoogle Scholar
  37. 37.
    Cao Y, Blohm D, Ghadimi BM et al. Mucins (MUC1 and MUC3) of gastrointestinal and breast epithelia reveal different and heterogenous tumor-associated aberrations in glycosylation. J Histochem Cytochem 1997; 45:1547–57. PMID:9358856 doi:10.1177/002215549704501111PubMedCrossRefGoogle Scholar
  38. 38.
    Goletz S, Thiede B, Hanisch FG et al. A sequencing strategy for the localization of O-glycosylation sites of MUC1 tandemrepeats by PSD-MALDImassspectrometry. Glycobiology 1997; 7:881–96. PMID:9363430 doi:10.1093/glycob/7.7.881PubMedCrossRefGoogle Scholar
  39. 39.
    Vollmers HP, Brändlein S. Tumors: too sweet to remember? Mol Cancer 2007; 6:78. PMID: 18053197 doi: 10.1186/1476-4598-6-78PubMedCrossRefGoogle Scholar
  40. 40.
    Cao Y, Stosiek P, Springer G et al. Thomsen-Friedenreich-related carbohydrate antigens in normal adult tissues: A systematic and comparative study. Histochem Cell Biol 1996; 106:197–207. PMID:8877380 doi:10.1007/BF02484401PubMedCrossRefGoogle Scholar
  41. 41.
    Hakomori S. Possible functions of tumor-associated carbohydrate antigens. Curr Opin Immunol 1991; 3:646–53. PMID:1684510 doi:10.1016/0952-7915(91)90091-EPubMedCrossRefGoogle Scholar
  42. 42.
    Springer GF. Immunoreactive T and Tn epitopes in cancer. Diagnosis, prognosis, and immunotherapy. J Mol Med 1997; 75:594–602. PMID:9297627 doi:10.1007/s001090050144PubMedCrossRefGoogle Scholar
  43. 43.
    Cao Y, Karsten UR, Liebrich W et al. Expression of Thomsen-Friedenreich-related antigens in primary and metastatic colorectal carcinomas. A reevaluation. Cancer 1995; 76:1700–8. PMID:8625037 doi:10.1002/1097-0142(19951115)76:10<1700::AID-CNCR2820761005>3.0.CO;2-ZPubMedCrossRefGoogle Scholar
  44. 44.
    Cao Y, Merling A, Karsten UR et al. Expression of CD175 (Tn), CD175s (sialosyl-Tn) and CD176 (Thomsen-Friedenreich antigen) on malignant human hematopoietic cells. IntJ Cancer 2008; 123:89–99. PMID:18398838 doi:10.1002/ijc.23493CrossRefGoogle Scholar
  45. 45.
    Baum LG, Pang M, Perillo NL et al. Human thymic epithelial cells express an endogenous lectin, galectin-1, which binds to core 2 O-glycans on thymocytes and T lymphoblastoid cells. J Exp Med 1995; 181:877–87. PMID:7869048 doi:10.1084/jem.181.3.877PubMedCrossRefGoogle Scholar
  46. 46.
    Gillespie W, Paulson JC, Kelm S et al. Regulation of α2,3 sialyltransferase expression correlates with conversion of peanut agglutinin (PNA+ to PNA− phenotype in developing thymocytes. J Biol Chem 1993; 268:3801–4. PMID:8440675PubMedGoogle Scholar
  47. 47.
    Marth JD, Grewal PK. Mammalian glycosylation in immunity. Nat Rev Immunol 2008; 8:874–886. PMID:18846099 doi:10.1038/nri2417PubMedCrossRefGoogle Scholar
  48. 48.
    Priatel JJ, Chui D, Hiraoka N et al. The ST3GalI sialyltransferase controls CD8+ T lymphocyte homeostasis by modulating O-glycan biosynthesis. Immunity 2000; 12:273–83. PMID:10755614 doi:10.1016/S1074-7613(00)80180-6PubMedCrossRefGoogle Scholar
  49. 49.
    Springer GF, Cheingsong-Popov R, Schirrmacher V et al. Proposed molecular basis of murine tumor cell-hepatocyte interaction. J Biol Chem 1983; 258:5702–6. PMID:6304095PubMedGoogle Scholar
  50. 50.
    Schindlbeck C, Jeschke U, Schulze S et al. Prognostic impact of Thomsen-Friedenreich tumor antigen and disseminated tumor cells in the bone marrow of breast cancer patients. Breast Cancer Res 2007; 101:17–25 doi:10.1007/s10549-006-9271-3.CrossRefGoogle Scholar
  51. 51.
    Butschak G, Karsten U. Isolation and characterization of Thomsen-Friedenreich-specific antibodies from human serum. Tumour Biol 2002; 23:113–22. PMID:12218291 doi:10.1159/000064026PubMedCrossRefGoogle Scholar
  52. 52.
    Shigeoka H, Karsten U, Okumo K et al. Inhibition of liver metatsases from neuraminidase-treated colon 26 cells by an anti-Thomsen-Friedenreich-specific monoclonal antibody. Tumour Biol 1999; 20:139–46. PMID: 10213921 doi:10.1159/000030056PubMedCrossRefGoogle Scholar
  53. 53.
    Irazoqui FJ, Nores GA. Thomsen-Friedenreich disaccharide immunogenicity. Curr Cancer Drug Targets 2003; 3:433–43. PMID:14683501 doi:10.2174/1568009033481714PubMedCrossRefGoogle Scholar
  54. 54.
    Nakagoe T, Sawai T, Tsuji T et al. Difference in prognostic value between sialyl Lewis a and sialyl Lewis x antigen levels in the preoperative serum of gastric cancer patients. J Clin Gastroenterol 2002; 34:408–15. PMID: 11907351 doi:10.1097/00004836-200204000-00005PubMedCrossRefGoogle Scholar
  55. 55.
    Livingston PO, Zhang S, Lloyd KO. Carbohydrate vaccines that induce antibodies against cancer. 1.Rationale. Cancer Immunol Immunother 1997; 45:1–9. PMID:9353421 doi:10.1007/s002620050394PubMedCrossRefGoogle Scholar
  56. 56.
    Raffaghello L, Marimpietri D, Pagnan G et al. Anti-GD2 monoclonal antibody immunotherapy: a promising strategy in the prevention of neuroblastoma relapse. Cancer Lett 2003; 197:205–9. PMID: 12880983 doi:10.1016/S0304-3835(03)00100-9PubMedCrossRefGoogle Scholar
  57. 57.
    Ollert MW, David K, Vollmert C et al. Mechanisms of in vivo anti-neuroblastoma activity of human natural IgM. Eur J Cancer 1997; 33:1942–8. PMID:9516829 doi: 10.1016/S0959-8049(97)00285-2PubMedCrossRefGoogle Scholar
  58. 58.
    Fukuda M, Nozaki C, Ishiguro Y et al. Distribution of natural antibody against human neuroblastoma among children with or without neuroblastoma. Med Pediatr Oncol 2001; 36:147–8. PMID: 11464870 doi:10.1002/1096-911X(20010101)36:1<147∷AID-MPO1035>3.0.CO;2-RPubMedCrossRefGoogle Scholar
  59. 59.
    Ollert MW, David K, Schmitt C et al. Normal human serum contains a natural IgM antibody cytotoxic for human neuroblastoma cells. Proc Natl Acad Sci USA 1996; 93:4498–503. PMID:8633097 doi:10.1073/pnas.93.9.4498PubMedCrossRefGoogle Scholar
  60. 60.
    David K, Ollert MW, Juhl H et al. Growth arrest of solid human neuroblastoma xenografts in nude rats by natural IgM from healthy humans. Nat Med 1996; 2:686–9. PMID:8640561 doi: 10.1038/nm0696-686PubMedCrossRefGoogle Scholar
  61. 61.
    Erttmann R. Treatment of neuroblastoma with human natural antibodies. Autoimmun Rev 2008; 7:496–500. PMID:18558369 doi:10.1016/j.autrev.2008.03.014PubMedCrossRefGoogle Scholar
  62. 62.
    Schwartz-Albiez R, Laban S, Eichmüller S. Cytotoxic natural antibodies against human tumours: an option for anti-cancer immunotherapy? Autoimmun Rev 2008; 7:491–5. PMID:18558368 doi:10.1016/j. autrev.2008.03.012PubMedCrossRefGoogle Scholar
  63. 63.
    Erttmann R, David K, Schmitt C et al. Immunosurveillance by natural IgM antibodies may be responsible for the low neuroblastoma (NB) incidence in Africa. Proc AACR Annual Meeting 1998; 39:533–534.Google Scholar
  64. 64.
    Miller RW. Rarity of neuroblastoma in East Africa. Lancet 1990; 335:659–60. PMID: 1969032 doi:10.1016/0140-6736(90)90444-APubMedCrossRefGoogle Scholar
  65. 65.
    Stiller CA, Parkin DM. International variations in the incidence of neuroblastoma. Int J Cancer 1992; 52:538–43. PMID:1399133 doi:10.1002/ijc.2910520407PubMedCrossRefGoogle Scholar
  66. 66.
    Moehler TM, Sauer S, Witzel M et al. Involvement of alpha 1–2-fucosyltransferase I (FUT1) and surface-expressed Lewis(y) (CD174) in first endothelial cell-cell contacts during angiogenesis. J Cell Physiol 2008; 215:27–36. PMID:18205178 doi:10.1002/jcp.21285PubMedCrossRefGoogle Scholar
  67. 67.
    Vollmers HP, Brändlein S. Natural human immunoglobulins in cancer immunotherapy. Immunotherapy 2009; 1:241–8. PMID:20635944 doi:10.2217/1750743X.1.2.241PubMedCrossRefGoogle Scholar
  68. 68.
    Beutner U, Lorenz U, Illert B et al. Neoadjuvant therapy of gastric cancer with the human monoclonal IgM antibody SC-1: impact on the immune system. Oncol Rep 2008; 19:761–9. PMID:18288413PubMedGoogle Scholar
  69. 69.
    Hensel F, Hermann R, Schubert C et al. Characterization of glycosylphosphatidylinositol-linked molecule CD55/decay-accelerating factor as the receptor for antibody SC-1-induced apoptosis. Cancer Res 1999; 59:5299–306. PMID: 10537313PubMedGoogle Scholar
  70. 70.
    Brändlein S, Eck M, Strobel P et al. PAM-1, a natural human IgM antibody as a new tool for detection of breast and prostate precursors. Hum Antibodies 2004; 13:97–104. PMID:15719499PubMedGoogle Scholar
  71. 71.
    Brändlein S, Rauschert N, Rasche L et al. The human IgM antibody SAM-6 induces tumor-specific apoptosis with oxidized low-density lipoprotein. Mol Cancer Ther 2007; 6:326–33. PMID: 17237291 doi:10.1158/1535-7163.MCT-06-0399PubMedCrossRefGoogle Scholar
  72. 72.
    Pal S, Chatterjee M, Bhattercharya DK et al. O-acetyl sialic acid specific IgM in childhood acute lymphoblastic leukemia. Glycoconj J 2001; 18:529–37. PMID: 12151714 doi:10.1023/A:1019692329568PubMedCrossRefGoogle Scholar
  73. 73.
    Pal S, Bandyopadhyay S, Chatterjee M et al. Antibodies against 9-O-acetylated sialoglycans: apotent marker to monitor clinical status in childhood acute lymphoblastic leukemia. Clin Biochem 2004; 37:395–403. PMID:15087256 doi:10.1016/j.clinbiochem.2004.01.001PubMedCrossRefGoogle Scholar
  74. 74.
    Larkin JM, Norsworthy PJ, A’Hern RP et al. Anti-alphaGal-dependent complement-mediated cytotoxicity in metastatic melanoma. Melanoma Res 2006; 16:157–63. PMID:16567971 doi:10.1097/01. cmr.0000200490.62723.b0PubMedCrossRefGoogle Scholar
  75. 75.
    Brändlein S, Lorenz J, Ruoff N et al. Human monoclonal IgM antibodies with apoptotic activity isolated from cancer patients. Hum Antibodies 2002; 11:107–19. PMID:12775891PubMedGoogle Scholar
  76. 76.
    Varambally S, Bar-Dayan Y, Bayry J et al. Natural human polyreactive IgM induce apoptosis of lymphoid cell lines and human peripheral blood mononuclear cells. Int Immunol 2004; 16:517–24. PMID: 14978025 doi:10.1093/intimm/dxh053PubMedCrossRefGoogle Scholar
  77. 77.
    Lucas SD, Karlsson-Parra A, Nilsson B et al. Tumour-specific deposition of immunoglobulin G and complement in papillary thyroid carcinoma. HumPathol 1996; 27:1329–35. PMID:8958307 doi:10.1016/S0046-8177(96)90346-9Google Scholar
  78. 78.
    Idusogie EE, Wong PY, Presta LG et al. Engineered antibodies with increased activity to recruit complement. J Immunol 2001; 166:2571–5. PMID:11160318PubMedGoogle Scholar
  79. 79.
    Di Gaetano N, Cittera E, Nota R et al. Complement activation determines the therapeutic activity of rituximab in vivo. J Immunol 2003; 171:1581–7. PMID:12874252PubMedGoogle Scholar
  80. 80.
    Brändlein S, Pohle T, Vollmers C et al. CFR-1 receptor as target for tumor-specific apoptosis induced by the natural human monoclonal antibody PAM-1. Oncol Rep 2004; 11:777–84. PMID: 15010872PubMedGoogle Scholar
  81. 81.
    Peter ME, Heilbardt S, Schwartz-Albiez R et al. Cell surface sialylation plays a role in modulating sensitivity towards APO-1-mediated apoptotic cell death. Cell Death Differ 1995; 2:163–71. PMID:17180039PubMedGoogle Scholar
  82. 82.
    Yi B, Zhang M, Schwartz-Albiez R et al. Mechanisms of the apoptosis induced by CD176 antibody in human leukemic cells. Int J Oncol 2011; 38:1565–73. PMID:21455576PubMedGoogle Scholar
  83. 83.
    Gajate C, Gonzalez-Camacho F, Mollinedo F. Lipid raft connection between extrinsic and intrinsic apoptotic pathways. Biochem Biophys Res Commun 2009; 380:780–4. PMID:19338752 doi:10.1016/j. bbrc.2009.01.147PubMedCrossRefGoogle Scholar
  84. 84.
    Gajate C, Gonzalez-Camacho F, Mollinedo F. Involvement of raft aggregates enriched in Fas/CD95 death-inducing signaling complex in the antileukemic action of edelfosine in Jurkat cells. PLoS ONE 2009; 4:e5044 Epub 2009 Apr 7. PMID:19352436 doi:10.1371/journal.pone.0005044PubMedCrossRefGoogle Scholar
  85. 85.
    Erdmann M, Wipfler D, Merling A et al. Differential surface expression and possible function of 9-O-and 7-O-acetylated GD3 (CD60 b and c) during activation and apoptosis of human tonsillar B and T lymphocytes. Glycoconj J 2006; 23:627–38. PMID:17115281 doi:10.1007/s10719-006-9000-5PubMedCrossRefGoogle Scholar
  86. 86.
    Ullrich E, Bonnert M, Mignot G et al. Tumor stress, cell death and the ensuing immune response. Cell Death Differ 2008; 15:21–8. PMID:17992190 doi:10.1038/sj.cdd.4402266PubMedCrossRefGoogle Scholar
  87. 87.
    Kirschfink M. Targeting complement in therapy. Immunol Rev 2001; 180:177–89. PMID:11414360 doi:10.1034/j.1600-065X.2001.1800116.xPubMedCrossRefGoogle Scholar
  88. 88.
    Kirschfink M, Fishelson Z. Tumor cell resistance to complement-mediated lysis. In: Szebeni J, ed. The Complement System: Novelrolesinhealthanddisease. Amsterdam: Kluwer Academic Publ, 2004:265–304.CrossRefGoogle Scholar
  89. 89.
    Fishelson Z, Donin N, Zell S et al. Obstacles to cancerimmunotherapy: expression of membrane complement regulatory proteins (mCRPs) in Tumours. Mol Immunol 2003; 40:109–23. PMID: 12914817 doi: 10.1016/S0161-5890(03)00112-3PubMedCrossRefGoogle Scholar
  90. 90.
    Gorter A, Meri S. Immune evasion of tumour cells using membrane-bound complement regulatory proteins. Immunol Today 1999; 20:576–82. PMID:10562709 doi:10.1016/S0167-5699(99)01537-6PubMedCrossRefGoogle Scholar
  91. 91.
    Jurianz K, Ziegler S, Donin N et al. K562 erythroleukemic cells are equipped with multiple mechanisms of resistance to lysis by complement. Int J Cancer 2001; 93:848–54. PMID:11519047 doi:10.1002/ijc.1406PubMedCrossRefGoogle Scholar
  92. 92.
    Brasoveanu LI, Altomonte M, Fonsatti E et al. Levels of cell membrane CD59 regulate the extent of complement-mediated lysis of human melanoma cells. Lab Invest 1996; 74:33–42. PMID:8569195PubMedGoogle Scholar
  93. 93.
    Zell S, Geis N, Rutz R et al. Downregulation of CD55 and CD46 expression by anti-sense phosphorothioate oligonucleotides (S_ODNs) sensitizes tumour cells to complement attack. Clin Exp Immunol 2007; 150:576–584. PMID:17903221 doi:10.1111/j.1365-2249.2007.03507.xPubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2012

Authors and Affiliations

  • Reinhard Schwartz-Albiez
    • 1
  1. 1.Department of Translational ImmunologyGerman Cancer Research Center (DKFZ)HeidelbergGermany

Personalised recommendations