Advertisement

Naturally Occurring Autoantibodies to Apoptotic Cells

  • Keith B. ElkonEmail author
  • Gregg J. Silverman
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 750)

Abstract

Subsets of IgM naturally occurring autoantibodies (NAbs) bind to the cell surface membranes of dying cells. The antibodies predominantly have specificities against lipid antigens or oxidized lipids. Chief among these lipid antigens are phosphorylcholine (PC) and malondialdehyde (MDA). Antibodies to negatively charged phospholipids such as phosphatidylserine (PS) have been described and there is controversy as to whether these antibodies are related to anticardiolipin antibodies observed in disease states. IgM NAbs that bind to apoptotic cells recruit classical complement pathway components and facilitate phagocytosis by both macrophages and dendritic cells, and may block inflammatory pathways. Under these circumstances, pathologic immune responses to self (autoimmunity) are avoided, whereas mice lacking serum IgM develop a lupus-like disease with associated IgG autoantibody responses. Based on these observations, IgM anti-PC NAbs were found to attenuate inflammation in mouse models of arthritis. IgMNAbs antibodies therefore appear to play pivotal roles in the dampening inflammation and maintenance of tolerance.

Keywords

Apoptotic Cell Mannose Binding Lectin Cell Surface Membrane Lipid Antigen Phospholipid Such 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Casali P, Schettino EW. Structure and function of natural antibodies. Curr Top Microbiol Immunol 1996; 210:167–79. PMID:8565555PubMedCrossRefGoogle Scholar
  2. 2.
    Hayakawa K, Hardy RR. Normal, autoimmune, and malignant CD5+ B-cells: The LY-1 B lineage? Annu Rev Immunol 1988; 6:197–218. PMID:3289567 doi:10.1146/annurev.iy.06.040188.001213PubMedCrossRefGoogle Scholar
  3. 3.
    Foerster J. Autoimmune hemolytic anemias. In: Lee G et al., eds. Wintrobe’s Clinical Hematology, 9th ed. Philadelphia: Lea and Febiger, 1993:1170–1196.Google Scholar
  4. 4.
    Thurnheer MC, Zuercher AW, Cebra JJ et al. B1 cells contribute to serum IgM, but not to intestinal IgA, production in gnotobiotic Ig allotype chimeric mice. J Immunol 2003; 170:4564–71. PMID:12707334PubMedGoogle Scholar
  5. 5.
    Briles DE, Nahm M, Schroer K et al. Antiphosphocholine antibodies found in normal mouse serum are protective against intravenous infection with type 3 streptococcus pneumoniae. J Exp Med 1981; 153:694–705. PMID:7252411 doi:10.1084/jem.153.3.694PubMedCrossRefGoogle Scholar
  6. 6.
    Baumgarth N, Herman OC, Jager GC et al. B-1 and B-2 cell-derived immunoglobulin M antibodies are nonredundant components of the protective response to influenza virus infection. J Exp Med 2000; 192:271–80. PMID:10899913 doi:10.1084/jem. 192.2.271PubMedCrossRefGoogle Scholar
  7. 7.
    Erwig LP, Henson PM. Immunological consequences of apoptotic cell phagocytosis. Am J Pathol 2007; 171:2–8. PMID:17591947 doi:10.2353/ajpath.2007.070135PubMedCrossRefGoogle Scholar
  8. 8.
    Chen Y, Park YB, Patel E et al. IgM antibodies to apoptosis-associated determinants recruit C1q and enhance dendritic cell phagocytosis of apoptotic cells. J Immunol 2009; 182:6031–43. PMID:19414754 doi: 10.4049/jimmunol.0804191PubMedCrossRefGoogle Scholar
  9. 9.
    Mercolino TJ, Arnold LW, Hawkins LA et al. Normal mouse peritoneum contains a large population of Ly-1+ (CD5) B-cells that recognize phosphatidyl choline. Relationship to cells that secrete hemolytic antibody specific for autologouserythrocytes. JExpMed 1988; 168:687–98. PMID:3045250 doi:10.1084/jem.168.2.687CrossRefGoogle Scholar
  10. 10.
    Hayakawa K, Hardy RR, Honda M et al. Ly-1 B-cells: functionally distinct lymphocytes that secrete IgM autoantibodies. Proc Natl Acad Sci USA 1984; 81:2494–8. PMID:6609363 doi:10.1073/pnas.81.8.2494PubMedCrossRefGoogle Scholar
  11. 11.
    Cox KO, Hardy SJ. Autoantibodies against mouse bromelain-modified RBC are specifically inhibited by a common membrane phospholipid, phosphatidylcholine. Immunology 1985; 55:263–9. PMID:4007927PubMedGoogle Scholar
  12. 12.
    Mercolino TJ, Arnold LW, Haughton G. Phosphatidyl choline is recognized by a series of Ly-1+ murine B-cell lymphomas specific for erythrocyte membranes. J Exp Med 1986; 163:155–65. PMID:2416866 doi:10.1084/jem.163.1.155PubMedCrossRefGoogle Scholar
  13. 13.
    Pisetsky DS. Anti-DNA and autoantibodies. Curr Opin Rheumatol 2000; 12:364–8. PMID:10990170 doi: 10.1097/00002281-200009000-00002PubMedCrossRefGoogle Scholar
  14. 14.
    Rovere P, Manfredi AA, Vallinoto C et al. Dendritic cells preferentially internalize apoptotic cells opsonized by anti-beta2-glycoprotein I antibodies. J Autoimmun 1998; 11:403–11. PMID:9802923 doi:10.1006/jaut.1998.0224PubMedCrossRefGoogle Scholar
  15. 15.
    Sorice M, Circella A, Misasi R et al. Cardiolipin on the surface of apoptotic cells as a possible trigger for antiphospholipids antibodies. Clin Exp Immunol 2000; 122:277–84. PMID:11091286 doi: 10.1046/j.1365-2249.2000.01353.xPubMedCrossRefGoogle Scholar
  16. 16.
    Elkon KB. Cell survival and death in the rheumatic diseases. In: Firestein GS, Budd RC et al., eds. Kelley’s Textbook of Rheumatology, 6th ed. Philadelphia: W.B. Saunders Company, 2009:379–395.CrossRefGoogle Scholar
  17. 17.
    Verhoven B, Schlegel RA, Williamson P. Mechanisms of phosphatidylserine exposure, a phagocyte recognition signal, on apoptotic T-lymphocytes. J Exp Med 1995; 182:1597–601. PMID:7595231 doi:10.1084/jem.182.5.1597PubMedCrossRefGoogle Scholar
  18. 18.
    Jiang J, Serinkan BF, Tyurina YY et al. Peroxidation and externalization of phosphatidylserine associated with release of cytochrome c from mitochondria. Free Radic BiolMed 2003; 35:814–25. PMID:14583346 doi: 10.1016/S0891-5849(03)00429-5CrossRefGoogle Scholar
  19. 19.
    Greenberg ME, Sun M, Zhang R et al. Oxidized phosphatidylserine-CD36 interactions play an essential role in macrophage-dependentphagocytosisofapoptotic cells. JExpMed 2006; 203:2613–25. PMID:17101731 doi:10.1084/jem.20060370CrossRefGoogle Scholar
  20. 20.
    Kim SJ, Gershov D, Ma X et al. I-PLA(2) activation during apoptosis promotes the exposure of membrane lysophosphatidylcholine leading to binding by natural immunoglobulin M antibodies and complement activation. J Exp Med 2002; 196:655–65. PMID:12208880 doi:10.1084/jem.20020542PubMedCrossRefGoogle Scholar
  21. 21.
    Lauber K, Bohn E, Krober SM et al. Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell 2003; 113:717–30. PMID:12809603 doi:10.1016/S0092-8674(03)00422-7PubMedCrossRefGoogle Scholar
  22. 22.
    Chen R, Roman J, Guo J et al. Lysophosphatidic acid modulates the activation of human monocyte-derived dendritic cells. Stem Cells Dev 2006; 15:797–804. PMID:17253943 doi:10.1089/scd.2006.15.797PubMedCrossRefGoogle Scholar
  23. 23.
    Nagata S, Hanayama R, Kawane K. Autoimmunity and the clearance of dead cells. Cell 2010; 140:619–30. PMID:20211132 doi:10.1016/j.cell.2010.02.014PubMedCrossRefGoogle Scholar
  24. 24.
    Chou MY, Fogelstrand L, Hartvigsen K et al. Oxidation-specific epitopes are dominant targets of innate natural antibodies in mice and humans. J Clin Invest 2009; 119:1335–49. PMID:19363291 doi:10.1172/JCI36800PubMedCrossRefGoogle Scholar
  25. 25.
    Sørensen UB, Henrichsen J. Cross-reactions between pneumococci and other streptococci due to C polysaccharide and F antigen. J Clin Microbiol 1987; 25:1854–9. PMID:3499450PubMedGoogle Scholar
  26. 26.
    Mi QS, Zhou L, Schulze DH et al. Highly reduced protection against Streptococcus pneumoniae after deletion of a single heavy chain gene inmouse. Proc Natl Acad Sci USA 2000; 97:6031–6. PMID:10811914 doi: 10.1073/pnas. 110039497PubMedCrossRefGoogle Scholar
  27. 27.
    Chen Y, Khanna S, Goodyear CS et al. Regulation of dendritic cells and macrophages by an anti-apoptotic cell natural antibody that suppresses TLR responses and inhibits inflammatory arthritis. J Immunol 2009; 183:1346–59. PMID:19564341 doi:10.4049/jimmunol.0900948PubMedCrossRefGoogle Scholar
  28. 28.
    Etlinger HM, Heusser CH. T15 dominance in BALB/c mice is not controlled by environmental factors. J Immunol 1986; 136:1988–91. PMID:3485136PubMedGoogle Scholar
  29. 29.
    Palinski W, Horkko S, Miller E et al. Cloning of monoclonal autoantibodies to epitopes of oxidized lipoproteins from apolipoprotein E-deficient mice. Demonstration of epitopes of oxidized low density lipoprotein in human plasma. J Clin Invest 1996; 98:800–14. PMID:8698873 doi:10.1172/JCI118853PubMedCrossRefGoogle Scholar
  30. 30.
    Shaw PX, Horkko S, Chang MK et al. Natural antibodies with the T15 idiotype may act in atherosclerosis, apoptotic clearance, and protective immunity. J Clin Invest 2000; 105:1731–40. PMID:10862788 doi:10.1172/JCI8472PubMedCrossRefGoogle Scholar
  31. 31.
    Chang MK, Bergmark C, Laurila A et al. Monoclonal antibodies against oxidized low-density lipoprotein bind to apoptotic cells and inhibit their phagocytosis by elicited macrophages: evidence that oxidation-specific epitopes mediate macrophage recognition. Proc Natl Acad Sci USA 1999; 96:6353–8. PMID: 10339591 doi:10.1073/pnas.96.11.6353PubMedCrossRefGoogle Scholar
  32. 32.
    Shaw PX, Goodyear CS, Chang MK et al. The autoreactivity of anti-phosphorylcholine antibodies for atherosclerosis-associatedneo-antigens andapoptotic cells. JImmunol 2003; 170:6151–7. PMID: 12794145Google Scholar
  33. 33.
    Mevorach D, Zhou J-L, Song X et al. Systemic exposure to irradiated apoptotic cells induces autoantibody production. JExpMed 1998; 188:387–92. PMID:9670050 doi:10.1084/jem.188.2.387CrossRefGoogle Scholar
  34. 34.
    Matsuura E, Igarashi Y, Yasuda T et al. Anticardiolipin antibodies recognize beta 2-glycoprotein I structure altered by interacting with an oxygen modified solid phase surface. J Exp Med 1994; 179:457–62. PMID:7507506 doi: 10.1084/jem. 179.2.457PubMedCrossRefGoogle Scholar
  35. 35.
    Miyakis S, Lockshin MD, Atsumi T et al. International consensus statement on an update of the classification criteriafordefinite antiphospholipidsyndrome(APS). JThrombHaemost 2006; 4:295–306. PMID:16420554 doi:10.1111/j.1538-7836.2006.01753.xGoogle Scholar
  36. 36.
    Guerin J, Casey E, Feighery C et al. Anti-Beta 2-glycoprotein I antibody isotype and IgG subclass in antiphospholipid syndrome patients. Autoimmunity 1999; 31:109–16. PMID:10680749 doi:10.3109/08916939908994054PubMedCrossRefGoogle Scholar
  37. 37.
    Girardi G, Redecha P, Salmon JE. Heparin prevents antiphospholipid antibody-induced fetal loss by inhibiting complement activation. Nat Med 2004; 10:1222–6. PMID: 15489858 doi:10.1038/nm1121PubMedCrossRefGoogle Scholar
  38. 38.
    Mehrani T, Petri M. Association ofIgA Anti-beta2 glycoprotein I with clinical and laboratory manifestations ofsystemic lupus erythematosus. JRheumatol 2011; 38:64–8. PMID:20952463 doi:10.3899/jrheum.100568CrossRefGoogle Scholar
  39. 39.
    Mevorach D, Mascarenhas J, Gershov DA et al. Complement-dependent clearance of apoptotic cells by human macrophages. JExpMed 1998; 188:2313–20. PMID:9858517 doi:10.1084/jem.188.12.2313CrossRefGoogle Scholar
  40. 40.
    Gershov D, Kim S, Brot N et al. C-reactive protein binds to apoptotic cells, protects the cells from assembly of the terminal complement components and sustains an antiinflammatory innate immune response. Implications for systemic autoimmunity. J Exp Med 2000; 192:1353–64. PMID:11067883 doi:10.1084/jem.192.9.1353PubMedCrossRefGoogle Scholar
  41. 41.
    Korb LC, Ahearn JM. C1q binds directly and specifically to surface blebs of apoptotic human keratinocytes. J Immunol 1997; 158:4525–8. PMID:9144462PubMedGoogle Scholar
  42. 42.
    Botto M, Dell’Agnola C, Bygrave AE et al. Homozygous C1q deficiency causes glomerulonephritis associated withmultipleapoptoticbodies. NatGenet 1998; 19:56–9. PMID:9590289 doi:10.1038/ng0598-56Google Scholar
  43. 43.
    Ehrenstein MR, Cook HT, Neuberger MS. Deficiency in serum immunoglobulin (Ig)M predisposes to development of IgG autoantibodies. J Exp Med 2000; 191:1253–8. PMID:10748243 doi:10.1084/jem.191.7.1253PubMedCrossRefGoogle Scholar
  44. 44.
    Boes M. Role of natural and immune IgM antibodies in immune responses. Mol Immunol 2000; 37:1141–9. PMID:11451419 doi:10.1016/S0161-5890(01)00025-6PubMedCrossRefGoogle Scholar
  45. 45.
    Quartier P, Potter PK, Ehrenstein MR et al. Predominant role of IgM-dependent activation of the classical pathway in the clearance of dying cells by murine bone marrow-derived macrophages in vitro. Eur J Immunol 2005; 35:252–60. PMID:15597324 doi:10.1002/eji.200425497PubMedCrossRefGoogle Scholar
  46. 46.
    Ogden CA, Kowalewski R, Peng YF et al. IgM is required for efficient complement mediatedphagocytosis of apoptotic cells in vivo. Autoimmunity 2005; 38:259–64. PMID:16206508 doi:10.1080/08916930500124452PubMedCrossRefGoogle Scholar
  47. 47.
    Czajkowsky DM, Shao Z. The human IgM pentamer is a mushroom-shaped molecule with a flexural bias. Proc Natl Acad Sci USA 2009; 106:14960–5. PMID:19706439 doi:10.1073/pnas.0903805106PubMedCrossRefGoogle Scholar
  48. 48.
    Steinman RM, Hawiger D, Nussenzweig MC. Tolerogenic dendritic cells. Annu Rev Immunol 2003; 21:685–711. PMID:12615891 doi:10.1146/annurev.immunol.21.120601.141040PubMedCrossRefGoogle Scholar
  49. 49.
    Santer DM, Hall BE, George TC et al. C1q deficiency leads to the defective suppression of IFN-alpha in response to nucleoprotein containing immune complexes. J Immunol 2010; 185:473 8–49. PMID:20844193 doi: 10.4049/jimmunol. 1001731CrossRefGoogle Scholar
  50. 50.
    Gray M, Miles K, Salter D et al. Apoptotic cells protect mice from autoimmune inflammation by the inductionofregulatoryB-cells. ProcNatl Acad Sci USA 2007; 104:14080–5. PMID:17715067 doi:10.1073/pnas.0700326104CrossRefGoogle Scholar
  51. 51.
    Silverman GJ. Regulatory natural autoantibodies to apoptotic cells: Pallbearers and protectors. Arthritis Rheum 2011; 63:597–602. PMID: 21360488, doi: 10.1002/art.30140.PubMedCrossRefGoogle Scholar
  52. 52.
    Anania C, Gustafsson T, Hua X et al. Increased prevalence of vulnerable atherosclerotic plaques and low levels of natural IgM antibodies against phosphorylcholine in patients with systemic lupus erythematosus. Arthritis Res Ther 2010; 12:R214. PMID:21092251 doi:10.1186/ar3193PubMedCrossRefGoogle Scholar
  53. 53.
    Ogden CA, deCathelineau A, Hoffmann PR et al. C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells. J Exp Med 2001; 194:781–95. PMID:11560994 doi:10.1084/jem.194.6.781PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2012

Authors and Affiliations

  1. 1.Department of Medicine and ImmunologyUniversity of WashingtonSeattleUSA
  2. 2.Department of Medicine and PathologyNew York University School of MedicineNew York CityUSA

Personalised recommendations