Antibody Polyspecificity

What Does It Matter?
  • Jordan D. Dimitrov
  • Anastas D. Pashov
  • Tchavdar L. VassilevEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 750)


Polyspecificity (polyreactivity) is currently considered an intrinsic property of a subset of antibodies, primarily of naturally occurring autoantibodies. Polyspecificity is no longer viewed as a biologically irrelevant stickiness. Furthermore, the capacity to bind defined sets of unrelated antigens finds its structural explanation. What is most intriguing, the elucidation of the role of polyspecificity may promote a better understanding of specific recognition as a function of the entire immune system. The early events of immune recognition depend on polyspecific binding. Thus, the completeness of the naïve repertoires of antigen receptors is ensured. The process of immunologically-relevant antigen recognition that is initiated goes beyond simple molecular interaction with the antigenic determinants. It involves cellular cooperation and culminates in antibody response maturation. Recent findings also pave the way for the clinical application of posttranslationally induced polyspecificity.


Affinity Maturation Free Heme IVIG Preparation Natural Autoantibody Specific Hydrogen Bond 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Landsteiner K. The Specificity of Serological Reactions. Harvard: Harvard University Press, 1947.Google Scholar
  2. 2.
    Dighiero G, Guilbert B, Avrameas S. Naturally occurring antibodies against nine common antigens in humans sera. II. High incidence of monoclonal Ig exhibiting antibody activity against actin and tubulin and sharing antibody specificities with natural antibodies. J Immunol 1982; 128:2788–92. PMID:6804567PubMedGoogle Scholar
  3. 3.
    Avrameas S. Natural autoantibodies: from ‘horror autotoxicus’ to ‘gnothi seauton.’. Immunol Today 1991; 12:154–9. PMID:1715166PubMedGoogle Scholar
  4. 4.
    Casali P, Notkins AL. Probing the human B-cell repertoire with EBV: Polyreactive antibodies and CD5+ B lymphocytes. Annu Rev Immunol 1989; 7:513–35. PMID:2469441 doi:10.1146/annurev. iy.07.040189.002501PubMedCrossRefGoogle Scholar
  5. 5.
    Quan CP, Berneman A, Pires R et al. Natural polyreactive secretory immunoglobulin A autoantibodies as a possible barrier to infection in humans. Infect Immun 1997; 65:3997–4004. PMID:9316998PubMedGoogle Scholar
  6. 6.
    Mihaylova NM, Dimitrov JD, Djoumerska-Alexieva IK et al. Inflammation-induced enhancement of IgG immunoreactivity. Inflamm Res 2008; 57(1):1–3. PMID:18209958 doi:10.1007/sOOO11-007-6213-4PubMedCrossRefGoogle Scholar
  7. 7.
    van Regenmortel MH. Molecular design versus empirical discovery in peptide-based vaccines. Coming to terms with fuzzy recognition sites and ill-defined structure-function relationships in immunology. Vaccine 1999; 18:216–21. PMID:10506645 doi:10.1016/S0264-410X(99)00192-9PubMedCrossRefGoogle Scholar
  8. 8.
    James LC, Tawfik DS. The specificity of cross-reactivity: promiscuous antibody binding involves specific hydrogen bonds rather than nonspecific hydrophobic stickiness. Protein Sci 2003; 12:2183–93. PMID:14500876 doi:10.1110/ps.03172703PubMedCrossRefGoogle Scholar
  9. 9.
    Ditzel HJ, Itoh K, Burton DR. Determinants of polyreactivity in a large panel of recombinant human antibodies from HIV-1 infection. J Immunol 1996; 157:739–49. PMID:8752924PubMedGoogle Scholar
  10. 10.
    Crouzier R, Martin T, Pasquali JL. Heavy chain variable region, light chain variable region and heavy chain CDR3 influences on the mono-and polyreactivity and on the affinity of human monoclonal rheumatoid factors. J Immunol 1995; 154:4526–35. PMID:7722307PubMedGoogle Scholar
  11. 11.
    Ichiyoshi Y, Casali P. Analysis of the structural correlates for antibody polyreactivity by multiple reassortments of chimeric human immunoglobulin heavy and light chain V segments. J Exp Med 1994; 180:885–95. PMID:8064239 doi:10.1084/jem.180.3.885PubMedCrossRefGoogle Scholar
  12. 12.
    Martin T, Crouzier R, Weber JC et al. Structure-function studies on a polyreactive (natural) autoantibody. Polyreactivity is dependent on somatically generated sequences in the third complementarity-determining region of the antibody heavy chain. J Immunol 1994; 152:5988–96. PMID:8207223PubMedGoogle Scholar
  13. 13.
    Polymenis M, Stollar BD. Critical binding site amino acids of anti-Z-DNA single chain Fv molecules. Role of heavy and light chain CDR3 and relationship to autoantibody activity. J Immunol 1994; 152(ll):5318–29. PMID:8189049PubMedGoogle Scholar
  14. 14.
    Notkins AL. Polyreactivity of antibody molecules. Trends Immunol 2004; 25:174–9. PMID:15039043 doi:10.1016/ Scholar
  15. 15.
    Mariuzza RA. Multiple paths to multispecificity. Immunity 2006; 24:359–61. PMID:16618592 doi:10.1016/j. immuni.2006.03.009PubMedCrossRefGoogle Scholar
  16. 16.
    Manivel V, Bayiroglu F, Siddiqui Z et al. The primary antibody repertoire represents a linked network of degenerate antigen specificities. J Immunol 2002; 169:888–97. PMID:12097393PubMedGoogle Scholar
  17. 17.
    Wedemayer GJ, Patten PA, Wang LH et al. Structural insights into the evolution of an antibody combining site. Science 1997; 276:1665–9. PMID:9180069 doi:10.1126/science.276.5319.1665PubMedCrossRefGoogle Scholar
  18. 18.
    Yin J, Beuscher AE, Andryski SE et al. Structural plasticity and the evolution of antibody affinity and specificity. J Mol Biol 2003; 330:651–6. PMID:12850137 doi:10.1016/S0022-2836(03)00631-4PubMedCrossRefGoogle Scholar
  19. 19.
    Zimmermann J, Romesberg FE, Brooks CL 3rd et al. Molecular description of flexibility in an antibody combining site. J Phys Chem B 2010; 114:7359–70. PMID:20455589 doi:10.1021/jp906421vPubMedCrossRefGoogle Scholar
  20. 20.
    Yang PL, Schultz PG. Mutational analysis of the affinity maturation of antibody 48G7. J Mol Biol 1999; 294:1191–201. PMID:10600377 doi:10.1006/jmbi. 1999.3197PubMedCrossRefGoogle Scholar
  21. 21.
    Yin J, Mundorff EC, Yang PL et al. A comparative analysis of the immunological evolution of antibody 28B4. Biochemistry 2001; 40:10764–73. PMID:11535051 doi:10.1021/bi010536cPubMedCrossRefGoogle Scholar
  22. 22.
    Jimenez R, Salazar G, Yin J et al. Protein dynamics and the immunological evolution of molecular recognition. Proc Natl Acad Sci USA 2004; 101(ll):3803–8. PMID: 15001706 doi:10.1073/pnas.0305745101PubMedCrossRefGoogle Scholar
  23. 23.
    James LC, Roversi P, Tawfik DS. Antibody multispecificity mediated by conformational diversity. Science 2003; 299:1362–7. PMID:12610298 doi:10.1126/science.1079731PubMedCrossRefGoogle Scholar
  24. 24.
    Bosshard HR. Molecular recognition by induced fit: how fit is the concept? News Physiol Sci 2001; 16:171–3. PMID:11479367PubMedGoogle Scholar
  25. 25.
    Berger C, Weber-Bornhauser S, Eggenberger J et al. Antigen recognition by conformational selection. FEBS Lett 1999; 450(1–2):149–53. PMID: 10350075 doi:10.1016/S0014-5793(99)00458-5PubMedCrossRefGoogle Scholar
  26. 26.
    Koshland DE. Application of a theory of enzyme specificity to protein synthesis. Proc Natl Acad Sci USA 1958; 44:98–104. PMID:16590179 doi:10.1073/pnas.44.2.98PubMedCrossRefGoogle Scholar
  27. 27.
    Leder L, Berger C, Bornhauser S et al. Spectroscopic, calorimetric and kinetic demonstration of conformational adaptation in peptide-antibody recognition. Biochemistry 1995; 34:16509–18. PMID:8845380 doi:10.1021/bi00050a035PubMedCrossRefGoogle Scholar
  28. 28.
    Margulies DH. Molecular interactions: stiff or floppy (or somewhere in between?). Immunity 2003; 19:772–4. PMID:14670294 doi:10.1016/S1074-7613(03)00331-5PubMedCrossRefGoogle Scholar
  29. 29.
    Pashov AD, Plaxco J, Kaveri SV et al. Multiple antigenic mimotopes of HIV carbohydrate antigens: relating structure and antigenicity. J Biol Chem 2006; 281:29675–83. PMID:16899462 doi:10.1074/jbc.M604137200PubMedCrossRefGoogle Scholar
  30. 30.
    Pashov A, Canziani G, Monzavi-Karbassi B et al. Antigenic properties of peptide mimotopes of HIV-1-associated carbohydrate antigens. J Biol Chem 2005; 280:28959–65. PMID: 15955803 doi:10.1074/jbc.M502964200PubMedCrossRefGoogle Scholar
  31. 31.
    Kieber-Emmons T, Murali R, Greene M. Therapeutic peptides and peptidomimetics. Curr Opin Biotechnol 1997; 8:435–41. PMID:9265722 doi:10.1016/S0958-1669(97)80065-1PubMedCrossRefGoogle Scholar
  32. 32.
    Olsson L. Molecular mimicry of carbohydrate and protein structures by hybridoma antibodies. Bioessays 1987; 7:116–9. PMID:2446599 doi:10.1002/bies.950070306PubMedCrossRefGoogle Scholar
  33. 33.
    Ghiara JB, Ferguson DC, Satterthwait AC et al. Structure-based design of a constrained peptide mimic of the HIV-1 V3 loop neutralization site. J Mol Biol 1997; 266(1):31–9. PMID:9054968 doi:10.1006/jmbi. 1996.0768PubMedCrossRefGoogle Scholar
  34. 34.
    Young AC, Valadon P, Casadevall A et al. The three-dimensional structures of a polysaccharide binding antibody to Cryptococcus neoformans and its complex with a peptide from a phage display library: implications for the identification of peptide mimotopes. J Mol Biol 1997; 274:622–34. PMID: 9417940 doi:10.1006/jmbi. 1997.1407PubMedCrossRefGoogle Scholar
  35. 35.
    Murali R, Kieber-Emmons T. Molecular recognition of a peptide mimic of the Lewis Y antigen by an anti-Lewis Y antibody. J Mol Recognit 1997; 10:269–76. PMID:9770651 doi:10.1002/(SICI) 1099-1352 (199711/12)10:6<269::AID-JMR370>3.0.CO;2-9PubMedCrossRefGoogle Scholar
  36. 36.
    Luo P, Canziani G, Cunto-Amesty G et al. A molecular basis for functional peptide mimicry of a carbohydrate antigen. J Biol Chem 2000; 275:16146–54. PMID:10748116 doi:10.1074/jbc.M909121199PubMedCrossRefGoogle Scholar
  37. 37.
    Sethi DK, Agarwal A, Manivel V et al. Differential epitope positioning within the germline antibody paratope enhances promiscuity in the primary immune response. Immunity 2006; 24:429–38. PMID: 16618601 doi:10.1016/j.immuni.2006.02.010PubMedCrossRefGoogle Scholar
  38. 38.
    Fernández C, Alarcon-Riquelme ME, Sverremark E. Polyreactive binding of antibodies generated by polyclonal B-cell activation. II. Crossreactive and monospecific antibodies can be generated from an identical Ig rearrangement by differential glycosylation. Scand J Immunol 1997; 45:240–7. PMID:9122612 doi:10.1046/j.1365-3083.1997.d01-398.xPubMedCrossRefGoogle Scholar
  39. 39.
    Donadel G, Calabro A, Sigounas G et al. Human polyreactive and monoreactive antibodies: effect of glycosylation on antigen binding. Glycobiology 1994; 4:491–6. PMID:7827411 doi:10.1093/glycob/4.4.491PubMedCrossRefGoogle Scholar
  40. 40.
    Casali P, Notkins AL. CD5+ B lymphocytes, polyreactive antibodies and the human B-cell repertoire. Immunol Today 1989; 10:364–8. PMID:2482031 doi:10.1016/0167-5699(89)90268-5PubMedCrossRefGoogle Scholar
  41. 41.
    Sancho D, Mourao-Sa D, Joffre OP et al. Tumortherapy in mice via antigen targeting to a novel, DC-restricted C-type lectin. J Clin Invest 2008; 118:2098–110. PMID: 18497879 doi:10.1172/JCI34584PubMedCrossRefGoogle Scholar
  42. 42.
    Baumgarth N, Herman OC, Jager GC et al. B-1 and B-2 cell-derived immunoglobulin M antibodies are nonredundant components of the protective response to influenza virus infection. J Exp Med 2000; 192:271–80. PMID: 10899913 doi:10.1084/jem.192.2.271PubMedCrossRefGoogle Scholar
  43. 43.
    Ochsenbein AF, Fehr T, Lutz C et al. Control of early viral and bacterial distribution and disease by natural antibodies. Science 1999; 286:2156–9. PMID: 10591647 doi:10.1126/science.286.5447.2156PubMedCrossRefGoogle Scholar
  44. 44.
    McCoy KD, Stoel M, Stettler R et al. Polyclonal and specific antibodies mediate protective immunity against enteric helminth infection. Cell Host Microbe 2008; 4:362–73. PMID: 18854240 doi:10.1016/j. chom.2008.08.014PubMedCrossRefGoogle Scholar
  45. 45.
    Zhou ZH, Tzioufas AG, Notkins AL. Properties and function of polyreactive antibodies and polyreactive antigen-binding B-cells. J Autoimmun 2007; 29:219–28. PMID: 17888628 doi:10.1016/j.jaut.2007.07.015PubMedCrossRefGoogle Scholar
  46. 46.
    Mouquet H, Scheid JF, Zoller MJ et al. Polyreactivity increases the apparent affinity of anti-HIV antibodies by heteroligation. Nature 2010; 467:591–5. PMID:20882016 doi:10.1038/nature09385PubMedCrossRefGoogle Scholar
  47. 47.
    Coutinho A, Avrameas S. Speculations on immunosomatics: potential diagnostic and therapeutic value of immune homeostasis concepts. Scand J Immunol 1992; 36:527–32. PMID: 1411298 doi:10.1111/j. 1365-3083.1992.tb03220.xPubMedCrossRefGoogle Scholar
  48. 48.
    Ikematsu H, Kasaian MT, Schettino EW et al. Structural analysis of the VH-D-JH segments of human polyreactive IgG mAb. Evidence for somatic selection. J Immunol 1993; 151:3604–16. PMID:8376796PubMedGoogle Scholar
  49. 49.
    Cyster JG. Signaling thresholds and interclonal competition in preimmune B-cell selection. Immunol Rev 1997; 156:87–101. PMID:9176702 doi:10.1111/j.l600-065X.1997.tb00961.xPubMedCrossRefGoogle Scholar
  50. 50.
    Rajewsky K. Clonal selection and learning in the antibody system. Nature 1996; 381:751–8. PMID:8657279 doi:10.1038/381751a0PubMedCrossRefGoogle Scholar
  51. 51.
    Janin J. Principles of protein-protein recognition from structure to thermodynamics. Biochimie 1995; 77:497–505. PMID:8589061 doi:10.1016/0300-9084(96)88166-1PubMedCrossRefGoogle Scholar
  52. 52.
    Pauyo T, Hilinski GJ, Chiu PT et al. Genetic and fluorescence studies of affinity maturation in related antibodies. Mol Immunol 2006; 43:812–21. PMID:16137768 doi:10.1016/j.molimm.2005.07.001PubMedCrossRefGoogle Scholar
  53. 53.
    Babor M, Kortemme T. Multi-constraint computational design suggests that native sequences of germline antibody H3 loops are nearly optimal for conformational flexibility. Proteins 2009; 75:846–58. PMID:19194863 doi:10.1002/prot.22293PubMedCrossRefGoogle Scholar
  54. 54.
    Furukawa K, Akasako-Furukawa A, Shirai H et al. Junctional amino acids determine the maturation pathway of an antibody. Immunity 1999; 11:329–38. PMID:10514011 doi:10.1016/S1074-7613(00)80108-9PubMedCrossRefGoogle Scholar
  55. 55.
    Saenko VA, Rott GM, Poverennyi AM. Latent autoantibodies to cardiolipin in the blood serum of healthy subjects. Biull Eksp Biol Med 1989; 107:217–9. PMID:2923980PubMedCrossRefGoogle Scholar
  56. 56.
    Bobrovnik SA. Transformation of serum immunoglobulins and monoclonal antibodies into polyreactive immunoglobulins. Ukr Biokhim Zh 1997; 69:97–109. PMID:9606831PubMedGoogle Scholar
  57. 57.
    McMahon MJ, O’Kennedy R. Polyreactivity as an acquired artefact, rather than a physiologic property, of antibodies: evidence that monoreactive antibodies may gain the ability to bind to multiple antigens after exposure to low pH. J Immunol Methods 2000; 241:1–10. PMID: 10915844 doi:10.1016/S0022-1759(00)00196-4PubMedCrossRefGoogle Scholar
  58. 58.
    Bouvet JP, Stahl D, Rose S et al. Induction of natural autoantibody activity following treatment of human immunoglobulin with dissociating agents. J Autoimmun 2001; 16:163–72. PMID: 11247642 doi:10.1006/jaut.2000.0472PubMedCrossRefGoogle Scholar
  59. 59.
    Dimitrov JD, Roumenina LT, Doltchinkova VR et al. Antibodies use heme as a cofactor to extend their pathogen elimination activity and to acquire new effector functions. J Biol Chem 2007; 282:26696–706. PMID: 17636257 doi:10.1074/jbc.M702751200PubMedCrossRefGoogle Scholar
  60. 60.
    Djoumerska-Alexieva IK, Dimitrov JD, Voynova EN et al. Exposure of IgG to an acidic environment results in molecular modifications and in enhanced protective activity in sepsis. FEBS J 2010; 277:3039–50. PMID:20546303 doi:10.1111/j.l742-4658.2010.07714.xPubMedCrossRefGoogle Scholar
  61. 61.
    Fish F, Ziff M. Hidden anti-double stranded DNA antibodies in autoimmune mice. Clin Exp Immunol 1982; 49:587–97. PMID:6756722PubMedGoogle Scholar
  62. 62.
    Saenko VA, Kabakov AE, Poverenny AM. Hidden high-avidity anti-DNA antibodies occur in normal human gammaglobulin preparations. Immunol Lett 1992; 34:1–5. PMID: 1282496 doi:10.1016/0165-2478(92)90019-KPubMedCrossRefGoogle Scholar
  63. 63.
    Cabiedes J, Cabrai AR, Alarcon-Segovia D. Hidden anti-phospholipid antibodies in normal human sera circulate as immune complexes whose antigen can be removed by heat, acid, hypermolar buffers or phospholipase treatments. Eur J Immunol 1998; 28:2108–14. PMID:9692879 doi:10.1002/(SICI) 1521-4141(199807)28:07<2108::AID-IMMU21087gt;3.0.CO;2-RPubMedCrossRefGoogle Scholar
  64. 64.
    St-Amour I, Laroche A, Bazin R et al. Activation of cryptic IgG reactive with BAFF, amyloid beta peptide and GM-CSF during the industrial fractionation of human plasma into therapeutic intravenous immunoglobulins. Clin Immunol 2009; 133:52–60. PMID: 19604724 doi:10.1016/j.clim.2009.06.005PubMedCrossRefGoogle Scholar
  65. 65.
    Zöller-Utz IM, Esslinger B, Schulze-Krebs A et al. Natural hidden autoantibodies to tissue transglutaminase cross-react with fibrinogen. J Clin Immunol 2010; 30:204–12. PMID:19943187 doi:10.1007/s10875-009-9347-zPubMedCrossRefGoogle Scholar
  66. 66.
    Dimitrov JD, Planchais C, Kang J et al. Heterogeneous antigen recognition behavior of induced polyspecific antibodies. Biochem Biophys Res Commun 2010; 398:266–71. PMID:20599726 doi:10.1016/j. bbrc.2010.06.073PubMedCrossRefGoogle Scholar
  67. 67.
    Dimitrov JD, Ivanovska ND, Lacroix-Desmazes S et al. Ferrous ions and reactive oxygen species increase antigen-binding and anti-inflammatory activities of immunoglobulin G. J Biol Chem 2006; 281:439–46. PMID:16246843 doi:10.1074/jbc.M509190200PubMedCrossRefGoogle Scholar
  68. 68.
    Dimitrov JD, Lacroix-Desmazes S, Kaveri SV et al. Transition towards antigen-binding promiscuity of a monospecific antibody. Mol Immunol 2007; 44:1854–63. PMID:17097144 doi:10.1016/j. molimm.2006.10.002PubMedCrossRefGoogle Scholar
  69. 69.
    Willcox BE, Gao GF, Wyer JR et al. TCR binding to peptide-MHC stabilizes a flexible recognition interface. Immunity 1999; 10:357–65. PMID:10204491 doi:10.1016/S1074-7613(00)80035-7PubMedCrossRefGoogle Scholar
  70. 70.
    Boniface JJ, Reich Z, Lyons DS et al. Thermodynamics of T-cell receptor binding to peptide-MHC: evidence for a general mechanism of molecular scanning. Proc Natl Acad Sci USA 1999; 96:11446–51. PMID: 10500196 doi:10.1073/pnas.96.20.11446PubMedCrossRefGoogle Scholar
  71. 71.
    Djoumerska-Alexieva IK, Dimitrov JD, Nacheva J et al. Protein destabilizing agents induce polyreactivity and enhanced immunomodulatory activity in IVIg preparations. Autoimmunity 2009; 42:365–7. PMID:19811303 doi:10.1080/08916930902832181PubMedCrossRefGoogle Scholar
  72. 72.
    Dumont ME, Corin AF, Campbell GA. Noncovalent binding of heme induces a compact apocytochrome c structure. Biochemistry 1994; 33:7368–78. PMID:8003502 doi:10.1021/bi00189a043PubMedCrossRefGoogle Scholar
  73. 73.
    Dimitrov JD, Vassilev TL. Cofactor-mediated protein promiscuity. Nat Biotechnol 2009; 27:892. PMID: 19816439 doi:10.1038/nbt1009-892aPubMedCrossRefGoogle Scholar
  74. 74.
    Darley-Usmar V, Halliwell B. Blood radicals: reactive nitrogen species, reactive oxygen species, transition metal ions and the vascular system. Pharm Res 1996; 13:649–62. PMID:8860419 doi:10.1023/A:1016079012214PubMedCrossRefGoogle Scholar
  75. 75.
    Biemond P, Swaak AJ, van Eijk HG et al. Superoxide dependent iron release from ferritin in inflammatory diseases. Free Radic Biol Med 1988; 4:185–98. PMID:2833431 doi:10.1016/0891-5849(88)90026-3PubMedCrossRefGoogle Scholar
  76. 76.
    Wentworth AD, Jones LH, Wentworth P Jr. et al. Antibodies have the intrinsic capacity to destroy antigens. Proc Natl Acad Sci USA 2000; 97:10930–5. PMID: 11005865 doi:10.1073/pnas.97.20.10930PubMedCrossRefGoogle Scholar
  77. 77.
    Wentworth P Jr., McDunn JE, Wentworth AD et al. Evidence for antibody-catalyzed ozone formation in bacterial killing and inflammation. Science 2002; 298:2195–9. PMID: 12434011 doi:10.1126/science. 1077642PubMedCrossRefGoogle Scholar
  78. 78.
    Nieva J, Wentworth P Jr. The antibody-catalyzed water oxidation pathway—a new chemical arm to immune defense? Trends Biochem Sci 2004; 29:274–8. PMID:15130564 doi:10.1016/j.tibs.2004.03.009PubMedCrossRefGoogle Scholar
  79. 79.
    Wentworth P Jr., Nieva J, Takeuchi C et al. Evidence for ozone formation in human atherosclerotic arteries. Science 2003; 302:1053–6. PMID:14605372 doi:10.1126/science.1089525PubMedCrossRefGoogle Scholar
  80. 80.
    Wagener FA, Volk HD, Willis D et al. Different faces of the heme-heme oxygenase system in inflammation. Pharmacol Rev 2003; 55:551–71. PMID:12869663 doi:10.1124/pr.55.3.5PubMedCrossRefGoogle Scholar
  81. 81.
    Kumar S, Bandyopadhyay U. Free heme toxicity and its detoxification systems in human. Toxicol Lett 2005; 157:175–88. PMID: 15917143 doi:10.1016/j.toxlet.2005.03.004PubMedCrossRefGoogle Scholar
  82. 82.
    Balla J, Vercellotti GM, Nath K et al. Haem, haem oxygenase and ferritin in vascular endothelial cell injury. Nephrol Dial Transplant 2003; 18(Suppl 5):v8–12. PMID:12817058 doi:10.1093/ndt/gfgl034PubMedCrossRefGoogle Scholar
  83. 83.
    McIntyre JA. The appearance and disappearance of antiphospholipid autoantibodies subsequent to oxidation-reduction reactions. Thromb Res 2004; 114:579–87. PMID:15507294 doi:10.1016/j. thromres.2004.08.008PubMedCrossRefGoogle Scholar
  84. 84.
    McIntyre JA, Wagenknecht DR, Ramsey CJ. Redox-reactive antiphospholipid antibody differences between serum from Alzheimer’s patients and age-matched controls. Autoimmunity 2009; 42:646–52. PMID:19886736 doi:10.3109/08916930903074833PubMedCrossRefGoogle Scholar
  85. 85.
    Zhang M, Michael LH, Grosjean SA et al. The role of natural IgM in myocardial ischemia-reperfusion injury. J Mol Cell Cardiol 2006; 41:62–7. PMID: 16781728 doi:10.1016/j.yjmcc.2006.02.006PubMedCrossRefGoogle Scholar
  86. 86.
    Zhang M, Carroll MC. Natural antibody mediated innate autoimmune response. Mol Immunol 2007; 44:103–10. PMID: 16876247 doi:10.1016/j.molimm.2006.06.022PubMedCrossRefGoogle Scholar
  87. 87.
    Bobrovnik SA. Mechanisms for increasing the activity of polyreactive immunoglobulins in vivo. Ukr Biokhim Zh 1999; 71:129–35. PMID:10609340PubMedGoogle Scholar
  88. 88.
    Hansen MB, Svenson M, Diamant M et al. lnterleukin-6 autoantibodies: Possible biological and clinical significance. Leukemia 1995; 9:1113–5. PMID:7630180PubMedGoogle Scholar
  89. 89.
    Meager A. Natural autoantibodies to interferons. J Interferon Cytokine Res 1997; 17(Suppl l):S51–3. PMID:9241617PubMedGoogle Scholar
  90. 90.
    Djoumerska I, Tchorbanov A, Pashov A et al. The autoreactivity of therapeutic intravenous immunoglobulin (IVIg) preparations depends on the fractionation methods used. Scand J Immunol 2005; 61:357–63. PMID:15853919 doi:10.1111/j.1365-3083.2005.01568.xPubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2012

Authors and Affiliations

  • Jordan D. Dimitrov
    • 1
  • Anastas D. Pashov
    • 2
  • Tchavdar L. Vassilev
    • 2
    Email author
  1. 1.INSERM UMRS 872ParisFrance
  2. 2.Institute of MicrobiologyBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations