How Immune Complexes from Certain IgG NAbs and Any F(ab′)2 Can Mediate Excessive Complement Activation

  • Hans U. Lutz
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 750)


In sepsis death follows an excessive inflammatory response involving cytokines and complement that is activated primarily via the amplifying C3/C5 convertase. Excessive stimulation of complement amplification requires IgG-containing or F(ab′)2-containing immune complexes (IC) that capture dimeric C3b on one of their heavy chains or heavy chain fragments. The ability of IgG-IC to capture dimeric C3b by the Fab portion is dependent on an affinity for C3 within the Fab portion, but outside the antigen-binding region. This property is rare among IgG NAbs. In contrast to this, the lack of the Fc portion renders the Fab regions of any F(ab′)2-IC accessible to nascent C3b, but dimeric C3b deposits only if F(ab′)2-IC form secondary IC with anti-hinge NAbs that rigidify the complex and thereby promote deposition of dimeric C3b. Both types of complexes, C3b2-IgG-IC and C3b2-F(ab′)2-IC/anti-hinge NAbs, are potent precursors of alternative C3 convertases and stimulate complement amplification along with properdin up to 750 times more effectively than C3b and properdin. F(ab′)2 fragments are not normally generated, but are formed from NAbs by enzymes from pathogens and neutrophils in sepsis. Unlike IgG-IC F(ab′)2-IC are not cleared by Fc-receptor dependent processes and circulate long enough to form secondary IC with anti-hinge NAbs that rigidify the complexes such that they capture dimeric C3b and gain the potency to stimulate complement amplification.


Severe Sepsis Immune Complex Alternative Complement Pathway Glutamyl Endopeptidase Neutrophil Elastase Inhibitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Weiser MR, Williams JP, Moore FD et al. Reperfusion injury of ischemic skeletal muscle is mediated by natural antibody and complement. J Exp Med 1996; 183:2343–8. PMID:8642343 doi:10.1084/jem.183.5.2343PubMedCrossRefGoogle Scholar
  2. 2.
    Stahl GL, Xu Y, Hao L et al. Role for the alternative complement pathway in ischemia/reperfusion injury. Am J Pathol 2003; 162:449–55. PMID:12547703 doi:10.1016/S0002-9440(10)63839-4PubMedCrossRefGoogle Scholar
  3. 3.
    Lutz HU, Fumia S. Stimulation of complement amplification by F(ab′)2-containing immune complexes and naturally occurring anti-hinge antibodies, possible role in systemic inflammation. Autoimmun Rev 2008; 7:508–13. PMID:18558371 doi:10.1016/j.autrev.2008.04.017PubMedCrossRefGoogle Scholar
  4. 4.
    Ward PA. The dark side of C5a in sepsis. Nat Rev Immunol 2004; 4:133–42. PMID: 15040586 doi: 10.1038/nri1269PubMedCrossRefGoogle Scholar
  5. 5.
    Ratnoff WD, Fearon DT, Austen KF. The role of antibody in the activation of the alternative complement pathway. Springer Semin Immunopathol 1983; 6:361–71. PMID:6364431 doi:10.1007/BF02116280PubMedCrossRefGoogle Scholar
  6. 6.
    Lutz HU, Nater M, Stammler P. Naturally occurring anti-band 3 antibodies have a unique affinity for C3. Immunology 1993; 80:191–6. PMID:8262548PubMedGoogle Scholar
  7. 7.
    Lutz HU, Stammler P, Fasler S. Preferential formation of C3b-IgG complexes in vitro and in vivo from nascent C3b and naturally occurring anti-band 3 antibodies. J Biol Chem 1993; 268:17418–26. PMID:8349625PubMedGoogle Scholar
  8. 8.
    Jelezarova E, Vogt A, Lutz HU. Interaction of C3b2-IgG complexes with complement proteins properdin, factor B and factor H: implications for amplification. Biochem J 2000; 349:217–23. PMID: 10861231 doi:10.1042/0264-6021:3490217PubMedCrossRefGoogle Scholar
  9. 9.
    Nelson B, Ruddy S. Enhancing role of IgG in lysis of rabbit erythrocytes by the alternative pathway of human complement. J Immunol 1979; 122:1994–9. PMID:376729PubMedGoogle Scholar
  10. 10.
    Schenkein HA, Ruddy S. The role of immunoglobulins in alternative complement pathway activation by zymosan. I. Human IgG with specificity for zymosan enhances alternative pathway activation by zymosan. J Immunol 1981; 126:7–10. PMID:6778918PubMedGoogle Scholar
  11. 11.
    Gadd KJ, Reid KBM. The binding of complement component C3 to antibody-antigen aggregates after activation of the alternative pathway in human serum. Biochem J 1981; 195:471–80. PMID:7316962PubMedGoogle Scholar
  12. 12.
    Lucisano Valim YML, Lachmann PJ. The effect of antibody isotype and antigenic epitope density on the complement-fixing activity of immune complexes-a systematic study using chimaeric anti-NIP antibodies with human Fc regions. Clin Exp Immunol 1991; 84:1–8. PMID: 1707767 doi:10.1111/j.1365-2249.1991.tb08115.xGoogle Scholar
  13. 13.
    Banda NK, Wood AK, Takahashi K et al. Initiation of the alternative pathway of murine complement by immune complexes is dependent on N-glycans in IgG antibodies. Arthritis Rheum 2008; 58:3081–9. PMID:18821684 doi:10.1002/art.23865PubMedCrossRefGoogle Scholar
  14. 14.
    Jelezarova E, Luginbuehl A, Lutz HU. C3b2-IgG complexes retain dimeric C3 fragments at all levels of inactivation. J Biol Chem 2003; 278:51806–12. PMID:14527961 doi:10.1074/jbc.M304613200PubMedCrossRefGoogle Scholar
  15. 15.
    Gadd KJ, Reid KB. Importance of the integrity of the inter-heavy-chain disulphide bond of rabbit IgG in the activation of the alternative pathway of human complement by the F(ab′)2 region of rabbit IgG antibody in immune aggregates. Immunology 1981; 42:75–82. PMID:6780451PubMedGoogle Scholar
  16. 16.
    Reid KB. Complement fixation by the F(ab′)2-fragment of pepsin-treated rabbit antibody. Immunology J 1971; 20(5):649–58. PMID:5006125Google Scholar
  17. 17.
    Sissons JG, Cooper NR, Oldstone MB. Alternative complement pathway-mediated lysis of measles virus infected cells: induction by IgG antibody bound to individual viral glycoproteins and comparative efficacy of F(ab′)2 and Fab′ fragments. J Immunol 1979; 123:2144–9. PMID:489977PubMedGoogle Scholar
  18. 18.
    Akagaki Y, Inai S. Activation of the alternative complement pathway by the immune precipitate formed with F(ab′)2 fragment of human IgG antibody. Mol Immunol 1983; 20:1221–6. PMID:6419059 doi:10.1016/0161-5890(83)90146-3PubMedCrossRefGoogle Scholar
  19. 19.
    Joiner KA, Goldman RC, Hammer CH et al. Studies of the mechanism of bacterial resistance to complement-mediated killing. V. IgG and F(ab′)2 mediate killing of E. coli 0111B4 by the alternative complement pathway without increasing C5b-9 deposition. J Immunol 1983; 131:2563–9. PMID:6355296PubMedGoogle Scholar
  20. 20.
    Terness P, Opelz G. Natural anti-immunoglobulin autoantibodies: Irrelevant by-products or immunoregulatory molecules? Int Arch Allergy Immunol 1998; 115:270–7. PMID:9566349 doi:10.1159/000069457PubMedCrossRefGoogle Scholar
  21. 21.
    Terness PI, Navolan D, Dufter C et al. Immunosuppressive anti-immunoglobulin autoantibodies: Specificity, gene structure and function in health and disease. Cell Mol Biol 2002; 48:271–8. PMID:12030431PubMedGoogle Scholar
  22. 22.
    Kormeier LC, Ing JT, Mandy WJ. Specificity of antiglobulin factors in normal human serum reacting with enzyme digested gamma-G-globulin. J Immunol 1968; 100:612–21. PMID:4966843PubMedGoogle Scholar
  23. 23.
    Heimer R, Wolfe LD, Abruzzo JL. The specificity of antibodies to the F(ab′)2 fragment of human IgG. Arthritis Rheum 1985; 28:562–8. PMID:3873943 doi:10.1002/art.1780280516PubMedCrossRefGoogle Scholar
  24. 24.
    Terness P, Kohl I, Hübener G et al. The natural human IgG anti-F(ab′)2 antibody recognizes a conformational IgG1 hinge epitope. J Immunol 1995; 154:6446–52. PMID:7539020PubMedGoogle Scholar
  25. 25.
    Fumia S, Goede JS, Fischler M et al. Human F(ab′)2-containing immune complexes together with anti-hinge natural antibodies stimulate complement amplification in vitro and in vivo. Mol Immunol 2008; 45:2951–61. PMID:18339427 doi:10.1016/j.molimm.2008.01.029PubMedCrossRefGoogle Scholar
  26. 26.
    Yano S, Kaku S, Suzuki K et al. Natural antibodies against the immunoglobulin F(ab′)2 fragment cause elimination of antigens recognized by the F(ab′)2 from the circulation. Eur J Immunol 1995; 25:3128–33. PMID:7489753 doi:10.1002/eji.1830251121PubMedCrossRefGoogle Scholar
  27. 27.
    Baici A, Knöpfel M, Fehr K et al. Kinetics of the different susceptibilities of the four human immunoglobulin G subclasses to proteolysis by human lysosomal elastase. Scand J Immunol 1980; 12:41–50. PMID:6902981 doi:10.1111/j.1365-3083.1980.tb00039.xPubMedCrossRefGoogle Scholar
  28. 28.
    Donnelly SC, MacGregor I, Zamani A et al. Plasma elastase levels and the development of the adult respiratory distress syndrome. Am J Respir Crit Care Med 1995; 151:1428–33. PMID:7735596PubMedGoogle Scholar
  29. 29.
    Gardinali M, Padalino P, Vesconi S et al. Complement activation and polymorphonuclear neutrophil leukocyte elastase in sepsis. Correlation with severity of disease. Arch Surg 1992; 127:1219–24. PMID:1417490PubMedCrossRefGoogle Scholar
  30. 30.
    Konstan MW, Hilliard KA, Norvell TM et al. Bronchoalveolar lavage findings in cystic fibrosis patients with stable, clinically mild lung disease suggest ongoing infection and inflammation. Am J Respir Crit Care Med 1994; 150:448–54. PMID:8049828PubMedGoogle Scholar
  31. 31.
    Ryan MH, Petrone D, Nemeth JF et al. Proteolysis of purified IgGs by human and bacterial enzymes in vitro and the detection of specific proteolytic fragments of endogenous IgG in rheumatoid synovial fluid. Mol Immunol 2008; 45:1837–46. PMID:18157932 doi:10.1016/j.molimm.2007.10.043PubMedCrossRefGoogle Scholar
  32. 32.
    Dietrich H. Report on the experience in the treatment of septic diseases with Gamma-Venin. Dtsch Med J 1966; 17:709–10. PMID:4167085PubMedGoogle Scholar
  33. 33.
    Brezski RJ, Luongo JL, Petrone D et al. Human anti-IgG1 hinge autoantibodies reconstitute the effector functions of proteolytically inactivated IgGs. J Immunol 2008; 181:3183–92. PMID:18713989PubMedGoogle Scholar
  34. 34.
    Werdan K, Pilz G, Bujdoso O et al. Score-based immunoglobulin G therapy of patients with sepsis: The SBITS study*. Crit Care Med 2007; 35:2693–701. PMID:18074471 doi:10.1097/01.CCM.0000295426.37471.79PubMedCrossRefGoogle Scholar
  35. 35.
    Lutz HU, Stammler P, Jelezarova E et al. High doses of immunoglobulin G attenuate immune aggregate-mediated complement activation by enhancing physiologic cleavage of C3b in C3bn-IgG complexes. Blood 1996; 88:184–93. PMID:8704173PubMedGoogle Scholar
  36. 36.
    Vani J, Elluru S, Negi VS et al. Role of natural antibodies in immune homeostasis: IVIg perspective. Autoimmun Rev 2008; 7:440–4. PMID:18558359 doi:10.1016/j.autrev.2008.04.011PubMedCrossRefGoogle Scholar
  37. 37.
    Kambe M, Bessho R, Fujii M et al. Sivelestat reduces myocardial ischemia and reperfusion injury in rat hearts even when administered after onset of myocardial ischemia. Interact Cardiovasc Thorac Surg 2009; 8:629–34. PMID:19279053 doi: 10.1510/icvts.2008.195933PubMedCrossRefGoogle Scholar
  38. 38.
    Toda Y, Takahashi T, Maeshima K et al. A neutrophil elastase inhibitor, sivelestat, ameliorates lung injury after hemorrhagic shock in rats. Int J Mol Med 2007; 19:237–43. PMID: 17203197PubMedGoogle Scholar
  39. 39.
    Suda K, Takeuchi H, Hagiwara T et al. Neutrophil elastase inhibitor improves survival of rats with clinically relevant sepsis. Shock 2010; 33:526–31. PMID:19953005PubMedGoogle Scholar
  40. 40.
    Okayama N, Kakihana Y, Setoguchi D et al. Clinical effects of aneutrophil elastase inhibitor, sivelestat, in patients with acute respiratory distress syndrome. J Anesth 2006; 20:6–10. PMID: 16421669 doi: 10.1007/s00540-005-0362-9PubMedCrossRefGoogle Scholar
  41. 41.
    Hoshi K, Kurosawa S, Kato M et al. Sivelestat, a neutrophil elastase inhibitor, reduces mortality rate of critically ill patients. Tohoku J Exp Med 2005; 207:143–8. PMID:16141683 doi:10.1620/tjem.207.143PubMedCrossRefGoogle Scholar
  42. 42.
    Togo S, Matsuo K, Ishibe A et al. Usefulness of a selective neutrophil elastase inhibitor (sivelestat) in septic ARDS patients after gastrointestinal surgery. Hepatogastroenterology 2008; 55:967–73. PMID: 18705309PubMedGoogle Scholar
  43. 43.
    Hagiwara S, Iwasaka H, Togo K et al. Aneutrophil elastase inhibitor, sivelestat, reduces lung injury following endotoxin-induced shock in rats by inhibiting HMGB1. Inflammation 2008; 31:227–34. PMID: 18536984 doi:10.1007/s10753-008-9069-zPubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2012

Authors and Affiliations

  • Hans U. Lutz
    • 1
  1. 1.Institute of Biochemistry, Swiss Federal Institute of TechnologyETH HönggerbergZurichSwitzerland

Personalised recommendations