Skip to main content

Granulocyte Death Regulation by Naturally Occurring Autoantibodies

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 750))

Abstract

Programmed cell death (PCD) plays a central role in the regulation of granulocytes that are key effector cells of the innate immune system. Granulocytes are produced in high amounts in the bone marrow. A safe elimination of granulocytes by cell death (apoptosis) is essential to maintain the numbers of these cells balanced. In many acute and chronic inflammatory diseases, delayed apoptosis is one mechanism that contributes to accumulation of neutrophil and eosinophil granulocytes at the site of inflammation. On the other hand, a safe elimination of granulocytes by cell death is required to avoid unwanted tissue damage for instance by secretion of toxic products from these cells. Recent evidence shows that humans produce an array of naturally occurring autoantibodies (NAbs) with the capacity to regulate granulocyte death, including agonistic and antagonistic NAbs that bind to the receptors Fas, Siglec-8, and Siglec-9. Together with other factors, these various NAbs exhibit different properties in terms of the form of cell death they induce, the molecular signaling pathways they engage, as well as the efficacy or potency by which they induce cell death. Moreover, several regulatory mechanisms seem to exist that control their biological activity. Novel insights support the concept of granulocyte death regulation by NAbs, which might have important implications for our understanding of the pathogenesis and treatment of inflammatory diseases, including many autoimmune and allergic disorders.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Strasser A, Jost PJ, Nagata S. The many roles of FAS receptor signaling in the immune system. Immunity 2009; 30:180–92. doi:10.1016/j.immuni.2009.01.001 PMID:19239902

    Article  PubMed  CAS  Google Scholar 

  2. Simon HU. Regulation of eosinophil and neutrophil apoptosis-similarities and differences. Immunol Rev 2001; 179:156–62. doi: 10.1034/j.1600-065X.2001.790115.x PMID: 11292018

    Article  PubMed  CAS  Google Scholar 

  3. Simon HU. Neutrophil apoptosis pathways and their modifications in inflammation. Immunol Rev 2003; 193:101–10. doi: 10.1034/j.l600-065X.2003.00038.x PMID: 12752675

    Article  PubMed  CAS  Google Scholar 

  4. Sprent J, Tough DF. T cell death and memory. Science 2001; 293:245–8. doi: 10.1126/science. 1062416 PMID: 11452113

    Article  PubMed  CAS  Google Scholar 

  5. von Gunten S, Simon HU. Sialic acid binding immunoglobulin-like lectins may regulate innate immune responsesbymodulatingthelifespanofgranulocytes. FASEBJ 2006; 20:601–5. doi:10.1096/fj.05-5401hyp PMID:16581967

    Article  Google Scholar 

  6. von Gunten S, Bochner BS. Basic and clinical immunology of Siglecs. AnnN Y Acad Sci 2008; 1143:61–82. doi: 10.1196/annals. 1443.011 PMID: 19076345

    Article  Google Scholar 

  7. Nutku E, Hudson SA, Bochner BS. Mechanism of Siglec-8-induced human eosinophil apoptosis: Role of caspases and mitochondrial injury. Biochem Biophys Res Commun 2005; 336:918–24. doi: 10.1016/j. bbrc.2005.08.202 PMID: 16157303

    Article  PubMed  CAS  Google Scholar 

  8. von Gunten S, Yousefi S, Seitz M et al. Siglec-9 transduces apoptotic and non-apoptotic death signals into neutrophils depending on the pro-inflammatory cytokine environment. Blood 2005; 106:1423–31. doi:10.1182/blood-2004-10-4112PMID:15827126

    Article  Google Scholar 

  9. von Gunten S, Bochner BS. Expression and function of Siglec-8 in human eosinophils, basophils, and mast cells. In: Pawankar R, Holgate ST, Rosenwasser LJ, eds. Allergy Frontiers: Classification and pathomechanisms. Vol. 2. Tokyo, Japan: Springer; 2009:297–313.

    Chapter  Google Scholar 

  10. von Gunten S, Simon HU. Cell death modulation by intravenous immunoglobulin. J Clin Immunol 2010; 30(Suppl l):S24–30. doi:10.1007/s10875-010-9411-8 PMID:20405180

    Article  Google Scholar 

  11. von Gunten S, Simon HU. Natural anti-Siglec autoantibodies mediate potential immunoregulatory mechanisms: Implications for the clinical use of intravenous immunoglobulins (IVIg). Autoimmun Rev 2008; 7:453–6. doi:10.1016/j.autrev.2008.03.015 PMID:18558361

    Article  Google Scholar 

  12. Kazatchkine MD, Kaveri SV. Immunomodulation of autoimmune and inflammatory diseases with intravenous immune globulin. N Engl J Med 2001; 345:747–55. doi:10.1056/NEJMra993360 PMID: 11547745

    Article  PubMed  CAS  Google Scholar 

  13. Negi VS, Elluru S, Sibéril S et al. Intravenous immunoglobulin: an update on the clinical use and mechanisms of action. J Clin Immunol 2007; 27:233–45. doi: 10.1007/sl0875-007-9088-9 PMID: 17351760

    Article  PubMed  CAS  Google Scholar 

  14. Nimmerjahn F, Ravetch JV. Anti-inflammatory actions of intravenous immunoglobulin. Annu Rev Immunol 2008; 26:513. doi:10.1146/annurev.immunol.26.021607.090232 PMID:18370923

    Article  PubMed  CAS  Google Scholar 

  15. Simon HU, Späth PJ. IVIG — mechanisms of action. Allergy 2003; 58:543–52. doi:10.1034/j.l398-9995.2003.00239.xPMID:12823109

    Article  PubMed  CAS  Google Scholar 

  16. von Gunten S, Vogel M, Schaub A et al. Intravenous immunoglobulin preparations contain anti-Siglec-8 autoantibodies. J Allergy Clin Immunol 2007; 119:1005–11. doi: 10.1016/j.jaci.2007.01.023 PMID: 17337295

    Article  Google Scholar 

  17. von Gunten S, Simon HU. Autophagic-like cell death in neutrophils induced by autoantibodies. Autophagy 2007; 3:67–8. PMID:17102587

    Google Scholar 

  18. von Gunten S, Schaub A, Vogel M et al. Immunological and functional evidence for anti-Siglec-9 autoantibodies in intravenous immunoglobulin (IVIg) preparations. Blood 2006; 108:4255–9. doi: 10.1182/blood-2006-05-021568 PMID: 16902148

    Article  Google Scholar 

  19. Viard I, Wehrli P, Bullani R et al. Inhibition of toxic epidermal necrolysis by blockade of CD95 with human intravenous immunoglobulin. Science 1998; 282:490–3. doi: 10.1126/science.282.5388.490PMID:9774279

    Article  PubMed  CAS  Google Scholar 

  20. Altznauer F, von Gunten S, Späth P et al. Concurrent presence of agonistic and antagonistic anti-CD95 autoantibodies in intravenous Ig preparations. J Allergy Clin Immunol 2003; 112:1185–90. doi: 10.1016/j. jaci.2003.09.045 PMID: 14657880

    Article  PubMed  CAS  Google Scholar 

  21. Prasad NK, Papoff G, Zeuner A et al. Therapeutic preparations of normal polyspecific IgG (IVIg) induce apoptosis in human lymphocytes and monocytes: a novel mechanism of action of IVIg involving the Fas apoptotic pathway. J Immunol 1998; 161:3781–90. PMID:9759905

    PubMed  CAS  Google Scholar 

  22. Sooryanarayana, Prasad N, Bonnin E et al. Phosphorylation of Bcl-2 and mitochondrial changes are associated with apoptosis of lymphoblastoid cells induced by normal immunoglobulin G. Biochem Biophys Res Commun 1999; 264:896–901. doi: 10.1006/bbrc. 1999.1592 PMID:10544027

    Article  PubMed  CAS  Google Scholar 

  23. Reipert BM, Stellamor MT, Poell M et al. Variation of anti-Fas antibodies in different lots of intravenous immunoglobulin. Vox Sang 2008; 94:334–41. doi:10.1111/j.l423-0410.2008.001036.xPMID:18266779

    Article  PubMed  CAS  Google Scholar 

  24. Nutku E, Aizawa H, Hudson SA et al. Ligation of Siglec-8: a selective mechanism for induction of human eosinophil apoptosis. Blood 2003; 101:5014–20. doi:10.1182/blood-2002-10-3058 PMID:12609831

    Article  PubMed  CAS  Google Scholar 

  25. Crocker PR, Clark EA, Filbin M et al. Siglecs: a family of sialic-acid binding lectins. Glycobiology 1998; 8:v–vi. PMID:9498912

    PubMed  CAS  Google Scholar 

  26. Crocker PR, Paulson JC, Varki A. Siglecs and their roles in the immune system. Nat Rev Immunol 2007; 7:255–66. doi: 10.1038/nri2056 PMID: 17380156

    Article  PubMed  CAS  Google Scholar 

  27. Varki A, Angata T. Siglecs-the major subfamily of I-type lectins. Glycobiology 2006; 16:1R–27R. doi: 10.1093/glycob/cwj008 PMID: 16014749

    Article  PubMed  CAS  Google Scholar 

  28. O’Reilly MK, Paulson JC. Siglecs as targets fortherapy in immune-cell-mediated disease. Trends Pharmacol Sci 2009; 30:240–8. doi: 10.1016/j.tips.2009.02.005 PMID: 19359050

    Article  PubMed  Google Scholar 

  29. Yousefi S, Simon HU. SHP-1: a regulator of neutrophil apoptosis. Semin Immunol 2003; 15:195–9. doi:10.1016/S1044-5323(03)00033-2PMID:14563118

    Article  PubMed  CAS  Google Scholar 

  30. Daigle I, Yousefi S, Colonna M et al. Death receptors bind SHP-1 and block cytokine-induced anti-apoptotic signaling in neutrophils. Nat Med 2002; 8:61–7. doi: 10.1038/nm0102-61 PMID: 11786908

    Article  PubMed  CAS  Google Scholar 

  31. Rashmi R, Bode BP, Panesar N et al. Siglec-9 and SHP-1 are differentially expressed in neonatal and adult neutrophils. Pediatr Res 2009; 66:266–71. doi: 10.1203/PDR.0b013e3181b1bc19 PMID: 19542910

    Article  PubMed  CAS  Google Scholar 

  32. Cao H, de Bono B, Belov K et al. Comparative genomics indicates the mammalian CD33rSiglec locus evolved by an ancient large-scale inverse duplication and suggests all Siglecs share a common ancestral region. Immunogenetics 2009; 61:401–17. doi: 10.1007/s00251-009-0372-0 PMID:19337729

    Article  PubMed  CAS  Google Scholar 

  33. Varki A. Glycan-based interactions involving vertebrate sialic-acid-recognizing proteins. Nature 2007; 446:1023–9. doi:10.1038/nature05816 PMID: 17460663

    Article  PubMed  CAS  Google Scholar 

  34. Vimr E, Lichtensteiger C. To sialylate, or not to sialylate: that is the question. Trends Microbiol 2002; 10:254–7. doi:10.1016/S0966-842X(02)02361-2 PMID:12088651

    Article  PubMed  CAS  Google Scholar 

  35. Angata T. Molecular diversity and evolution of the Siglec family of cell-surface lectins. Mol Divers 2006; 10:555–66. doi: 10.1007/s1 1030-006-9029-1 PMID:16972014

    Article  PubMed  CAS  Google Scholar 

  36. Cao H, Crocker PR. Evolution of CD33-related siglecs: regulating host immune functions and escaping pathogen exploitation? Immunology 2011; 132:18–26. doi: 10.1111/j. 1365-2567.2010.03368.x PMID:21070233

    Article  PubMed  CAS  Google Scholar 

  37. Ikehara Y, Ikehara SK, Paulson JC. Negative regulation of T cell receptor signaling by Siglec-7 (p70/AIRM) and Siglec-9. J Biol Chem 2004; 279:43117–25. doi: 10.1074/jbc.M403538200 PMID: 15292262

    Article  PubMed  CAS  Google Scholar 

  38. Avril T, Floyd H, Lopez F et al. The membrane-proximal immunoreceptor tyrosine-based inhibitory motif is critical for the inhibitory signaling mediated by Siglecs-7 and-9, CD33-related Siglecs expressed on human monocytes and NK cells. J Immunol 2004; 173:6841–9. PMID:15557178

    PubMed  CAS  Google Scholar 

  39. Carlin AF, Uchiyama S, Chang YC et al. Molecular mimicry of host sialylated glycans allows a bacterial pathogen to engage neutrophil Siglec-9 and dampen the innate immune response. Blood 2009; 113:3333–6. doi:10.1182/blood-2008-11-187302PMID:19196661

    Article  PubMed  CAS  Google Scholar 

  40. von Gunten S, Jakob S, Geering B et al. Different patterns of Siglec-9-mediated neutrophil death responses in septic shock. Shock 2009; 32:386–92. doi:10.1097/SHK.0b013e3181albc98 PMID:19295491

    Article  Google Scholar 

  41. Bochner BS, Schleimer RP. Mast cells, basophils, and eosinophils: distinct but overlapping pathways for recruitment. Immunol Rev 2001; 179:5–15. doi:10.1034/j.l600-065X.2001.790101.xPMID:11292027

    Article  PubMed  CAS  Google Scholar 

  42. Simon HU, Blaser K. Inhibition of programmed eosinophil death: a key pathogenic event for eosinophilia? Immunol Today 1995; 16:53–5. doi: 10.1016/0167-5699(95)80086-7 PMID:7888065

    Article  PubMed  CAS  Google Scholar 

  43. Simon HU. Novel therapeutic strategies via the apoptosis pathways to resolve chronic eosinophilic inflammation. Cell Death Differ 1996; 3:349–56. PMID:17180105

    PubMed  CAS  Google Scholar 

  44. Simon HU, Yousefi S, Schranz C et al. Direct demonstration of delayed eosinophil apoptosis as amechanism causing tissue eosinophilia. J Immunol 1997; 158:3902–8. PMID:9103460

    PubMed  CAS  Google Scholar 

  45. Simon H-U, Rothenberg ME, Bochner BS et al. Refining the definition of hypereosinophilic syndrome. J Allergy Clin Immunol 2010; 126:45–9. doi:10.1016/j.jaci.2010.03.042 PMID:20639008

    Article  PubMed  Google Scholar 

  46. Klion AD, Bochner BS, Gleich GJ et al. Approaches to the treatment of hypereosinophilic syndromes: a workshop summary report. J Allergy Clin Immunol 2006; 117:1292–302. doi: 10.1016/j.jaci.2006.02.042 PMID: 16750989

    Article  PubMed  Google Scholar 

  47. Simon HU. Eosinophil apoptosis-pathophysiologic and therapeutic implications. Allergy 2000; 55:910–5. doi: 10.1034/j.l398-9995.2000.055010910.x PMID: 11030370

    Article  PubMed  CAS  Google Scholar 

  48. Bochner BS. Siglec-8 on human eosinophils and mast cells, and Siglec-F onmurine eosinophils, are functionally related inhibitory receptors. Clin Exp Allergy 2009; 39:317–24. doi: 10.1111/j. 1365-2222.2008.03173.x PMID: 19178537

    Article  PubMed  CAS  Google Scholar 

  49. Yokoi H, Choi OH, Hubbard W et al. Inhibition of Fcepsilon RI-dependent mediator release and calcium flux from human mast cells by sialic acid-binding immunoglobulin-like lectin 8 engagement. J Allergy Clin Immunol 2008; 121:499–505. doi: 10.1016/j.jaci.2007.10.004 PMID:18036650

    Article  PubMed  CAS  Google Scholar 

  50. Zhang M, Angata T, Cho JY et al. Defining the in vivo function of Siglec-F, a CD33-related Siglec expressed on mouse eosinophils. Blood 2007; 109:4280–7. doi:10.1182/blood-2006-08-039255 PMID:17272508

    Article  PubMed  CAS  Google Scholar 

  51. Zimmermann N, McBride ML, Yamada Y et al. Siglec-F antibody administration to mice selectively reduces blood and tissue eosinophils. Allergy 2008; 63:1156–63. doi:10.1111/j.1398-9995.2008.01709.X PMID: 18699932

    Article  PubMed  CAS  Google Scholar 

  52. Cho JY, Song DJ, Pham A et al. Chronic OVA allergen challenged Siglec-F deficient mice have increased mucus, remodeling, and epithelial Siglec-F ligands which are up-regulated by IL-4 and IL-13. Respir Res 2010; 11:154. doi: 10.1186/1465-9921-11-154 PMID:21040544

    Article  PubMed  Google Scholar 

  53. Song DJ, Cho JY, Lee SY et al. Anti-Siglec-F antibody reduces allergen-induced eosinophilic inflammation and airway remodeling. J Immunol 2009; 183:5333–41. doi: 10.4049/jimmunol.0801421 PMID: 19783675

    Article  PubMed  CAS  Google Scholar 

  54. Song DJ, Cho JY, Miller M et al. Anti-Siglec-F antibody inhibits oral egg allergen induced intestinal eosinophilic inflammation in a mouse model. Clin Immunol 2009; 131:157–69. doi: 10.1016/j. clim.2008.11.009PMID:19135419

    Article  PubMed  CAS  Google Scholar 

  55. Vassina EM, Yousefi S, Simon D et al. cIAP-2 and survivin contribute to cytokine-mediated delayed eosinophil apoptosis. Eur J Immunol 2006; 36:1975–84. doi:10.1002/eji.200635943 PMID: 16761316

    Article  PubMed  CAS  Google Scholar 

  56. Plötz SG, Simon HU, Darsow U et al. Use of an anti-interleukin-5 antibody in the hypereosinophilic syndrome with eosinophilic dermatitis. N Engl J Med 2003; 349:2334–9. doi:10.1056/NEJMoa031261 PMID: 14668459

    Article  PubMed  Google Scholar 

  57. Schaub A, von Gunten S, Vogel M et al. Dimeric IVIG contains natural anti-Siglec-9 autoantibodies and their anti-idiotypes. Allergy 2011; 66:1030–7. doi: 10.1111/j.l398-9995.2011.02579.xPMID:21385183

    Article  PubMed  CAS  Google Scholar 

  58. Tankersley DL. Dimer formation in immunoglobulin preparations and speculations on the mechanism of action of intravenous immune globulin in autoimmune diseases. Immunol Rev 1994; 139:159–72. doi:10.1111/j.l600-065X.1994.tb00861.xPMID:7927410

    Article  PubMed  CAS  Google Scholar 

  59. Jerne NK. Toward a network theory of the immune system. Annlmmunol 1974; 125C:373–89. PMID: 4142565

    CAS  Google Scholar 

  60. Cheng J, Zhou T, Liu C et al. Protection from Fas-mediated apoptosis by a soluble form of the Fas molecule. Science 1994; 263:1759–62. doi:10.1126/science.7510905 PMID:7510905

    Article  PubMed  CAS  Google Scholar 

  61. Cascino I, Fiucci G, Papoff G et al. Three functional soluble forms of the human apoptosis-inducing Fas molecule are produced by alternative splicing. J Immunol 1995; 154:2706–13. PMID:7533181

    PubMed  CAS  Google Scholar 

  62. Tsurikisawa N, Taniguchi M, Saito H et al. Treatment of Churg-Strauss syndrome with high-dose intravenous immunoglobulin. Ann Allergy Asthma Immunol 2004; 92:80–7. doi: 10.1016/S1081-1206(10)61714-0 PMID: 14756469

    Article  PubMed  CAS  Google Scholar 

  63. Takigawa N, Kawata N, Shibayama T et al. Successful treatment of a patient with severe Churg-Strauss syndrome by a combination of pulse corticosteroids, pulse cyclophosphamide, and high-dose intravenous immunoglobulin. J Asthma 2005; 42:639–41. doi: 10.1080/02770900500263822 PMID:16266953

    Article  PubMed  Google Scholar 

  64. Khan S, Sewell WA. Risks of intravenous immunoglobulin in sepsis affect trial design. Ann Intern Med 2007; 147:813–4. PMID: 18056670

    PubMed  Google Scholar 

  65. Buenz EJ, Howe CL. Appropriate use of intravenous immunoglobulin in neonatal neutropenia. J Perinatol 2007; 27:196–7. doi: 10.1038/sj.jp.7211660 PMID: 17314992

    Article  PubMed  CAS  Google Scholar 

  66. Lassiter HA, Bibb KW, Bertolone SJ et al. Neonatal immune neutropenia following the administration of intravenous immune globulin. Am J Pediatr Hematol Oncol 1993; 15:120–3. doi:10.1097/00043426-199302000-00019 PMID:8447553

    Article  PubMed  CAS  Google Scholar 

  67. Tam DA, Morton LD, Stroncek DF et al. Neutropenia in a patient receiving intravenous immune globulin. J Neuroimmunol 1996; 64:175–8. doi: 10.1016/0165-5728(95)00167-0 PMID:8632059

    Article  PubMed  CAS  Google Scholar 

  68. Berkovitch M, Dolinski G, Tauber T et al. Neutropenia as a complication of intravenous immunoglobulin (IVIG) therapy in children with immune thrombocytopenic purpura: common and non-alarming. Int J Immunopharmacol 1999; 21:411–5. doi: 10.1016/S0192-0561(99)00020-XPMID: 10405875

    Article  PubMed  CAS  Google Scholar 

  69. Niebanck AE, Kwiatkowski JL, Raffini LJ. Neutropenia following IVIG therapy in pediatric patients with immune-mediated thrombocytopenia. J Pediatr Hematol Oncol 2005; 27:145–7. doi: 10.1097/01. mph.0000155871.26380.84 PMID: 15750446

    Article  PubMed  Google Scholar 

  70. Matsuda M, Hosoda W, Sekijima Y et al. Neutropenia as a complication of high-dose intravenous immunoglobulin therapy in adult patients with neuroimmunologic disorders. Clin Neuropharmacol 2003; 26:306–11. doi: 10.1097/00002826-200311000-00009 PMID: 14646610

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan von Gunten .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

von Gunten, S., Simon, HU. (2012). Granulocyte Death Regulation by Naturally Occurring Autoantibodies. In: Lutz, H.U. (eds) Naturally Occurring Antibodies (NAbs). Advances in Experimental Medicine and Biology, vol 750. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3461-0_12

Download citation

Publish with us

Policies and ethics