Granulocyte Death Regulation by Naturally Occurring Autoantibodies

  • Stephan von GuntenEmail author
  • Hans-Uwe Simon
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 750)


Programmed cell death (PCD) plays a central role in the regulation of granulocytes that are key effector cells of the innate immune system. Granulocytes are produced in high amounts in the bone marrow. A safe elimination of granulocytes by cell death (apoptosis) is essential to maintain the numbers of these cells balanced. In many acute and chronic inflammatory diseases, delayed apoptosis is one mechanism that contributes to accumulation of neutrophil and eosinophil granulocytes at the site of inflammation. On the other hand, a safe elimination of granulocytes by cell death is required to avoid unwanted tissue damage for instance by secretion of toxic products from these cells. Recent evidence shows that humans produce an array of naturally occurring autoantibodies (NAbs) with the capacity to regulate granulocyte death, including agonistic and antagonistic NAbs that bind to the receptors Fas, Siglec-8, and Siglec-9. Together with other factors, these various NAbs exhibit different properties in terms of the form of cell death they induce, the molecular signaling pathways they engage, as well as the efficacy or potency by which they induce cell death. Moreover, several regulatory mechanisms seem to exist that control their biological activity. Novel insights support the concept of granulocyte death regulation by NAbs, which might have important implications for our understanding of the pathogenesis and treatment of inflammatory diseases, including many autoimmune and allergic disorders.


Intravenous Immunoglobulin Allergy Clin Immunol Hypereosinophilic Syndrome Intravenous Immune Globulin Eosinophil Apoptosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Strasser A, Jost PJ, Nagata S. The many roles of FAS receptor signaling in the immune system. Immunity 2009; 30:180–92. doi:10.1016/j.immuni.2009.01.001 PMID:19239902PubMedCrossRefGoogle Scholar
  2. 2.
    Simon HU. Regulation of eosinophil and neutrophil apoptosis-similarities and differences. Immunol Rev 2001; 179:156–62. doi: 10.1034/j.1600-065X.2001.790115.x PMID: 11292018PubMedCrossRefGoogle Scholar
  3. 3.
    Simon HU. Neutrophil apoptosis pathways and their modifications in inflammation. Immunol Rev 2003; 193:101–10. doi: 10.1034/j.l600-065X.2003.00038.x PMID: 12752675PubMedCrossRefGoogle Scholar
  4. 4.
    Sprent J, Tough DF. T cell death and memory. Science 2001; 293:245–8. doi: 10.1126/science. 1062416 PMID: 11452113PubMedCrossRefGoogle Scholar
  5. 5.
    von Gunten S, Simon HU. Sialic acid binding immunoglobulin-like lectins may regulate innate immune responsesbymodulatingthelifespanofgranulocytes. FASEBJ 2006; 20:601–5. doi:10.1096/fj.05-5401hyp PMID:16581967CrossRefGoogle Scholar
  6. 6.
    von Gunten S, Bochner BS. Basic and clinical immunology of Siglecs. AnnN Y Acad Sci 2008; 1143:61–82. doi: 10.1196/annals. 1443.011 PMID: 19076345CrossRefGoogle Scholar
  7. 7.
    Nutku E, Hudson SA, Bochner BS. Mechanism of Siglec-8-induced human eosinophil apoptosis: Role of caspases and mitochondrial injury. Biochem Biophys Res Commun 2005; 336:918–24. doi: 10.1016/j. bbrc.2005.08.202 PMID: 16157303PubMedCrossRefGoogle Scholar
  8. 8.
    von Gunten S, Yousefi S, Seitz M et al. Siglec-9 transduces apoptotic and non-apoptotic death signals into neutrophils depending on the pro-inflammatory cytokine environment. Blood 2005; 106:1423–31. doi:10.1182/blood-2004-10-4112PMID:15827126CrossRefGoogle Scholar
  9. 9.
    von Gunten S, Bochner BS. Expression and function of Siglec-8 in human eosinophils, basophils, and mast cells. In: Pawankar R, Holgate ST, Rosenwasser LJ, eds. Allergy Frontiers: Classification and pathomechanisms. Vol. 2. Tokyo, Japan: Springer; 2009:297–313.CrossRefGoogle Scholar
  10. 10.
    von Gunten S, Simon HU. Cell death modulation by intravenous immunoglobulin. J Clin Immunol 2010; 30(Suppl l):S24–30. doi:10.1007/s10875-010-9411-8 PMID:20405180CrossRefGoogle Scholar
  11. 11.
    von Gunten S, Simon HU. Natural anti-Siglec autoantibodies mediate potential immunoregulatory mechanisms: Implications for the clinical use of intravenous immunoglobulins (IVIg). Autoimmun Rev 2008; 7:453–6. doi:10.1016/j.autrev.2008.03.015 PMID:18558361CrossRefGoogle Scholar
  12. 12.
    Kazatchkine MD, Kaveri SV. Immunomodulation of autoimmune and inflammatory diseases with intravenous immune globulin. N Engl J Med 2001; 345:747–55. doi:10.1056/NEJMra993360 PMID: 11547745PubMedCrossRefGoogle Scholar
  13. 13.
    Negi VS, Elluru S, Sibéril S et al. Intravenous immunoglobulin: an update on the clinical use and mechanisms of action. J Clin Immunol 2007; 27:233–45. doi: 10.1007/sl0875-007-9088-9 PMID: 17351760PubMedCrossRefGoogle Scholar
  14. 14.
    Nimmerjahn F, Ravetch JV. Anti-inflammatory actions of intravenous immunoglobulin. Annu Rev Immunol 2008; 26:513. doi:10.1146/annurev.immunol.26.021607.090232 PMID:18370923PubMedCrossRefGoogle Scholar
  15. 15.
    Simon HU, Späth PJ. IVIG — mechanisms of action. Allergy 2003; 58:543–52. doi:10.1034/j.l398-9995.2003.00239.xPMID:12823109PubMedCrossRefGoogle Scholar
  16. 16.
    von Gunten S, Vogel M, Schaub A et al. Intravenous immunoglobulin preparations contain anti-Siglec-8 autoantibodies. J Allergy Clin Immunol 2007; 119:1005–11. doi: 10.1016/j.jaci.2007.01.023 PMID: 17337295CrossRefGoogle Scholar
  17. 17.
    von Gunten S, Simon HU. Autophagic-like cell death in neutrophils induced by autoantibodies. Autophagy 2007; 3:67–8. PMID:17102587Google Scholar
  18. 18.
    von Gunten S, Schaub A, Vogel M et al. Immunological and functional evidence for anti-Siglec-9 autoantibodies in intravenous immunoglobulin (IVIg) preparations. Blood 2006; 108:4255–9. doi: 10.1182/blood-2006-05-021568 PMID: 16902148CrossRefGoogle Scholar
  19. 19.
    Viard I, Wehrli P, Bullani R et al. Inhibition of toxic epidermal necrolysis by blockade of CD95 with human intravenous immunoglobulin. Science 1998; 282:490–3. doi: 10.1126/science.282.5388.490PMID:9774279PubMedCrossRefGoogle Scholar
  20. 20.
    Altznauer F, von Gunten S, Späth P et al. Concurrent presence of agonistic and antagonistic anti-CD95 autoantibodies in intravenous Ig preparations. J Allergy Clin Immunol 2003; 112:1185–90. doi: 10.1016/j. jaci.2003.09.045 PMID: 14657880PubMedCrossRefGoogle Scholar
  21. 21.
    Prasad NK, Papoff G, Zeuner A et al. Therapeutic preparations of normal polyspecific IgG (IVIg) induce apoptosis in human lymphocytes and monocytes: a novel mechanism of action of IVIg involving the Fas apoptotic pathway. J Immunol 1998; 161:3781–90. PMID:9759905PubMedGoogle Scholar
  22. 22.
    Sooryanarayana, Prasad N, Bonnin E et al. Phosphorylation of Bcl-2 and mitochondrial changes are associated with apoptosis of lymphoblastoid cells induced by normal immunoglobulin G. Biochem Biophys Res Commun 1999; 264:896–901. doi: 10.1006/bbrc. 1999.1592 PMID:10544027PubMedCrossRefGoogle Scholar
  23. 23.
    Reipert BM, Stellamor MT, Poell M et al. Variation of anti-Fas antibodies in different lots of intravenous immunoglobulin. Vox Sang 2008; 94:334–41. doi:10.1111/j.l423-0410.2008.001036.xPMID:18266779PubMedCrossRefGoogle Scholar
  24. 24.
    Nutku E, Aizawa H, Hudson SA et al. Ligation of Siglec-8: a selective mechanism for induction of human eosinophil apoptosis. Blood 2003; 101:5014–20. doi:10.1182/blood-2002-10-3058 PMID:12609831PubMedCrossRefGoogle Scholar
  25. 25.
    Crocker PR, Clark EA, Filbin M et al. Siglecs: a family of sialic-acid binding lectins. Glycobiology 1998; 8:v–vi. PMID:9498912PubMedGoogle Scholar
  26. 26.
    Crocker PR, Paulson JC, Varki A. Siglecs and their roles in the immune system. Nat Rev Immunol 2007; 7:255–66. doi: 10.1038/nri2056 PMID: 17380156PubMedCrossRefGoogle Scholar
  27. 27.
    Varki A, Angata T. Siglecs-the major subfamily of I-type lectins. Glycobiology 2006; 16:1R–27R. doi: 10.1093/glycob/cwj008 PMID: 16014749PubMedCrossRefGoogle Scholar
  28. 28.
    O’Reilly MK, Paulson JC. Siglecs as targets fortherapy in immune-cell-mediated disease. Trends Pharmacol Sci 2009; 30:240–8. doi: 10.1016/ PMID: 19359050PubMedCrossRefGoogle Scholar
  29. 29.
    Yousefi S, Simon HU. SHP-1: a regulator of neutrophil apoptosis. Semin Immunol 2003; 15:195–9. doi:10.1016/S1044-5323(03)00033-2PMID:14563118PubMedCrossRefGoogle Scholar
  30. 30.
    Daigle I, Yousefi S, Colonna M et al. Death receptors bind SHP-1 and block cytokine-induced anti-apoptotic signaling in neutrophils. Nat Med 2002; 8:61–7. doi: 10.1038/nm0102-61 PMID: 11786908PubMedCrossRefGoogle Scholar
  31. 31.
    Rashmi R, Bode BP, Panesar N et al. Siglec-9 and SHP-1 are differentially expressed in neonatal and adult neutrophils. Pediatr Res 2009; 66:266–71. doi: 10.1203/PDR.0b013e3181b1bc19 PMID: 19542910PubMedCrossRefGoogle Scholar
  32. 32.
    Cao H, de Bono B, Belov K et al. Comparative genomics indicates the mammalian CD33rSiglec locus evolved by an ancient large-scale inverse duplication and suggests all Siglecs share a common ancestral region. Immunogenetics 2009; 61:401–17. doi: 10.1007/s00251-009-0372-0 PMID:19337729PubMedCrossRefGoogle Scholar
  33. 33.
    Varki A. Glycan-based interactions involving vertebrate sialic-acid-recognizing proteins. Nature 2007; 446:1023–9. doi:10.1038/nature05816 PMID: 17460663PubMedCrossRefGoogle Scholar
  34. 34.
    Vimr E, Lichtensteiger C. To sialylate, or not to sialylate: that is the question. Trends Microbiol 2002; 10:254–7. doi:10.1016/S0966-842X(02)02361-2 PMID:12088651PubMedCrossRefGoogle Scholar
  35. 35.
    Angata T. Molecular diversity and evolution of the Siglec family of cell-surface lectins. Mol Divers 2006; 10:555–66. doi: 10.1007/s1 1030-006-9029-1 PMID:16972014PubMedCrossRefGoogle Scholar
  36. 36.
    Cao H, Crocker PR. Evolution of CD33-related siglecs: regulating host immune functions and escaping pathogen exploitation? Immunology 2011; 132:18–26. doi: 10.1111/j. 1365-2567.2010.03368.x PMID:21070233PubMedCrossRefGoogle Scholar
  37. 37.
    Ikehara Y, Ikehara SK, Paulson JC. Negative regulation of T cell receptor signaling by Siglec-7 (p70/AIRM) and Siglec-9. J Biol Chem 2004; 279:43117–25. doi: 10.1074/jbc.M403538200 PMID: 15292262PubMedCrossRefGoogle Scholar
  38. 38.
    Avril T, Floyd H, Lopez F et al. The membrane-proximal immunoreceptor tyrosine-based inhibitory motif is critical for the inhibitory signaling mediated by Siglecs-7 and-9, CD33-related Siglecs expressed on human monocytes and NK cells. J Immunol 2004; 173:6841–9. PMID:15557178PubMedGoogle Scholar
  39. 39.
    Carlin AF, Uchiyama S, Chang YC et al. Molecular mimicry of host sialylated glycans allows a bacterial pathogen to engage neutrophil Siglec-9 and dampen the innate immune response. Blood 2009; 113:3333–6. doi:10.1182/blood-2008-11-187302PMID:19196661PubMedCrossRefGoogle Scholar
  40. 40.
    von Gunten S, Jakob S, Geering B et al. Different patterns of Siglec-9-mediated neutrophil death responses in septic shock. Shock 2009; 32:386–92. doi:10.1097/SHK.0b013e3181albc98 PMID:19295491CrossRefGoogle Scholar
  41. 41.
    Bochner BS, Schleimer RP. Mast cells, basophils, and eosinophils: distinct but overlapping pathways for recruitment. Immunol Rev 2001; 179:5–15. doi:10.1034/j.l600-065X.2001.790101.xPMID:11292027PubMedCrossRefGoogle Scholar
  42. 42.
    Simon HU, Blaser K. Inhibition of programmed eosinophil death: a key pathogenic event for eosinophilia? Immunol Today 1995; 16:53–5. doi: 10.1016/0167-5699(95)80086-7 PMID:7888065PubMedCrossRefGoogle Scholar
  43. 43.
    Simon HU. Novel therapeutic strategies via the apoptosis pathways to resolve chronic eosinophilic inflammation. Cell Death Differ 1996; 3:349–56. PMID:17180105PubMedGoogle Scholar
  44. 44.
    Simon HU, Yousefi S, Schranz C et al. Direct demonstration of delayed eosinophil apoptosis as amechanism causing tissue eosinophilia. J Immunol 1997; 158:3902–8. PMID:9103460PubMedGoogle Scholar
  45. 45.
    Simon H-U, Rothenberg ME, Bochner BS et al. Refining the definition of hypereosinophilic syndrome. J Allergy Clin Immunol 2010; 126:45–9. doi:10.1016/j.jaci.2010.03.042 PMID:20639008PubMedCrossRefGoogle Scholar
  46. 46.
    Klion AD, Bochner BS, Gleich GJ et al. Approaches to the treatment of hypereosinophilic syndromes: a workshop summary report. J Allergy Clin Immunol 2006; 117:1292–302. doi: 10.1016/j.jaci.2006.02.042 PMID: 16750989PubMedCrossRefGoogle Scholar
  47. 47.
    Simon HU. Eosinophil apoptosis-pathophysiologic and therapeutic implications. Allergy 2000; 55:910–5. doi: 10.1034/j.l398-9995.2000.055010910.x PMID: 11030370PubMedCrossRefGoogle Scholar
  48. 48.
    Bochner BS. Siglec-8 on human eosinophils and mast cells, and Siglec-F onmurine eosinophils, are functionally related inhibitory receptors. Clin Exp Allergy 2009; 39:317–24. doi: 10.1111/j. 1365-2222.2008.03173.x PMID: 19178537PubMedCrossRefGoogle Scholar
  49. 49.
    Yokoi H, Choi OH, Hubbard W et al. Inhibition of Fcepsilon RI-dependent mediator release and calcium flux from human mast cells by sialic acid-binding immunoglobulin-like lectin 8 engagement. J Allergy Clin Immunol 2008; 121:499–505. doi: 10.1016/j.jaci.2007.10.004 PMID:18036650PubMedCrossRefGoogle Scholar
  50. 50.
    Zhang M, Angata T, Cho JY et al. Defining the in vivo function of Siglec-F, a CD33-related Siglec expressed on mouse eosinophils. Blood 2007; 109:4280–7. doi:10.1182/blood-2006-08-039255 PMID:17272508PubMedCrossRefGoogle Scholar
  51. 51.
    Zimmermann N, McBride ML, Yamada Y et al. Siglec-F antibody administration to mice selectively reduces blood and tissue eosinophils. Allergy 2008; 63:1156–63. doi:10.1111/j.1398-9995.2008.01709.X PMID: 18699932PubMedCrossRefGoogle Scholar
  52. 52.
    Cho JY, Song DJ, Pham A et al. Chronic OVA allergen challenged Siglec-F deficient mice have increased mucus, remodeling, and epithelial Siglec-F ligands which are up-regulated by IL-4 and IL-13. Respir Res 2010; 11:154. doi: 10.1186/1465-9921-11-154 PMID:21040544PubMedCrossRefGoogle Scholar
  53. 53.
    Song DJ, Cho JY, Lee SY et al. Anti-Siglec-F antibody reduces allergen-induced eosinophilic inflammation and airway remodeling. J Immunol 2009; 183:5333–41. doi: 10.4049/jimmunol.0801421 PMID: 19783675PubMedCrossRefGoogle Scholar
  54. 54.
    Song DJ, Cho JY, Miller M et al. Anti-Siglec-F antibody inhibits oral egg allergen induced intestinal eosinophilic inflammation in a mouse model. Clin Immunol 2009; 131:157–69. doi: 10.1016/j. clim.2008.11.009PMID:19135419PubMedCrossRefGoogle Scholar
  55. 55.
    Vassina EM, Yousefi S, Simon D et al. cIAP-2 and survivin contribute to cytokine-mediated delayed eosinophil apoptosis. Eur J Immunol 2006; 36:1975–84. doi:10.1002/eji.200635943 PMID: 16761316PubMedCrossRefGoogle Scholar
  56. 56.
    Plötz SG, Simon HU, Darsow U et al. Use of an anti-interleukin-5 antibody in the hypereosinophilic syndrome with eosinophilic dermatitis. N Engl J Med 2003; 349:2334–9. doi:10.1056/NEJMoa031261 PMID: 14668459PubMedCrossRefGoogle Scholar
  57. 57.
    Schaub A, von Gunten S, Vogel M et al. Dimeric IVIG contains natural anti-Siglec-9 autoantibodies and their anti-idiotypes. Allergy 2011; 66:1030–7. doi: 10.1111/j.l398-9995.2011.02579.xPMID:21385183PubMedCrossRefGoogle Scholar
  58. 58.
    Tankersley DL. Dimer formation in immunoglobulin preparations and speculations on the mechanism of action of intravenous immune globulin in autoimmune diseases. Immunol Rev 1994; 139:159–72. doi:10.1111/j.l600-065X.1994.tb00861.xPMID:7927410PubMedCrossRefGoogle Scholar
  59. 59.
    Jerne NK. Toward a network theory of the immune system. Annlmmunol 1974; 125C:373–89. PMID: 4142565Google Scholar
  60. 60.
    Cheng J, Zhou T, Liu C et al. Protection from Fas-mediated apoptosis by a soluble form of the Fas molecule. Science 1994; 263:1759–62. doi:10.1126/science.7510905 PMID:7510905PubMedCrossRefGoogle Scholar
  61. 61.
    Cascino I, Fiucci G, Papoff G et al. Three functional soluble forms of the human apoptosis-inducing Fas molecule are produced by alternative splicing. J Immunol 1995; 154:2706–13. PMID:7533181PubMedGoogle Scholar
  62. 62.
    Tsurikisawa N, Taniguchi M, Saito H et al. Treatment of Churg-Strauss syndrome with high-dose intravenous immunoglobulin. Ann Allergy Asthma Immunol 2004; 92:80–7. doi: 10.1016/S1081-1206(10)61714-0 PMID: 14756469PubMedCrossRefGoogle Scholar
  63. 63.
    Takigawa N, Kawata N, Shibayama T et al. Successful treatment of a patient with severe Churg-Strauss syndrome by a combination of pulse corticosteroids, pulse cyclophosphamide, and high-dose intravenous immunoglobulin. J Asthma 2005; 42:639–41. doi: 10.1080/02770900500263822 PMID:16266953PubMedCrossRefGoogle Scholar
  64. 64.
    Khan S, Sewell WA. Risks of intravenous immunoglobulin in sepsis affect trial design. Ann Intern Med 2007; 147:813–4. PMID: 18056670PubMedGoogle Scholar
  65. 65.
    Buenz EJ, Howe CL. Appropriate use of intravenous immunoglobulin in neonatal neutropenia. J Perinatol 2007; 27:196–7. doi: 10.1038/ PMID: 17314992PubMedCrossRefGoogle Scholar
  66. 66.
    Lassiter HA, Bibb KW, Bertolone SJ et al. Neonatal immune neutropenia following the administration of intravenous immune globulin. Am J Pediatr Hematol Oncol 1993; 15:120–3. doi:10.1097/00043426-199302000-00019 PMID:8447553PubMedCrossRefGoogle Scholar
  67. 67.
    Tam DA, Morton LD, Stroncek DF et al. Neutropenia in a patient receiving intravenous immune globulin. J Neuroimmunol 1996; 64:175–8. doi: 10.1016/0165-5728(95)00167-0 PMID:8632059PubMedCrossRefGoogle Scholar
  68. 68.
    Berkovitch M, Dolinski G, Tauber T et al. Neutropenia as a complication of intravenous immunoglobulin (IVIG) therapy in children with immune thrombocytopenic purpura: common and non-alarming. Int J Immunopharmacol 1999; 21:411–5. doi: 10.1016/S0192-0561(99)00020-XPMID: 10405875PubMedCrossRefGoogle Scholar
  69. 69.
    Niebanck AE, Kwiatkowski JL, Raffini LJ. Neutropenia following IVIG therapy in pediatric patients with immune-mediated thrombocytopenia. J Pediatr Hematol Oncol 2005; 27:145–7. doi: 10.1097/01. mph.0000155871.26380.84 PMID: 15750446PubMedCrossRefGoogle Scholar
  70. 70.
    Matsuda M, Hosoda W, Sekijima Y et al. Neutropenia as a complication of high-dose intravenous immunoglobulin therapy in adult patients with neuroimmunologic disorders. Clin Neuropharmacol 2003; 26:306–11. doi: 10.1097/00002826-200311000-00009 PMID: 14646610PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2012

Authors and Affiliations

  1. 1.Institute of PharmacologyUniversity of BernBernSwitzerland

Personalised recommendations