Skip to main content

Coupling Between Leaching and Mechanical Behaviour of Concrete

  • Chapter
  • First Online:
  • 1966 Accesses

Abstract

In the case of a radioactive waste disposal, concrete containment structures must be studied over extended periods during which it is necessary to account for a possible degradation by calcium leaching due to on-site water. This phenomenon affects the microstructure of concrete and then is coupled with the mechanical behaviour of concrete. The effect of leaching on the static behaviour and then the possible influence of cracks on leaching will be considered. But there is also a possible coupling due to tertiary creep. In this case, failure occurs eventually. And finally, a probabilistic approach is used with the leaching and tertiary creep models to evaluate the lifetime of a concrete structure subjected to chemical and mechanical loading.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adenot F (1992) Durabilité du béton: caractérisation et modélisation des processus physiques et chimiques de dégradation du ciment, PhD thesis, Université d’Orléans (in French)

    Google Scholar 

  2. Gérard B (1996) Contribution des couplages mécaniques-chimie-transfert dans la tenue à long terme des ouvrages de stockage de déchets radioactifs, PhD thesis, ENS Cachan (in French)

    Google Scholar 

  3. Ulm FJ, Torrenti JM, Adenot F (1999) Chemoporoplasticity of calcium leaching in concrete. J Eng Mech 125(10):1200–1211

    Article  Google Scholar 

  4. Bernard F, Kamali-Bernard S, Prince W (2008) 3D multi-scale modelling of mechanical behaviour of sound and leached mortar. Cement Concr Res 38:449–458

    Article  Google Scholar 

  5. Carde C, Francois R, Torrenti JM (1996) Leaching of both calcium hydroxyde and CSH from cement paste: modeling the mechanical behavior. Cement and concrete research 26(8):1257–1268

    Article  Google Scholar 

  6. Huang B, Qian C (2011) Experiment study of chemo-mechanical coupling behavior of leached concrete. Constr Build Mater 25:2649–2654

    Article  Google Scholar 

  7. Nguyen VH, Colina H, Torrenti JM, Boulay C, Nedjar B (2007) Chemomechanical coupling behaviour of leached concrete. Part 1: experimental results. Nucl Eng Des 237:2083–2089

    Article  Google Scholar 

  8. Richet C, Galle C, Le Bescop P, Peycelon H, Bejaoui S, Tovena I, Pointeau I, L’Hostis V, Lovera P (2004) Synthèse des connaissances sur le comportement à long terme des bétons – Application aux colis cimentés, rapport CEA-R-6050, 2004 (in French)

    Google Scholar 

  9. Mainguy M, Ulm FJ, Heukamp FH (2001) Similarity properties of demineralization and degradation of cracked porous materials. Int J Solid Struct 38:7079–7170

    Article  MATH  Google Scholar 

  10. Rougelot T (2008) Etude expérimentale multi-échelles des couplages hydriques, mécaniques et chimiques dans les matériaux cimentaires, PhD thesis, Université de Lille (in French)

    Google Scholar 

  11. Rougelot T, Burlion N, Bernard D, Skoczylas F (2010) About microcracking due to leaching in cementitious composites: X-ray microtomography description and numerical approach. Cement and concrete research 40(2):271–283

    Article  Google Scholar 

  12. Chen JJ, Thomas JJ, Jennings HM (2006) Decalcification shrinkage of cement paste. Cement Cement and concrete research 36:801–809

    Article  Google Scholar 

  13. Rüsch H (1960) Researches toward a general flexural theory for structural concrete. ACI J 32(1):1–28

    Google Scholar 

  14. Li Z (1994) Effective creep Poisson’s ratio for damages concrete. Int J Fract 66:189–196

    Article  Google Scholar 

  15. Roll R (1964) Long time creep-recovery of highly stressed concrete cylinders, ACI SP-9, Symposium on creep, Portland Cement Association, Detroit, pp 115–128

    Google Scholar 

  16. Smadi MM, Slate FO, Nilsson AH (1987) Shrinkage and creep of high, medium and low strength concrete, including overloads. ACI Mater J 84(3):224–234

    Google Scholar 

  17. Reinhardt H-W, Rinder T (2006) Tensile creep of high-strength concrete. J Adv Concr Technol 4(2):277–283

    Article  Google Scholar 

  18. Reviron N (2009) Etude du fluage des bétons en traction. Application aux enceintes de confinement des centrales nucléaires à eau sous pression, PhD thesis, ENS de Cachan (in French)

    Google Scholar 

  19. Carpinteri A, Valente S, Zhou FP, Ferrara G, Melchiorri G (1997) Tensile and flexural creep rupture tests on partially damaged concrete specimens. Mater Struct 30:269–276

    Article  Google Scholar 

  20. Denarié E, Cécot C, Huet C (2006) Characterization of creep and crack growth interactions in the fracture behavior of concrete. Cement and concrete research 36:571–575

    Article  Google Scholar 

  21. Briffaut M, Benboudjema F, Nahas G, Torrenti JM (2011) Numerical analysis of the thermal active restrained shrinkage ring test to study the early age behavior of massive concrete structures. Eng Struct 33(4):1390–1401. doi:10.1016/j.engstruct.2010.12.044

    Article  Google Scholar 

  22. Smadi MM, Slate FO (1989) Microcracking of high and normal strength concretes under short and long term loadings. ACI Mater J 86(2):117–127

    Google Scholar 

  23. Rossi P, Godart N, Robert JL, Gervais JP, Bruhat D (1994) Investigation of the basic creep of concrete by acoustic emission. Mater Struct 27(9):510–514

    Article  Google Scholar 

  24. Bazant ZP, Xiang Y (1997) Crack growth and life time of concrete under long time loading. J Eng Mech 123(4):350–358

    Article  Google Scholar 

  25. Berthollet A, Georgin JF, Reynouard JM (2004) Fluage tertiaire du béton en traction. Revue européenne de Génie Civil 8(2–3):235–260

    Google Scholar 

  26. Challamel N, Lanos C, Casandjian C (2005) Creep damage modelling for quasi-brittle materials. Eur J Mech Solid 24:593–613

    Article  MATH  Google Scholar 

  27. Sellier A, Multon S, Buffo-Lacarrière L (2011) Non linear creep modelling, LMDC report no. 03-201

    Google Scholar 

  28. Mazotti C, Savoia M (2003) Non linear creep damage model for concrete under uniaxial compression. J Eng Mech 129(9):1065–1074

    Article  Google Scholar 

  29. Bazant ZP, Prasannan S (1989) Solidification theory for concrete creep. I. Formulation. J Eng Mech 115(8):1691–1703

    Article  Google Scholar 

  30. Mazars J (1986) A description of micro and macroscale damage of concrete. Eng Fract Mech 25:729–737

    Article  Google Scholar 

  31. Omar M, Pijaudier-Cabot G, Loukili A (2004) Etude comparative du couplage endommagement – fluage. Revue Française de Génie Civil 8:457–482

    Google Scholar 

  32. Brooks JJ (2005) 30-year creep and shrinkage of concrete. Mag Concr Res 57(9):545–556

    Article  Google Scholar 

  33. Illston JM (1965) The components of strains in concrete under sustained compressive stress. Mag Concr Res 17(50):21–28

    Article  Google Scholar 

  34. Benboudjema F, Meftah F, Torrenti JM (2005) Interaction between drying, shrinkage, creep and cracking phenomena in concrete. Eng Struct 27:239–250

    Article  Google Scholar 

  35. Benboudjema F, Torrenti JM (2008) Early age behaviour of concrete nuclear containments. Nucl Eng Des 238(10):2495–2506

    Article  Google Scholar 

  36. Buil M, Revertégat E, Oliver J (1992) A model of the attack of pure water or undersaturated lime solutions on cement, vol 2nd. American Society for Testing and Materials, Philadelphia, PA, pp 227–241

    Google Scholar 

  37. Bangert F, Kuhl D, Meschke G (2001) Finite element simulation of chemo-mechanical damage under cyclic loading conditions. In: de Borst R, Mazars J, Pijaudier-Cabot G, van Mier J (eds) Fracture mechanics of concrete structures, vol 1. Balkema, Rotterdam, pp 145–152

    Google Scholar 

  38. Saetta A, Scotta R, Vitaliani R (1998) Mechanical behavior of concrete under physical-chemical attacks. J Eng Mech (ASCE) 124:1100–1109

    Article  Google Scholar 

  39. Torrenti JM, Nguyen VH, Colina H, Le Maou F, Benboudjema F, Deleruyelle F (2008) Coupling between leaching and creep of concrete. Cement Concr Res 38(6):816–821

    Article  Google Scholar 

  40. Gérard B, Pijaudier-Cabot G, Laborderie C (1998) Coupled diffusion-damage modelling and the implications on failure due to strain localization. Int J Solid Struct 35(31–32):4107–4120

    Article  MATH  Google Scholar 

  41. Kuhl D, Bangert F, Meschke G (2003) Coupled chemo-mechanical deterioration of cementitious materials - Part 1: modeling. Int J Solid Struct 41:15–40

    Article  Google Scholar 

  42. Kuhl D, Bangert F, Meschke G (2003) Coupled chemo-mechanical deterioration of cementitious materials – Part 2: numerical method and simulation. Int J Solid Struct 41:41–67

    Article  Google Scholar 

  43. Sellier A, Buffo-Lacarrière L, El Gonnouni M, Bourbon X (2010) Behavior of HPC nuclear waste disposal structures in leaching environment. Nucl Eng Des. doi:10.1016/j.nucengdes.2010.11.002

  44. de Larrard T, Benboudjema F, Colliat JB, Torrenti JM, Deleruyelle F (2010) Uncertainty propagation on damage evolution of a concrete structure submitted to coupled leaching and creep. EJECE 14(6–7):891–921

    Google Scholar 

  45. McKay MD, Conover WJ, Beckman RJ (1979) A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21:239–245

    MathSciNet  MATH  Google Scholar 

  46. Kirkpatric S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank Patrick Le Bescop for his help concerning the reference on experiments at CEA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Torrenti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Torrenti, J.M., de Larrard, T., Benboudjema, F. (2013). Coupling Between Leaching and Mechanical Behaviour of Concrete. In: Bart, F., Cau-di-Coumes, C., Frizon, F., Lorente, S. (eds) Cement-Based Materials for Nuclear Waste Storage. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3445-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3445-0_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3444-3

  • Online ISBN: 978-1-4614-3445-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics