Alternative Binders to Ordinary Portland Cement for Radwaste Solidification and Stabilization

  • C. Cau-dit-Coumes


It has long been common practice to solidify and stabilize low- and intermediate-level radioactive wastes with calcium silicate cements (ordinary Portland cement, or composite cement). However, the quality of the final product may be noticeably reduced by adverse cement–waste interactions. This article reviews the potential of three kinds of alternative inorganic binders to treat problematic wastes: (1) calcium aluminate and sulphoaluminate cements, (2) magnesium and calcium phosphate cements, and (3) alkali-activated binders. Their setting and hardening process is briefly presented, and their potential for waste conditioning is discussed.


Silica Fume Calcium Hydroxide Ordinary Portland Cement Calcium Phosphate Cement Calcium Aluminate Cement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Atkins M, Glasser FP (1992) Application of Portland cement -based materials to radioactive waste immobilization. Waste Manage 12:105–131CrossRefGoogle Scholar
  2. 2.
    Odler I (2000) Special inorganic cements. Taylor & Francis Group, LondonGoogle Scholar
  3. 3.
    Juenger MCG, Winnefeld F, Provis JL, Ideker JH (2011) Advances in alternative cementitious binders. Cement Concr Res 41:1232–1243CrossRefGoogle Scholar
  4. 4.
    George CM (1983) Industrial Aluminous cements. In: Barnes P (ed) Structure and performance of cements. Applied Science Publishers, London, pp 415–469Google Scholar
  5. 5.
    Zhang L, Su MZ, Wang YM (1999) Development of the use of sulpho- and ferroaluminate cements in China. Adv Cement Res 11:15–21CrossRefGoogle Scholar
  6. 6.
    Wang J (2010) Hydration mechanism of cements based on low-CO2 clinkers containing belite, ye’elimite and calcium alumino-ferrite. PhD Thesis, Lille 1 University, FranceGoogle Scholar
  7. 7.
    Klein A, Troxell GE (1958) Studies of calcium sulphoaluminate admixture for expansive cements. Proc ASTM 58:986–1008Google Scholar
  8. 8.
    Mehta RK (1965) Investigation on the products in the system C4A3 S-CaSO4-CaO-H2O. Proceedings of the annual meeting of the Highway Research Board, pp 328–352Google Scholar
  9. 9.
    Sharp JH, Lawrence CD, Yang R (1999) Calcium sulphoaluminate cements: low-energy cements, special cements or what? Adv Cement Res 11:3–13CrossRefGoogle Scholar
  10. 10.
    Sahu S, Majling J (1993) Phase compatibility in the system CaO-SiO2-Al2O3-Fe2O3-SO3 referred to sulphoaluminate belite cement clinker. Cement Concr Res 23:1331–1339CrossRefGoogle Scholar
  11. 11.
    Chen D, Feng F, Long S (1993) The influence of ferric oxide on the properties of 3CaO.3Al2O3.CaSO4. Thermochim Acta 215:157–169CrossRefGoogle Scholar
  12. 12.
    Ikeda K (1980) Cements along the join C4A3 S-C2S. Proceedings of the 7th international congress of the chemistry of cement, Paris, pp 31–36Google Scholar
  13. 13.
    Glasser FP, Zhang L (2001) High-performance cement matrices based on calcium sulphoaluminate-belite compositions. Cement Concr Res 31:1881–1886CrossRefGoogle Scholar
  14. 14.
    Georgin JF, Ambroise J, Pera J, Reynouard JM (2008) Development of self-levelling screed based on calcium sulphoaluminate cement : modelling of curling due to drying. Cement Concr Compos 30:769–778CrossRefGoogle Scholar
  15. 15.
    Pera J, Ambroise J (2004) New applications of calcium sulphoaluminate cement. Cement Concr Res 34:671–676CrossRefGoogle Scholar
  16. 16.
    Fryda H, Saucier F, Lamberet S, Scrivener K, Guinot D (2010) La durabilité des bétons d’aluminates de calcium. In: Ollivier JP, Vichot A (eds) La durabilité des bétons, bases scientifiques pour le développement de bétons durables dans leur environnement. Presses de l’Ecole Nationale des Ponts et Chaussées, Paris, pp 767–823Google Scholar
  17. 17.
    Ding J, Fu Y, Beaudoin JJ (1995) Strätlingite formation in high alumina cement/silica fume systems: significance of sodium ions. Ceram Concr Res 25:1311–1319CrossRefGoogle Scholar
  18. 18.
    Majumdar AJ, Edmonds RN, Singh B (1990) Hydration of SECAR 71 aluminous cement in presence of granulated blast furnace slag. Cement Concr Res 20:7–14CrossRefGoogle Scholar
  19. 19.
    Ding J, Fu Y, Beaudoin JJ (1997) Effects of different zeolites on conversion-prevention in high alumina cement products. ACI Mater J 94:220–226Google Scholar
  20. 20.
    Hanic F, Kaprálika I, Gabrisováa A (1989) Mechanism of hydration reactions in the system C4A3 S-CS-CaO-H2O referred to hydration of sulphoaluminate cements. Cement Concr Res 19:671–682CrossRefGoogle Scholar
  21. 21.
    Kasselouri V, Tsakiridis P, Malami C, Georgali B, Alexandridou C (1995) A study on the hydration products of a non-expansive sulphoaluminate cement. Cement Concr Res 25:1726–1736CrossRefGoogle Scholar
  22. 22.
    Winnefeld F, Lothenbach B (2010) Hydration of calcium sulphoaluminate cements: experimental findings and thermodynamic modelling. Cement Concr Res 40:1239–1247CrossRefGoogle Scholar
  23. 23.
    Cecille L, Kertesz C (1991) Treatment and conditioning of radioactive incinerator ashes. Elsevier Science Publishers Ltd., LondonGoogle Scholar
  24. 24.
    Arliguie G, Grandet J (1990) Study of cement hydration in presence of zinc – influence of gypsum content. Cement Concr Res 20:346–354CrossRefGoogle Scholar
  25. 25.
    Fernandez Olmo I, Chacon E, Irabien A (2001) Influence of lead, zinc, iron (III) and chromium (III) oxides on the setting time and strength development of Portland cement. Cement Concr Res 31:1213–1219CrossRefGoogle Scholar
  26. 26.
    Drouin M (1994) Enrobage de déchets Melox pauvres en plutonium dans une matrice de liants hydrauliques. Mémoire CNAM, ParisGoogle Scholar
  27. 27.
    Berger S, Cau-dit-Coumes C, Le Bescop P, Damidot D (2009) Hydration of calcium sulphoaluminate cement by a ZnCl2 solution: investigation at early age. Cement Concr Res 39:1180–1187CrossRefGoogle Scholar
  28. 28.
    Macias A, Kindness A, Glasser FP (1996) Corrosion behaviour of steel in high-alumina cement mortar cured at 5, 25 and 55-degrees-C – chemical and physical factors. J Mater Sci 31:2279–2289CrossRefGoogle Scholar
  29. 29.
    Albino V, Cioffi R, Marroccoli M, Santoro L (1996) Potential application of ettringite generating systems for hazardous waste stabilization. J Hazard Mater 51:241–252CrossRefGoogle Scholar
  30. 30.
    Gougar MLD, Scheetz BE, Roy DM (1996) Ettringite and C-S-H Portland cement phases for waste ion immobilization: a review. Waste Manage 16:295–303CrossRefGoogle Scholar
  31. 31.
    Renaudin G (1998) Crystal chemistry of a double-layered hydroxide family: the AFm phases. PhD Thesis, Henry Poincaré University, Nancy I, FranceGoogle Scholar
  32. 32.
    McCarthy GJ, Hassett DJ, Flexuraler JA (1992) Synthesis, crystal chemistry and stability of ettringite, a material with potential applications in hazardous waste immobilization. Mat Res Soc Symp Proc 245:129–140CrossRefGoogle Scholar
  33. 33.
    Champenois JB, Cau dit Coumes C, Poulesquen A, Le Bescop P, Damidot D (2011) Conditioning highly concentrated borate solutions with calcium sulphoaluminate cement. Proceedings of NUWCEM 2011 conference, Avignon, FranceGoogle Scholar
  34. 34.
    Mesbah A, Cau-dit-Coumes C, Renaudin G, Frizon F, Leroux F (2012) Uptake of chloride and carbonate ions by calcium monosulphoaluminate hydrate, Cem. Concr. Res. 42:1157–1165Google Scholar
  35. 35.
    Ambroise J, Pera J (2004) Immobilisation of calcium sulphate in demolition waste. In: Limbachiya MC, Roberts JJ (eds) Sustainable waste management and recycling: construction demolition waste. Thomas Telford Publishing, London, pp 174–180Google Scholar
  36. 36.
    Peysson S, Pera J, Chabannet M (2005) Immobilization of heavy metals by calcium sulphoaluminate cement. Cement Concr Res 35:2261–2270CrossRefGoogle Scholar
  37. 37.
    Berardi R, Cioffi R, Santoro L (1997) Matrix stability and leaching behaviour in ettringite-based stabilization systems doped with heavy metals. Waste Manage 17:535–540CrossRefGoogle Scholar
  38. 38.
    Berger S, Cau-dit-Coumes C, Champenois JB, Douillard T, Le Bescop P, Aouad G, Damidot D (2011) Stabilization of ZnCl2-containing wastes using calcium sulphoaluminate cement : leaching behaviour of the solidified waste form, mechanisms of zinc retention. J Hazard Mater 194:268–276CrossRefGoogle Scholar
  39. 39.
    Process for purifying aqueous solutions polluted by nitrate ions (1992) European patent 0 494 836 B1Google Scholar
  40. 40.
    Toyohara M, Kaneko M, Mitsutska N, Fujihara H, Saito N, Murase T (2002) Contribution to understanding iodine sorption mechanism onto mixed solid alumina cement and calcium compounds. J Nucl Sci Technol 39:950–956CrossRefGoogle Scholar
  41. 41.
    Fryda H, Vetter G, Ollitrault-Fichet R, Boch P, Capmas A (1996) Formation of chabazite in mixes of calcium aluminate cement and silica fume used for caesium immobilization. Adv Cement Res 29:29–39CrossRefGoogle Scholar
  42. 42.
    Setiadi A, Milestone NB, Hayes M (2004) Corrosion of aluminium in composite cements. Proceedings of the 24th cement and concrete science, University of Warwick, UKGoogle Scholar
  43. 43.
    Zhou Q, Milestone NB, Hayes M (2006) An alternative to Portland cement for waste encapsulation – the calcium sulphoaluminate cement system. J Hazard Mater 136:120–129CrossRefGoogle Scholar
  44. 44.
    Hayes M, Godfrey IH (2007) Development of the use of alternative cements for the treatment of intermediate level waste. Proceedings of waste management 2007 (WM’07) conference, Tucson, AZGoogle Scholar
  45. 45.
    Langton CA, Stefanko DB, Serrato MG, Blankenship JK, Griffin WB, Waymer JT, Matheny D, Singh D (2011) Use of cementitious materials for SRS reactor facility in-situ decommissioning. Proceedings of waste management 2011 (WM’11) conference, Phoenix, AZGoogle Scholar
  46. 46.
    Soudée E, Pera J (2000) Mechanism of setting reaction in magnesia-phosphate cements. Cement Concr Res 30:315–321CrossRefGoogle Scholar
  47. 47.
    Wagh AS, Singh D, Jeong SY, Strain RV (1997) Ceramicrete stabilization of low-level mixed wastes, a complete story. Proceedings of the 18th annual DOE low-level radioactive waste management conference, Salt Lake City, UTGoogle Scholar
  48. 48.
    Wagh AS, Jeong SY, Singh D, Strain R, No H, Wescott J (1997) Stabilization of contaminated soil and wastewater with chemically bonded phosphate ceramics. Proceedings of waste management 1997 (WM’97), Tucson, AZGoogle Scholar
  49. 49.
    Singh D, Barber D, Wagh A, Strain R, Tlustochowicz M (1998) Stabilization and disposal of Argonne-west low-level mixed wastes in Ceramicrete™ waste forms. Proceedings of waste management 1998 Conference (WM’98), Tucson, AZGoogle Scholar
  50. 50.
    Mayberry J, Dewitt L, Darnell R, Konynenburg R, Singh D, Schumacher R, Ericksen P, Davies J, Nakaoka R (1992) Technical areas status report for low-level mixed final waste forms, DOE/MWIP-3 vol 1Google Scholar
  51. 51.
    Wagh AS, Strain R, Jeong SY, Reed D, Krause T, Singh D (1999) Stabilization of Rocky Flats Pu-contaminated ash within chemically bonded phosphate ceramics. J Nucl Mater 265:295–307CrossRefGoogle Scholar
  52. 52.
    Wagh AS, Singh D, Patel K, Jeong S, Park J (1999) Salt waste stabilization in chemically bonded phosphate ceramics. Final report to Mixed Waste Focus Area of U.S. Dept. of EnergyGoogle Scholar
  53. 53.
    Kay MI, Young RA, Posner AS (1964) Crystal structure of hydroxyapatite. Nature 204:1050–1052CrossRefGoogle Scholar
  54. 54.
    Weber WJ, Ewing RC, Meldrum A (1997) On the kinetics of alpha-decay-induced amorphization in zircon and apatite containing weapons-grade plutonium or other actinides. J Nucl Mater 250:147–155CrossRefGoogle Scholar
  55. 55.
    Chow LC (1991) Development of a self-setting calcium phosphate cement. J Ceram Soc Jpn 99:954–964CrossRefGoogle Scholar
  56. 56.
    Valyashko VM, Korgardo LN, Khodakpovskyi IL (1968) Solubility of hydroxyapatite. Geokhimiya 1:26–36Google Scholar
  57. 57.
    Cau-dit-Coumes C, Courtois E, Guy C, Courtois S, Prené S (2003) Mise au point de ciments phosphocalciques – application au blocage de l’activité labile du combustible nucléaire irradié en situation de stockage direct. Ecole Thématique CNRS-ATILH Physique, Chimie et Mécanique des Matériaux Cimentaires, La Colle sur Loup, FranceGoogle Scholar
  58. 58.
    Van Wazer JR (1967) Inorganic polymer chemistry. J Macromol Sci A Chem 1:29–55Google Scholar
  59. 59.
    Davidovits J (1991) Geopolymers: inorganic polymeric new materials. J Therm Anal 37:1633–1656CrossRefGoogle Scholar
  60. 60.
    Shi C, Fernandez-Jimenez A, Palomo A (2011) New cements for the 21st century: the pursuit of an alternative to Portland cement. Cement Concr Res 41:750–763CrossRefGoogle Scholar
  61. 61.
    Barbosa VFF, MacKenzie KJD, Thaumaturgo C (2000) Synthesis and characterization of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers. Int J Inorg Mater 2:309–317CrossRefGoogle Scholar
  62. 62.
    Provis JL, Luckey GC, Van Deventer JSJ (2005) Do geopolymers actually contain nanocrystalline zeolites? A re-examination of existing results. Chem Mater 17:3075–3085CrossRefGoogle Scholar
  63. 63.
    Duxson P, Provis JL, Lukey GC, Mallicoat SW, Kriven WM, van Deventer JSJ (2005) Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids Surf A Physicochem Eng Asp 269:47–58CrossRefGoogle Scholar
  64. 64.
    Duxson P, Fernandez-Jimenez A, Provis JL, Lukey GC, Palomo A, Van Deventer JSJ (2007) Geopolymer technology: the current state of the art. J Mater Sci 42:2917–2933CrossRefGoogle Scholar
  65. 65.
    Van Jaarveld JGS, Van Deventer JSJ, Lorenzen L (1997) The potential use of geopolymeric materials to immobilise toxic metals: Part I. Theory and applications. Miner Eng 10:659–669CrossRefGoogle Scholar
  66. 66.
    Perera DS, Aly Z, Vance ER, Mizumo M (2005) Immobilization of Pb in geopolymer matrix. J Am Ceram Soc 88:2586–2588CrossRefGoogle Scholar
  67. 67.
    Palomo A, Palacios M (2003) Alkali-activated cementitious materials: alternative matrices for the immobilization of hazardous wastes – part II – stabilisation of chromium and lead. Cement Concr Res 33:289–295CrossRefGoogle Scholar
  68. 68.
    Provis JL (2009) Immobilization of toxic waste in geopolymers. In: Provis JL, Deventer JSJ (eds) Geopolymers: structure, processing, properties and industrial applications. Woodhead, Cambridge, pp 423–442Google Scholar
  69. 69.
    Shi C, Fernandez-Jimenez A (2006) Stabilization/solidification of hazardous and radioactive wastes with alkali-activated cements. J Hazard Mater 137:1656–1663CrossRefGoogle Scholar
  70. 70.
    Fernandez-Jimenez A, Macphee D, Lachowski EE, Palomo A (2005) Immobilization of caesium in alkaline activated fly ash matrix. J Nucl Mater 346:185–193CrossRefGoogle Scholar
  71. 71.
    Bankowski P, Zou L, Hodges R (2004) Reduction of metal leaching in brown coal fly ash using geopolymers. J Hazard Mater 114:59–67CrossRefGoogle Scholar
  72. 72.
    Lambertin D, Frizon F, Blachère A, Bart F (2011) Corrosion of clean Mg-Zr alloys in various basic media for waste encapsulation. Proceedings of Nuwcem 2011 conference, Avignon, FranceGoogle Scholar
  73. 73.
    Criado M, Fernandez-Jimenez A, Palomo A (2010) Effect of sodium sulphate on the alkali activation of fly ash. Cement Concr Comp 32:589–594CrossRefGoogle Scholar
  74. 74.
    Desbats-Le Chequer C, Frizon F (2011) Impact of sulphate and nitrate incorporation on potassium- and sodium-based geopolymers: geopolymerization and materials properties. J Mater Sci 46:5657–5664CrossRefGoogle Scholar
  75. 75.
    Khalil MY, Merz E (1994) Immobilization of intermediate-level wastes in geopolymers. J Nucl Mater 211:141–148CrossRefGoogle Scholar
  76. 76.
    Lichvar P, Rozloznik M, Sekely S (2010) Behaviour of alumino-silicate ionorganic matrix SIAL® during and after solidification of radioactive sludge and radioactive spent resins and their mixtures. Proceeding of the IAEA meeting, 18–21 Oct, Kalpakkam, IndiaGoogle Scholar
  77. 77.
    Xu H, Van Deventer JSJ (2000) The geopolymerisation of alumino-silicate minerals. Int J Miner Process 59:247–266CrossRefGoogle Scholar
  78. 78.
    Siemer DD, Olanrewaju J, Scheetz B, Grutzeck MW (2001) Development of hydroceramic waste forms for INEEL calcined waste. Ceram Trans 119:391–398Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Commissariat à l’Energie Atomique et aux Energies AlternativesDEN/MAR/DTCD/SPDEBagnols-sur-CèzeFrance

Personalised recommendations