Ancillary Testing in the Management of Retinal Vein Occlusions

  • David J. Browning
Chapter

Abstract

Ancillary testing is important in the diagnosis and management of retinal vein occlusion (RVO). Fluorescein angiography (FA) and electroretinography (ERG) can help determine the ischemic status of central retinal vein occlusion, which influences the frequency of follow-up. Optical coherence tomography (OCT) provides a sensitive and objective test over time for the diagnosis of macular edema and is necessary for the treatment of this complication of RVO. Familiarity with ancillary tests and their limitations is therefore necessary for optimal management. All ancillary tests cost money to obtain and interpret. Because financial resources for health care are scarce, ophthalmologists need to judge whether a test adds sufficient value to the care of a patient to make obtaining it worthwhile. There is an inherent conflict of interest in fee-for-service systems of health care (e.g., in the United States). The ophthalmologist profits by ordering more ancillary tests. Therefore, the topic is not only important to discuss but also sensitive.11

Keywords

Permeability Ischemia Respiration Hexagonal Retina 

References

  1. 1.
    Arsene S, Giraudeau B, Lez MLL, Pisella PJ, Pourcelot L, Tranquart F. Follow up by colour Doppler Imaging of 102 patients with retinal vein occlusion over 1 year. Br J Ophthalmol. 2010;86:1243–7.Google Scholar
  2. 2.
    Avila CP, Bartsch DU, Bitner DG, Cheng L, Mueller AJ, Karavellas MP, Freeman WR. Retinal blood flow measurements in branch retinal vein occlusion using scanning laser doppler flowmetry. Am J Ophthalmol. 1998;126:683–90.PubMedGoogle Scholar
  3. 3.
    Avunduk AM, Dinc H, Kapicioglu Z, et al. Arterial blood flow characteristics in central retinal vein occlusion and effects of panretinal photocoagulation treatment: an investigation by colour Doppler imaging. Br J Ophthalmol. 1999;83:50–3.PubMedGoogle Scholar
  4. 4.
    Baleanu D, Ritt M, Harazny J, Heckmann J, Schmieder RE, Michelson G. Wall-to-lumen ratio of retinal arterioles and arteriole-to-venule ratio of retinal vessels in patients with cerebrovascular damage. Invest Ophthalmol Vis Sci. 2009;50:4351–9.PubMedGoogle Scholar
  5. 5.
    Barbazetto IA, Schmidt-Erfurth UM. Evaluation of functional defects in branch retinal vein occlusion before and after laser treatment with scanning laser perimetry. Ophthalmology. 2000;107:1089–98.PubMedGoogle Scholar
  6. 6.
    Bell JA, Feldon SE. Retinal microangiopathy. Correlation of OCTOPUS perimetry with fluorescein angiography. Arch Ophthalmol. 1984;102:1294–8.PubMedGoogle Scholar
  7. 7.
    Bhagat N, von Hagen S, Zarbin MA. Perimetric sensitivity and retinal thickness in eyes with macular edema resulting from branch retinal vein occlusion. Am J Ophthalmol. 2002;133:428–9.PubMedGoogle Scholar
  8. 8.
    Birchall CH, Harris GS, Drance SM, Begg IS. Visual field changes in branch retinal ‘vein’ occlusion. Arch Ophthalmol. 1976;94:747–54.PubMedGoogle Scholar
  9. 9.
    Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1:307–10.PubMedGoogle Scholar
  10. 10.
    Bresnick GH. Following up patients with central retinal vein occlusion. Arch Ophthalmol. 1988;106:324–6.PubMedGoogle Scholar
  11. 11.
    Browning DJ. Practical concerns with ethical dimensions in the management of diabetic retinopathy. In: Browning DJ, editor. Diabetic retinopathy: evidence based management. New York: Springer; 2010. p. 387–401.Google Scholar
  12. 12.
    Browning DJ, Antoszyk AN. Laser chorioretinal venous anastomosis for nonischemic central retinal vein occlusion. Ophthalmology. 1996;105:670–9.Google Scholar
  13. 13.
    Browning DJ, Fraser C. Regional patterns of sight-threatening diabetic macular edema. Am J Ophthalmol. 2005;140:117–24.PubMedGoogle Scholar
  14. 14.
    Browning DJ, Glassman AR, Aiello LP, Bressler NM, Bressler S, Danis RP, Davis MD, Ferris FL, Huang SS, Kaiser PK, Kollman C, Sadda S, Scott IU, Qin H, Diabetic Retinopathy Clinical Research Network Study Group. Optical coherence tomography measurements and analysis methods in optical coherence tomography studies of diabetic macular edema. Ophthalmology. 2008;115:1366–71.PubMedGoogle Scholar
  15. 15.
    Campochiaro PA, Hafiz G, Channa R, Shah SM, Nguyen QD, Ying H, Do DV, Zimmer-Galler I, Solomon SD, Sung JU. Antagonism of vascular endothelial growth factor for macular edema caused by retinal vein occlusions: two-year outcomes. Ophthalmology. 2010;117:2387–94.PubMedGoogle Scholar
  16. 16.
    Chahal P, Fallon TJ, Chowienczyk PJ, Kohner EM. Quantitative changes in blood-retinal barrier function in central retinal vein occlusion. Trans Am Ophthalmol Soc. 1985;104:861–3.Google Scholar
  17. 17.
    Chan A, Duker JS. A standardized method for reporting changes in macular thickening using optical coherence tomography. Arch Ophthalmol. 2005; 123:939–43.PubMedGoogle Scholar
  18. 18.
    Chen JY, Hood DC, Odel JG, Behrens MM. The effects of retinal abnormalities on the multifocal visual evoked potential. Invest Ophthalmol Vis Sci. 2006;47:4378–85.PubMedGoogle Scholar
  19. 19.
    Chen H, Wu D, Huang S, Yan H. The photopic negative response of the flash electroretinogram in retinal vein occlusion. Doc Ophthalmol. 2006;113:53–9.PubMedGoogle Scholar
  20. 20.
    Christoffersen NLB, Larson M. Pathophysiology and hemodynamics of BRVO. Ophthalmology. 1999;106: 2054–62.PubMedGoogle Scholar
  21. 21.
    Chung EJ, Freeman WR, Koh HJ. Visual acuity and multifocal electroretinographic changes after arteriovenous crossing sheathotomy for macular edema associated with branch retinal vein occlusion. Retina. 2008;28:220–5.PubMedGoogle Scholar
  22. 22.
    Clemett R. Retinal branch vein occlusion. Changes at the site of obstruction. Br J Ophthalmol. 1974;58: 548–54.PubMedGoogle Scholar
  23. 23.
    Crama N, Gualino V, Restori M, Charteris DG. Central retinal vessel blood flow after surgical treatment for central retinal vein occlusion. Retina. 2010;30:1692–7.PubMedGoogle Scholar
  24. 24.
    De Geronimo F, Glacet-Bernard A, Coscas G, Soubrane G. A quantitative in vivo study of retinal thickness before and after laser treatment for macular edema due to retinal vein occlusion. Eur J Ophthalmol. 2001;11:145–9.PubMedGoogle Scholar
  25. 25.
    Dolan FM, Parks S, Keating D, Dutton GN. Wide field multifocal and standard full field electroretinographic features of hemi retinal vein occlusion. Doc Ophthalmol. 2006;112:43–52.PubMedGoogle Scholar
  26. 26.
    Domalpally A, Blodi BA, Scott IU, Ip MS, Oden NL, Lauer AK, VanVeldhuisen PC, SCORE Study Investigator Group. The standard care vs corticosteroid for retinal vein occlusion (SCORE) study system for evaluation of optical coherence tomograms SCORE study report 4. Arch Ophthalmol. 2009;127: 1461–7.PubMedGoogle Scholar
  27. 27.
    Feltgen N, Junker B, Agostini H, Hansen LL. Retinal endovascular lysis in ischemic central retinal vein occlusion: one-year results of a pilot study. Ophthalmology. 2007;114:716–23.PubMedGoogle Scholar
  28. 28.
    Feuer WJ. Intraclass correlation analysis may alter conclusions. Invest Ophthalmol Vis Sci. 2007;48.Google Scholar
  29. 29.
    Forooghian F, Cukras C, Meyerle CB, Chew EY, Wong WT. Evaluation of time domain and spectral domain optical coherence tomography in the measurement of diabetic macular edema. Invest Ophthalmol Vis Sci. 2008;49(10):4290–6. Epub 2008 May 30.PubMedGoogle Scholar
  30. 30.
    Gieser JP, Rusin MM, Mori M, Blair NP, Shahidi M. Clinical assessment of the macula by retinal topography and thickness mapping. Am J Ophthalmol. 1997;124:648–60.PubMedGoogle Scholar
  31. 31.
    Glacet-Bernard A, Zourdani A, Milhoub M, Maraqua N, Coscas G, Soubrane G. Effect of isovolemic hemodilution in central retinal vein occlusion. Graefes Arch Clin Exp Ophthalmol. 2001;239:909–14.PubMedGoogle Scholar
  32. 32.
    Gregori NZ, Rattan GH, Rosenfeld PJ, Puliafito CA, Feuer W, Flynn Jr HW, Berrocal AM, Al Attar L, Dubovy S, Smiddy WE. Safety and efficacy of intravitreal bevacizumab (avastin) for the management of branch and hemiretinal vein occlusion. Retina. 2009;29:913–25.PubMedGoogle Scholar
  33. 33.
    Gutman FA. Evaluation of a patient with central retinal vein occlusion. Ophthalmology. 1983;90:481–3.PubMedGoogle Scholar
  34. 34.
    Hara A, Miura M. Decreased inner retinal activity in branch retinal vein occlusion. Doc Ophthalmol Adv Ophthalmol. 1994;88:39–47.Google Scholar
  35. 35.
    Harino S. Reply to M. Battaglia Parodi: Hyperfluorescence at arteriovenous crossing before branch retinal vein occlusion. Graefes Arch Clin Exp Ophthalmol. 2002;240:68.Google Scholar
  36. 36.
    Harino S, Oshima Y, Tsujikawa K, Ogawa K, Grunwald JE. Indocyanine green and fluorescein hyperfluorescence at the site of occlusion in branch retinal vein occlusion. Graefes Arch Clin Exp Ophthalmol. 2001;239:18–24.PubMedGoogle Scholar
  37. 37.
    Harris A, Jonescu-Cuypers CP, Kagemann L, Ciulla TA, Krieglstein GK. Atlas of ocular blood flow: vascular anatomy, pathophysiology, and metabolism. Philadelphia: Hutterworth Heinemann; 2003. p. 1–128.Google Scholar
  38. 38.
    Hayreh SS, Fraterrigo L, Jonas J. Central retinal vein occlusion associated with cilioretinal artery occlusion. Retina. 2008;28:581–94.PubMedGoogle Scholar
  39. 39.
    Hayreh SS, Klugman MR, Beri M, Kimura AE, Podhajsky P. Differentiation of ischemic from non-ischemic central retinal vein occlusion during the early phase. Graefes Arch Clin Exp Ophthalmol. 1990;228:201–17.PubMedGoogle Scholar
  40. 40.
    Hayreh SS, Podhajsky PA, Zimmerman MB. Natural history of visual outcome in central retinal vein occlusion. Ophthalmology. 2011;118:119–33.PubMedGoogle Scholar
  41. 41.
    Hoeh AE, Ruppenstein M, Ach T, Dithmar S. OCT patterns of macular edema and response to bevacizumab therapy in retinal vein occlusion. Graefes Arch Clin Exp Ophthalmol. 2010;248:1567–72.PubMedGoogle Scholar
  42. 42.
    Horio N. Can the integrity of the photoreceptor layer explain visual acuity in branch retinal vein occlusion? Br J Ophthalmol. 2007;91:1575–6.PubMedGoogle Scholar
  43. 43.
    Horio N, Horiguchi M. Retinal blood flow analysis using intraoperative video fluorescein angiography combined with optical fiber-free intravitreal surgery system. Am J Ophthalmol. 2004;138:1082–3.PubMedGoogle Scholar
  44. 44.
    Hvarfner C, Andreasson S, Larsson J. Multifocal electroretinogram in branch retinal vein occlusion. Am J Ophthalmol. 2003;136:1163–5.PubMedGoogle Scholar
  45. 45.
    Imasawa M, Iijima H, Morimoto T. Perimetric sensitivity and retinal thickness in eyes with macular edema resulting from branch retinal vein occlusion. Am J Ophthalmol. 2001;131:55–60.PubMedGoogle Scholar
  46. 46.
    Jekel JF, Elmore JG, Katz DL. Methods of secondary prevention. In: Epidemiology, biostatistics, and preventive medicine. 1st ed. Philadelphia: Saunders; 1996. p. 216–7.Google Scholar
  47. 47.
    Johnson MA, Hood DC. Rod photoreceptor transduction is affected in central retinal vein occlusion associated with iris neovascularization. J Opt Soc Am. 1996;13:572–6.Google Scholar
  48. 48.
    Johnson MA, Marcus S, Elman MJ, McPhee TJ. Neovascularization in central retinal vein occlusion: electroretinographic findings. Arch Ophthalmol. 1988;106:348–52.PubMedGoogle Scholar
  49. 49.
    Jonas JB. Ophthalmodynamometric assessment of the central retinal vein collapse pressure in eyes with retinal vein stasis or occlusion. Graefes Arch Clin Exp Ophthalmol. 2003;241:367–70.PubMedGoogle Scholar
  50. 50.
    Jonas J, Paques M, Monθs J, Glacet-Bernard A. Retinal vein occlusions. Dev Ophthalmol. 2010;47: 111–35.PubMedGoogle Scholar
  51. 51.
    Kadonosono K, Itoh N, Nomura E, Ohno S. Perifoveal microcirculation in eyes with epiretinal membranes. Br J Ophthalmol. 1999;83:1329–31.PubMedGoogle Scholar
  52. 52.
    Kay M. Color Doppler imaging in disorders of the orbit, retina, and optic nerve. Semin Ophthalmol. 1995;10:242–50.PubMedGoogle Scholar
  53. 53.
    Kaye SB, Harding SP. Early electroretinography in unilateral central retinal vein occlusion as a predictor of rubeosis iridis. Arch Ophthalmol. 1988;106:353–6.PubMedGoogle Scholar
  54. 54.
    Kernt M, Ulbig MW. Wide-field scanning laser ophthalmoscope imaging and angiography of central retinal vein occlusion. Circulation. 2010;121:1459–60.PubMedGoogle Scholar
  55. 55.
    Keyser BJ, Flaharty PM, Sergott RC, Brown GC, Lieb WE, Annesley WH. Color Doppler imaging of arterial blood flow in central retinal vein occlusion. Ophthalmology. 1994;101:1357–61.PubMedGoogle Scholar
  56. 56.
    Kjeka O, Bredrup C, Krohn J. Photopic 30 Hz flicker electroretinography predicts ocular neovascularization in central retinal vein occlusion. Acta Ophthalmol Scand. 2007;85:640–3.PubMedGoogle Scholar
  57. 57.
    Kofoed PK, Hasler PW, Sander B, Jansen EC, Klemp K, Larsen M. Delayed response of the retina after hyperbaric oxygen exposure. Acta Ophthalmol Scand. 2010;89:774–8.Google Scholar
  58. 58.
    Kremer I, Hartman B, Siegal R, Ben Sira I. Static and kinetic perimetry results of krypton red laser treatment for macular edema complicating branch vein occlusion. Ann Ophthalmol. 1990;22:193–7.PubMedGoogle Scholar
  59. 59.
    Kruger-Leite E, Jalkh AE, Avila MP, Trempe CL. Central visual field in patients with retinal branch vein occlusion. Ann Ophthalmol. 1985;17:622–3.PubMedGoogle Scholar
  60. 60.
    Kube T, Feltgen N, Pache M, Herrmann J, Hansen LL. Angiographic findings in arteriovenous dissection (sheathotomy) for decompression of branch retinal vein occlusion. Graefes Arch Clin Exp Ophthalmol. 2005;243:334–8.PubMedGoogle Scholar
  61. 61.
    Larsen ML, Moeller F, Sander B, Sjoelie AK. Subthreshold micropulse diode laser treatment in diabetic macular edema. Br J Ophthalmol. 2004;88:1173–9.Google Scholar
  62. 62.
    Larsson J, Andreasson S. Photopic 30 Hz flicker ERG as a predictor for rubeosis in central retinal vein occlusion. Br J Ophthalmol. 2001;85:683–5.PubMedGoogle Scholar
  63. 63.
    Larsson J, Bauer B, Andreasson S. The 30-Hz flicker cone ERG for monitoring the early course of central retinal vein occlusion. Acta Ophthalmol Scand. 2000;78:187–90.PubMedGoogle Scholar
  64. 64.
    Lindblom B. Fluorescein angiography of the iris in the management of eyes with central retinal vein occlusion. Acta Ophthalmol Scand. 1998;76:188–91.PubMedGoogle Scholar
  65. 65.
    Luksch A, Ma R, Tittl M, Ergun E, Findl O, Stur M, Schmetterer L. Evaluation of pulsatile choroidal blood flow in branch retinal vein occlusion. Graefes Arch Clin Exp Ophthalmol. 2002;240:548–50.PubMedGoogle Scholar
  66. 66.
    Mandelcorn MS, Nrusimhadevara RK. Internal limiting membrane peeling for decompression of macular edema in retinal vein occlusion: a report of 14 cases. Retina. 2004;24:348–55.PubMedGoogle Scholar
  67. 67.
    Marmor MF, Arden GB, Nilsson SEG, Zrenner E. Standard for clinical electroretinography. Arch Ophthalmol. 1989;107:816–9.Google Scholar
  68. 68.
    Massin P, Erginay A, Haouchine B, Mehidi AB, Paques M, Gaudric A. Retinal thickness in healthy and diabetic subjects measured using optical coherence tomography mapping software. Eur J Ophthalmol. 2002;12:102–8.PubMedGoogle Scholar
  69. 69.
    Menke MN, Feke GT, McMeel JW, Branagan A, Hunter Z, Treon SP. Hyperviscosity-related retinopathy in waldenstrom macroglobulinemia. Arch Ophthalmol. 2006;124:1601–6.PubMedGoogle Scholar
  70. 70.
    Michels RG, Gass JDM. The natural course of retinal branch vein obstruction. Trans Am Acad Ophthalmol Otolaryngol. 1974;78:166–77.Google Scholar
  71. 71.
    Murakami T, Tsujikaawa A, Ohta M, et al. Photoreceptor status after resolved macular edema in branch retinal vein occlusion treated with tissue plasminogen activator. Am J Ophthalmol. 2007;143 :171–3.PubMedGoogle Scholar
  72. 72.
    Noma H, Funatsu H, Mimura T, Harino S, Shimada K. Functional-morphologic correlates in patients with branch retinal vein occlusion and macular edema. Retina. 2011;31:2102–8.PubMedGoogle Scholar
  73. 73.
    Ohashi H, Oh H, Nishiwaki H, Nonaka A, Takagi H. Delayed absorption of macular edema accompanying serous retinal detachment after grid laser treatment in patients with branch retinal vein occlusion. Ophthalmology. 2004;111:2050–6.PubMedGoogle Scholar
  74. 74.
    Orth DH, Patz A. Retinal branch vein occlusion. Surv Ophthalmol. 1978;22:357–76.PubMedGoogle Scholar
  75. 75.
    Ota M, Tsujikawa A, Kita M, et al. Integrity of foveal photoreceptor layer in central retinal vein occlusion. Retina. 2008;28:1502–8.PubMedGoogle Scholar
  76. 76.
    Ota M, Tsujikawa A, Murakami T, Kita M, Miyamoto K, Sakamoto A, Yamaike N, Yoshimura N. Association between integrity of foveal photoreceptor layer and visual acuity in branch retinal vein occlusion. Br J Ophthalmol. 2007;91:1644–9.PubMedGoogle Scholar
  77. 77.
    Ota M, Tsujikawa A, Murakami T, Yamaike N, Sakamoto A, Kotera Y, Miyamoto K, Kita M, Yoshimura N. Foveal photoreceptor layer in eyes with persistent cystoid macular edema associated with branch retinal vein occlusion. Am J Ophthalmol. 2008;145:273–80.PubMedGoogle Scholar
  78. 78.
    Paques M, Baillart O, Genevois O, Gaudric A, Levy BI, Sahel J. Systolodiastolic variations of blood flow during central retinal vein occlusion: exploration by dynamic angiography. Br J Ophthalmol. 2005;89:1036–40.PubMedGoogle Scholar
  79. 79.
    Paques M, Garmyn V, Catier A, Naoun K, Vicaut E, Gaudric A. Analysis of retinal and choroidal circulation during central retinal vein occlusion using indocyanine green videoangiography. Arch Ophthalmol. 2001;119:1781–7.PubMedGoogle Scholar
  80. 80.
    Paques M, Naoun K, Garmyn V, Laurent P, Gaudric A. Circulatory consequences of retinal vein occlusions. Advantages of dynamic angiography. J Fr Ophthalmol. 2002;25:898–902.Google Scholar
  81. 81.
    Ring CP, Pearson TC, Sanders MD, et al. Viscosity and retinal vein thrombosis. Br J Ophthalmol. 1976; 60:397–410.PubMedGoogle Scholar
  82. 82.
    Sabates R, Hirose T, McMeel JW. Electroretinography in the prognosis and classification of central retinal vein occlusion. Arch Ophthalmol. 1983;101:232–5.PubMedGoogle Scholar
  83. 83.
    Sanborn GE, Magargal LE. Characteristics of the hemispheric retinal vein occlusion. Ophthalmology. 1984;91:1616–26.PubMedGoogle Scholar
  84. 84.
    Schmetterer L, Dallinger S, Findl O, Strenn K, Graselli U, Eichler HG, Wolzt M. Noninvasive investigations of the normal ocular circulation in humans. Invest Ophthalmol Vis Sci. 1998;39:1210–20.PubMedGoogle Scholar
  85. 85.
    Schmidt-Erfurth UM, Stock G, Pruente C, Ahlers C. Three-dimensional angiographic imaging of leakage in branch retinal vein occlusion. Acta Ophthalmol. 2010;88:181–7.PubMedGoogle Scholar
  86. 86.
    Senturk F, Ozdemir H, Karacorlu M, Karacorlu SA, Uysal O. Microperimetric changes after intravitreal triamcinolone acetonide injection for macular edema due to central retinal vein occlusion. Retina. 2010;30:1254–61.PubMedGoogle Scholar
  87. 87.
    Sinclair SH, Gragoudas ES. Prognosis for rubeosis iridis following central retinal vein occlusion. Br J Ophthalmol. 1979;63:735–43.PubMedGoogle Scholar
  88. 88.
    Stepien JA, Jagle H, Kurtenbach A, Stepien MW, Omulecki W. Multifocal oscillatory potentials (mfOPs) in patients with central retinal vein occlusion. Klin Oczna. 2006;108:424–30.PubMedGoogle Scholar
  89. 89.
    Sugiura Y, Okamoto F, Okamoto Y, Hasegawa Y, Hiraoka T, Oshika T. Ophthalmodynamometric pressure in eyes with proliferative diabetic retinopathy measured during pars plana vitrectomy. Am J Ophthalmol. 2011;151:624–9.PubMedGoogle Scholar
  90. 90.
    Suzuma K, Kita M, Yamana T, Ozaki S, Takagi H, Kiryu J, Ogura Y. Quantitative assessment of macular edema with retinal vein occlusion. Am J Ophthalmol. 1998;126:409–16.PubMedGoogle Scholar
  91. 91.
    Terui T, Kondo M, Sugita T, et al. Changes in areas of capillary nonperfusion after intravitreal injection of bevacizumab in eyes with branch retinal vein occlusion. Retina. 2011;31:1068–74.PubMedGoogle Scholar
  92. 92.
    The Central Vein Occlusion Study Group. Natural history and clinical management of central retinal vein occlusion. Arch Ophthalmol. 1997;115:486–91.Google Scholar
  93. 93.
    The Central Vein Occlusion Study Group N Report. A randomized clinical trial of early panretinal photocoagulation for ischemic central vein occlusion. Ophthalmology. 1995;102:1434–44.Google Scholar
  94. 94.
    The SCORE Study Research Group. A Randomized trial comparing the efficacy and safety of intravitreal triamcinolone with standard care to treat vision loss associated with macular edema secondary to branch retinal vein occlusion: the standard care vs corticosteroid for retinal vein occlusion (SCORE) study report 6. Arch Ophthalmol. 2009;127:1115–28.Google Scholar
  95. 95.
    Vannas S, Raitta C. Microcirculatory disturbances of occlusive diseases of the eye. Doc Ophthalmol. 1972; 33:345–66.PubMedGoogle Scholar
  96. 96.
    Wallow IHL, Danis RP, Bindley C, Neider M. Cystoid macular degeneration in experimental BRVO. Ophthalmology. 1988;95:1371–9.PubMedGoogle Scholar
  97. 97.
    Welch JC, Augsburger JJ. Assessment of angiographic retinal capillary nonperfusion in central retinal vein occlusion. Am J Ophthalmol. 1987;103:761–6.PubMedGoogle Scholar
  98. 98.
    Wildberger H, Junghardt A. Local visual field defects correlate with the multifocal electroretinogram (mfERG) in retinal vascular branch occlusion. Klin Monbl Augenheilkd. 2002;219:254–8.PubMedGoogle Scholar
  99. 99.
    Williamson TH. A “throttle” mechanism in the central retinal vein in the region of the lamina cribrosa. Br J Ophthalmol. 2007;91:1190–3.PubMedGoogle Scholar
  100. 100.
    Williamson TH, Baxter GM. Central retinal vein occlusion as investigation by color doppler imaging: blood velocity characteristics and prediction of iris neovascularization. Ophthalmology. 1994;101:1362–72.PubMedGoogle Scholar
  101. 101.
    Williamson T, Harris A. Color Doppler ultrasound imaging of the eye and orbit. Surv Ophthalmol. 1996;40:255–67.PubMedGoogle Scholar
  102. 102.
    Williamson TH, Keating D, Bradman M. Electroretinography of central retinal vein occlusion under scotopic and photopic conditions: what to measure? Acta Ophthalmol. 1997;75:48–53.Google Scholar
  103. 103.
    Williamson TH, Lowe GD, Baxter GM. Influence of age, systemic blood pressure, smoking, and blood viscosity on orbital blood velocities. Br J Ophthalmol. 1995;79:17–22.PubMedGoogle Scholar
  104. 104.
    Wolf-Schnurrbusch EK, et al. Macular thickness measurements in healthy eyes using six different optical coherence tomography instruments. Invest Ophthalmol Vis Sci. 2009;50:3432–7.PubMedGoogle Scholar
  105. 105.
    Yamaike N, Kita M, Tsujikawa A, Miyamoto K, Yoshimura N. Perimetric sensitivity with the micro perimeter 1 and retinal thickness in patients with branch retinal vein occlusion. Am J Ophthalmol. 2007;143:342–4.PubMedGoogle Scholar
  106. 106.
    Yamaji H, Shiraga F, Tsuchida Y, Yamamoto Y, Ohtsuki H. Evaluation of arteriovenous crossing sheathotomy for branch retinal vein occlusion by fluorescein videoangiography and image analysis. Am J Ophthalmol. 2004;137:834–41.PubMedGoogle Scholar
  107. 107.
    Yamasaki M, Noma H, Funatsu H, Minamoto A, Mimura T, Shimada K, Yamashita H, Kiuchi Y. Changes in foveal thickness after vitrectomy for macular edema with branch retinal vein occlusion and intravitreal vascular endothelial growth factor. Int Ophthalmol. 2009;29:161–7.PubMedGoogle Scholar
  108. 108.
    Yoshida A, Feke GT, Mori F, Nagaoka T, Fujio N, Ogasawara H, Konno S, McMeel JW. Reproducibility and clinical application of a newly developed stabilized retinal laser Doppler instrument. Am J Ophthalmol. 2003;135:356–61.PubMedGoogle Scholar
  109. 109.
    Zambarakji HJ, Ghazi-Nouri S, Schadt M, Bunce C, Hykin PG, Charteris DG. Vitrectomy and radial optic neurotomy for central retinal vein occlusion: effects on visual acuity and macular anatomy. Graefes Arch Clin Exp Ophthalmol. 2005;243:397–405.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • David J. Browning
    • 1
  1. 1.Charlotte Eye Ear Nose & Throat AssociatesCharlotteUSA

Personalised recommendations