The COS Method for Pricing Options Under Uncertain Volatility

  • M. J. RuijterEmail author
  • C. W. Oosterlee
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 19)


We develop a method for pricing financial options under uncertain volatility. The method is based on the dynamic programming principle and a Fourier cosine expansion method. Local errors in the vicinity of domain boundaries, originating from the use of Fourier series expansions, may hamper the algorithm’s convergence. We use an extrapolation method to deal with these errors.


Local Error Option Price Price Problem Geometric Brownian Motion Stochastic Control Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Boyd, J.P.: Chebyshev and Fourier Spectral Methods. Courier Dover Publications, New York (2001)zbMATHGoogle Scholar
  2. 2.
    Crandall, M.G., Ishii, H., Lions, P.L.: A user’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 27, 1–67 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Duffie, D., Pan, J., Singleton, K.J.: Transform analysis and asset pricing for affine jump-diffusions. Econometrica 68(6), 1343–1376 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Fang, F., Oosterlee, C.W.: A novel pricing method for European options based on Fourier-cosine series expansions. SIAM J. Sci. Comput. 31(2), 826–848 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Fang, F., Oosterlee, C.W.: Pricing early-exercise and discrete barrier options by Fourier-cosine series expansions. Numer. Math. 114(1), 27–62 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Forsyth, P.A., Labahn, G.: Numerical methods for controlled Hamilton-Jacobi-Bellman PDEs in finance. J. Comput. Finance 11(2), 1–44 (2007)Google Scholar
  7. 7.
    d’Halluin, Y., Forsyth, P.A., Vetzal, K.R.: Robust numerical methods for contingent claims under jump diffusion processes. IMA J. Numer. Anal. 25(1), 87–112 (2005)Google Scholar
  8. 8.
    Hull, J.C.: Options, Futures and Other Derivatives. Pearson/Prentice-Hall, New Jersey (2009)Google Scholar
  9. 9.
    Lions, P.L.: Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations part 2: viscosity solutions and uniqueness. Comm. Part. Differ. Equat. 8(11), 1229–1276 (1983)zbMATHCrossRefGoogle Scholar
  10. 10.
    Pham, H.: Continuous-Time Stochastic Control and Optimization with Financial Applications. Springer-Verlag, Berlin (2009)zbMATHCrossRefGoogle Scholar
  11. 11.
    Pooley, D.M., Forsyth, P.A., Vetzal, K.R.: Numerical convergence properties of option pricing PDEs with uncertain volatility. IMA J. Numer. Anal. 23(2), 241–267 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Ruijter, M.J.: On the Fourier cosine series expansion (COS) method for stochastic control problems. Working paper (2011)Google Scholar
  13. 13.
    Zhang, K., Wong, S.: A computational scheme for uncertain volatility model in option pricing. 59(8), 1754–1767 (2009)Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Centrum Wiskunde & InformaticaAmsterdamThe Netherlands
  2. 2.CPB Netherlands Bureau for Economic Policy AnalysisDen HaagThe Netherlands
  3. 3.Delft University of TechnologyDelftThe Netherlands

Personalised recommendations