American Option Pricing Using Simulation and Regression: Numerical Convergence Results

  • Lars StentoftEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 19)


Recently, simulation methods combined with regression techniques have gained importance when it comes to American option pricing. In this paper, we consider such methods and we examine numerically their convergence properties. We first consider the Least Squares Monte-Carlo (LSM) method of (Longstaff and Schwartz, Rev. Financ. Stud., 14:113–147, 2001) and report convergence rates for the cross-sectional regressions as well as for the estimated price. The results show that the method converges fast, and this holds even with multiple early exercises and with multiple stochastic factors as long as the payoff function is smooth. We also compare the convergence rates to those obtained when using the related methods proposed by (Carriere, Insur. Math. Econ., 19:19–30, 1996; Tsitsiklis JN, Van Roy, IEEE Trans. Neural Network, 12(4):694–703, 2001). The results show that the price estimates from the latter methods converge significantly slower in the multi-period situation.


Convergence Rate Option Price Conditional Expectation Exercise Time Early Exercise 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abramowitz, M., Stegun, IA.: Handbook of Mathematical Functions. Dover Publications, New York (1970)Google Scholar
  2. 2.
    Barraquand, J., Martineau, D.: Numerical valuation of high dimensional multivariate American securities. J. Financ. Quant. Anal. 30, 383–405 (1995)CrossRefGoogle Scholar
  3. 3.
    Boyle, P.P.: A lattice framework for option pricing with two state variables. J. Financ. Quant. Anal. 23, 1–12 (1988)CrossRefGoogle Scholar
  4. 4.
    Boyle, P.P., Evnine, J., Gibbs, S.: Numerical evaluation of multivariate contingent claims. Rev. Financ. Stud. 2, 241–250 (1989)CrossRefGoogle Scholar
  5. 5.
    Broadie, M., Glasserman, P.: Pricing American-style securities using simulation. J. Econ. Dynam. Contr. 21, 1323–1352 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Broadie, M., Glasserman, P.: A stochastic mesh method for pricing high-dimensional American options. J. Comput. Finance. 7(4), 35–72 (2004)MathSciNetGoogle Scholar
  7. 7.
    Carriere, J.F.: Valuation of the early-exercise price for options using simulations and nonparametric regression. Insur. Math. Econ. 19, 19–30 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Chow, Y.S., Robbins, H., Siegmund, D.: Great Expectations: The Theory of Optimal Stopping. Houghton Mifflin, New York (1971)zbMATHGoogle Scholar
  9. 9.
    Clément, E., Lamberton, D., Protter, P.: An analysis of the Longstaff-Schwartz algorithm for American option pricing. Finance Stochast. 6(4), 449–471 (2002)CrossRefzbMATHGoogle Scholar
  10. 10.
    Duffie, D.: Dynamic Asset Pricing Theory. Princeton University Press, Princeton, New Jersey (1996)Google Scholar
  11. 11.
    Feinerman, R.P., Newman, D.J.: Polynomial Approximation. Williams and Wilkins, Baltimore, MD (1973)Google Scholar
  12. 12.
    Gerhold, S.: The Longstaff-Schwartz algorithm for Lévy models: results on fast and slow convergence. Ann. Appl. Probab. 21(2):589–608 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Glasserman, P.: Monte Carlo Methods in Financial Engineering. Springer-Verlag, New York, Inc., New York, USA (2004)Google Scholar
  14. 14.
    Glasserman, P., Yu, B.: Number of paths versus number of basis functions in American option pricing. Ann. Appl. Probab. 14(4), 2090–2119 (2004)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Judd, K.L.: Numerical Methods in Economics. MIT, Cambridge, Massachusetts (1998)zbMATHGoogle Scholar
  16. 16.
    Karatzas, I.: On the pricing of American options. Appl. Math. Optim. 17, 37–60 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Longstaff, F.A., Schwartz, E.S.: Valuing American options by simulation: a simple least-squares approach. Rev. Financ. Stud. 14, 113–147 (2001)CrossRefGoogle Scholar
  18. 18.
    Moreno, M., Navas, J.F.: On the robustness of least-squares Monte Carlo (lsm) for pricing American options. Rev. Derivatives Res. 6, 107–128 (2003)CrossRefzbMATHGoogle Scholar
  19. 19.
    Pagan, A., Ullah, A.: Nonparametric Econometrics. Cambridge University Press, Cambridge, UK (1999)Google Scholar
  20. 20.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipies in C: The Art of Scientific Computing. Cambridge University Press, Cambridge (1997)Google Scholar
  21. 21.
    Stentoft, L.: Assessing the least squares Monte-Carlo approach to American option valuation. Rev. Derivatives Res. 7(3), 129–168 (2004a)CrossRefzbMATHGoogle Scholar
  22. 22.
    Stentoft, L.: Convergence of the least squares Monte Carlo approach to American option valuation. Manag. Sci. 50(9), 1193–1203 (2004b)CrossRefGoogle Scholar
  23. 23.
    Stentoft, L.: Value function approximation or stopping time approximation: a comparison of two recent numerical methods for American option pricing using simulation and regression. Forthcoming in Journal of Computational FinanceGoogle Scholar
  24. 24.
    Stentoft, L.: “American option pricing using simulation: An introduction with an application to the GARCH option pricing model”, Handbook of research methods and applications in empirical finance, Adrian Bell, Chris Brooks, Marcel Prokopczuk, eds., Edward Elgar Publishing, 2012Google Scholar
  25. 25.
    Tilley, J.A.: Valuing American options in a path simulation model. Trans. Soc. Actuaries, Schaumburg XLV:499–520 (1993)Google Scholar
  26. 26.
    Tsitsiklis, J.N., Van Roy, B.: Regression methods for pricing complex American-style options. IEEE Trans. Neural Network. 12(4), 694–703 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of FinanceHEC MontrealMontrealCanada

Personalised recommendations