Genotoxic and Reprotoxic Effects of Tritium and External Gamma Irradiation on Aquatic Animals

  • Christelle Adam-Guillermin
  • Sandrine Pereira
  • Claire Della-Vedova
  • Tom Hinton
  • Jacqueline Garnier-Laplace
Part of the Reviews of Environmental Contamination and Toxicology book series (RECT, volume 220)


Aquatic systems are inhabited by a large variety of species, several of which comprise important components in human diets. Aquatic systems are also the final receptors of a whole range of pollutants, including radioactive ones, because the majority of nuclear facilities are connected to either rivers or to the marine environment.


Germ Cell Dose Rate Comet Assay Brine Shrimp Blue Mussel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abbott DT, Mix MC (1979) Radiation effects of tritiated seawater on development of the goose barnacle, Pollicipes polymerus. Health Phys 36:283–287CrossRefGoogle Scholar
  2. Adam C (2007) Genotoxic effects of radionuclides on aquatic organisms. IRSN Report. ISRN IRSN 2007-81Google Scholar
  3. Adam C, Larno V, Giraudo M, Barillet S, Gania Y, Devaux A (2006) Génotoxicité des radionucléides chez les organismes aquatiques : état de l’art et résultats préliminaires. ARET-Actualités Association pour la Recherche en Toxicologie Numéro spécial “Effets des toxiques chimiques/radioactifs sur le vivant”, 103–118Google Scholar
  4. Adam-Guillermin C, Antonelli C, Bailly du Bois P, Beaugelin-Seiller K, Boyer P, Fiévet B, Garnier-Laplace J, Gurriaran R, Le Dizes-Maurel S, Maro D, Masson M, Pierrard O, Renaud P, Roussel-Debet S (2010) Le tritium dans l’environnement. In: Autorité de Sûreté Nucléaire (ed) Livre blanc du tritium. Autorité de Süreté Nucléaire, Paris, pp 44–110Google Scholar
  5. Anderson SL, Wild GC (1994) Linking genotoxic responses and reproductive success in ecotoxicology. Environ Health Persp 102:9–12CrossRefGoogle Scholar
  6. Aypar U, Morgan W, Baulch J (2011) Radiation-induced genomic instability: are epigenetic mechanisms the missing link? Int J Radiat Biol 87:179–191CrossRefGoogle Scholar
  7. Baatrup E (2009) Measuring complex behavior patterns in fish: effects of endocrine disruptors on the guppy reproductive behavior. Human Ecolog Risk Assess 15:53–62CrossRefGoogle Scholar
  8. Baptist JP, Wolfe DA, Colby DR (1976) Effects of chronic gamma radiation on the growth and survival of juvenile clams (Mercenaria mercenaria) and scallops (Argopecten irradians). Health Phys 30:79–83CrossRefGoogle Scholar
  9. Bladen CL, Lam WK, Dynan WS, Kozlowski DJ (2005) DNA damage response and Ku80 function in the vertebrate embryo. Nucleic Acids Res 33:9–13CrossRefGoogle Scholar
  10. Bladen CL, Navarre S, Dynan WS, Kozlowski DJ (2007) Expression of the Ku70 subunit (XRCC6) and protection from low dose ionizing radiation during zebrafish embryogenesis. Neurosci Lett 422:97–102CrossRefGoogle Scholar
  11. Blaylock BG (1969) The fecundity of a Gambusia affinis population exposed to chronic environmental radiation. Radiat Res 37:108–117CrossRefGoogle Scholar
  12. Blaylock BG, Rohwer P, Ulrikson GU, Allen CP, Griffith NA (1971) Effect of acute beta and gamma radiation on developing embryos of Cyprinus carpio. In: Ecologial Sciences Division Annual Report, 31 July 1970, Oak Ridge National Laboratory, Oak Ridge, TN, 9–11Google Scholar
  13. Bonham K, Donaldson LR (1972) Sex ratios and retardation of gonadal development in chronically gamma-irradiated Chinook salmon smolts. Trans Am Fish Soc 101:428–434CrossRefGoogle Scholar
  14. Bourrachot S (2009) Etude des effets biologiques de l’exposition à l’uranium chez le poisson zèbre (Danio rerio) Impact sur le cycle de vie. PhD Thesis, Université Marseille-ProvenceGoogle Scholar
  15. Cambier S, Gonzalez P, Durrieu G, Bourdineaud J-P (2010) Cadmium-induced genotoxicity in zebrafish at environmentally relevant doses. Ecotox Environ Safe 73:312–319CrossRefGoogle Scholar
  16. Cooley JL (1973) Effects of chronic environmental radiation on a natural population of the aquatic snail Physa heterostropha. Radiat Res 54:130–140CrossRefGoogle Scholar
  17. Cooley JL, Miller FL (1971) Effects of chronic irradiation on laboratory populations of the aquatic snail Physa heterostropha. Radiat Res 47:716–724CrossRefGoogle Scholar
  18. Copplestone D, Bielby S, Jones SR, Patton D, Daniel P, Gize I (2001) Impact assessment of ionizing radiation on wildlife. Report of the Environment Agency, ISBN: 1 85705590 XGoogle Scholar
  19. Copplestone D, Hingston JL, Real A (2008) The development and purpose of the FREDERICA radiation effects database. J Environ Radioact 99:1456–63CrossRefGoogle Scholar
  20. Egami N, Hama-Furukawa A (1981) Response to continuous y-irradiation of germ cells in embryos and fry of the fish, Oryzias latipes. Int J Radiat Biol 40:563–568CrossRefGoogle Scholar
  21. Egami N, Hyodo-Taguchi Y (1969) Hermaphroditic gonads produced in Oryzias latipes by X-radiations during embryonic stages. Copeia 1:196–197Google Scholar
  22. Environment Canada (2000) Priority substances list assessment report (PSL2). Releases of radionuclides from nuclear facilities (impact on non human biota). Environment Canada and Health Canada, OttawaGoogle Scholar
  23. ERICA (2006) (Agüero A, Alonzo F, Copplestone D, Jarowska A, Garnier-Laplace J, Gilek M, Larsson CM, Oughton D) Environmental risk for ionising contaminants : assessment and management. In: Garnier-Laplace J, Gilbin R (eds) Derivation of predicted no-effect dose rates values for ecosystems and their sub-organisational level exposed to radioactive ­substances. Deliverable D5, European Commission, 6th Framework, Contract N°FI6RCT- 2003-508847Google Scholar
  24. Erickson RC (1971) Effects of chronic irradiation by tritiated water on Poecilia reticulata, the guppy. In: Nelson DJ (ed) Radionuclides in ecosystems, vol 2. National Technical Information Service, US Department of Commerce, Springfield, VA, pp 1091–1099Google Scholar
  25. Etoh H, Hyodo-Taguchi Y (1983) Effects of tritiated water on germ cells in medaka embryos. Radiat Res 93:332–339CrossRefGoogle Scholar
  26. FASSET (2003) (Daniel DP, Garnier-Laplace J, Gilek M, Kautsky U, Larsson CM, Pentreath J, Real A, Skarphedinsdottir H, Sundbell-Bergman S, Thorring H, Woodhead DS, Zinger I). Radiation effects on plants and animals. In: Woodhead, Zinger (eds) Deliverable 4, FASSET Project Contract FIGECT-2000-00102, p 196Google Scholar
  27. FASSET (2004) Framework for ASSessment of Environmental impacT of ionising radiation in major European ecosystems. In: Larsson CM (ed) Delivrable 6, Euratom, Contract N°FIGE-CT-2000-00102, EC 5th Framework ProgrammeGoogle Scholar
  28. Ferguson C (2011) Do not phase out nuclear power—yet. Nature 471:411–416CrossRefGoogle Scholar
  29. Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140CrossRefGoogle Scholar
  30. Garnier-Laplace J, Della-Vedova C, Gilbin R, Copplestone D, Hingston J, Ciffroy P (2006) First derivation of predicted-no-effect values for freshwater and terrestrial ecosystems exposed to radioactive substances. Environ Sci Technol 40:6498–6505CrossRefGoogle Scholar
  31. Garnier-Laplace J, Della-Vedova C, Andersson P, Copplestone D, Cailes C, Beresford NA, Howard BJ, Howe P, Whitehouse P (2010) A multi-criteria weight of evidence approach for deriving ecological benchmarks for radioactive substances. J Radiol Prot 30:215–233CrossRefGoogle Scholar
  32. Garnier-Laplace J, Beaugelin-Seiller K, Hinton T (2011) Fukushima wildlife dose reconstruction signals ecological consequences. Environ Sci Technol 45:5077–5078CrossRefGoogle Scholar
  33. Geras’kin SA, Fesenko SV, Alexakhin RM (2008) Effects of non-human species irradiation after the Chernobyl NPP accident. Environ Int 34:880–897CrossRefGoogle Scholar
  34. Gilbin R, Alonzo F, Garnier-Laplace J (2008) Effects of chronic external gamma irradiation on growth and reproductive success of Daphnia magna. J Environ Radioactiv 99:134–145CrossRefGoogle Scholar
  35. Golubev A, Afonin V, Maksimova S, Androsov V (2005) The current state of pond snail Lymnaea stagnalis (Gastropoda, Pulmonata) populations from water reservoirs of the Chernobyl nuclear accident zone. Radioprotection 40:S511–S517CrossRefGoogle Scholar
  36. Gómez-Ros J, Pröhl G, Taranenko V (2004) Estimation of internal and external exposures of terrestrial reference organisms to natural radionuclides in the environment. J Radiol Prot 24:79–88CrossRefGoogle Scholar
  37. Gudkov DI, Kipnis LS (1996) Long-term effect of tritiated water on the biological indicators of Daphnia magna. Hydrobiol J 32:96–103Google Scholar
  38. Hagger JA, Atienzar FA, Jha AN (2005) Genotoxic, cytotoxic, developmental and survival effects of tritiated water in the early life stages of the marine mollusc, Mytilus edulis. Aquat Toxicol 74:205–217CrossRefGoogle Scholar
  39. Harrison FL, Anderson SL (1988) The effects of radiation on reproductive success of the polychaete worm Neanthes arenaceodentata. US Environmental Protection Agency, report EPA/520/1-88-004, Washington, DCGoogle Scholar
  40. Harrison FL, Rice DW (1981) Effect of low cobalt-60 dose rates on sister chromatid exchange incidence in the benthic worm Neanthes arenaceodentata. Report Lawrence Livermore Natl Lab, NTIS UCRL-53205, LivermoreGoogle Scholar
  41. Hershberger WK, Bonham K, Donaldson LR (1978) Chronic exposure of Chinook Salmon eggs and alevins to gamma irradiation: effects on their return to freshwater as adults. Trans Am Fish Soc 107:622–631CrossRefGoogle Scholar
  42. Higuchi M, Komatsu K, Mukade A (1980) Assessment of tritium effect on brine shrimp, Artemia salnia, reared in a model ecosystem contamianted with tritiated water. In: Egami N (ed) Radiation effects on aquatic organisms, Japan Sci. Soc. Press, Tokyo Univ. Park Press, Baltimore, MA, 13–25Google Scholar
  43. Hinton TG, Coughlin DP, Yi Y, Marsh LC (2004) Low Dose Rate Irradiation Facility: initial study on chronic exposures to medaka. J Environ Radioactiv 74:43–55CrossRefGoogle Scholar
  44. Hinton TG, Coughlin D, Yi Y, Glenn T, Zimbrick J (2011) Reproductive effects from chronic, multi-generational, low dose rate exposures to radiation. In: Radiobiological issues pertaining to environmental security and ecoterrorism. In: Mothersill C, Korogod (eds) NATO Advance Research Workshop; Science for Peace Series. SpringerLink, The NetherlandsGoogle Scholar
  45. HPA (2007) Review on risks from tritium. Report from the independent advisory group on ionizing radiations. Documents of the Health Protection Agency Radiation, chemical and environmental hazards, RCE-4Google Scholar
  46. Hurks HMH, Out-Luiting C, Veermer BJ, Claas FHJ, Mommaas AM (1995) The action spectra for UV-induced suppression of MLR and MECLR show that immunosuppression is mediated by DNA damage. Photochem Photobiol 62:449–453CrossRefGoogle Scholar
  47. Hyodo-Taguchi Y, Aoki K, Matsudaira H (1982) Use of medaka as a tool in studies of radiation effects and chemical carcinogenesis. Report NIRS-M-41, 135–155Google Scholar
  48. Hyodo-Taguchi Y, Egami N (1977) Damage to spermatogenic cells in fish kept in tritiated water. Radiat Res 71:641–652CrossRefGoogle Scholar
  49. Hyodo-Taguchi Y, Etoh H (1986) Effects of tritiated water on germ cells in Medaka. II. Reproductive capacity following embryonic exposure. Radiat Res 106:321–330CrossRefGoogle Scholar
  50. Hyodo-Taguchi Y, Etoh H (1993) Vertebral malformations in medaka (teleost fish) after exposure to tritiated water in the embryonic stage. Radiat Res 135:400–404CrossRefGoogle Scholar
  51. Ichikawa R, Suyama I (1974) Effects of tritiated water on the embryonic development of two marine teleosts. Bull Jpn Soc Sci Fish 40:819–824CrossRefGoogle Scholar
  52. Jaeschke BC, Millward GE, Moody AJ, Jha AN (2011) Tissue-specific incorporation and genotoxicity of different forms of tritium in the marine mussel, Mytilus edulis. Environ Pollut 159:274–280CrossRefGoogle Scholar
  53. Jarvis RB, Knowles JF (2003) DNA damage in zebrafish larvae induced by exposure to low-dose rate gamma-radiation: detection by the alkaline comet assay. Mutat Res/Gen Tox En 541:63–69CrossRefGoogle Scholar
  54. Jha AN (2004) Review. Genotoxicological studies in aquatic organisms: an overview. Mutat Res 552:1–17CrossRefGoogle Scholar
  55. Jha AN, Dogra Y, Turner A, Millward GE (2005) Impact of low doses of tritium on the marine mussel, Mytilus edulis: Genotoxic effects and tissue-specific bioconcentration. Mutat Res/Gen Tox En 586:47–57CrossRefGoogle Scholar
  56. Joubert A, Foray N (2006) Chapter 10. Repair of radiation-induced DNA double-strand breaks in human cells: history, progress and controversies. In: Landseer BR (ed) New research on DNA repair. Nova Science Publishers, Inc., Hauppauge, NYGoogle Scholar
  57. Knowles JF (1992) The effect of chronic irradiation on the humoral immune response of the rainbow trout. Int J Radiat Biol 62:239–248CrossRefGoogle Scholar
  58. Knowles JF (1999) Long-term irradiation of a marine fish, the plaice Pleuronectes platessa: an assessment of the effects on size and composition of the testes and of possible genotoxic changes in peripheral erythrocytes. Int J Radiat Biol 75:773–782CrossRefGoogle Scholar
  59. Knowles JF (2002) An investigation into the effects of chronic radiation on fish. Report Environment Agency, R&D Technical Report P3-053/TR, Bristol, UKGoogle Scholar
  60. Knowles JF, Greenwood LN (1994) The effects of chronic irradiation on the reproductive performance of Ophryotrocha diadema (Polychaeta, Dorvilleidae). Mar Environ Res 38:207–224CrossRefGoogle Scholar
  61. Knowles JF, Greenwood LN (1997) A comparison of the effects of long-term [beta]- and [gamma]-irradiation on the reproductive performance of a marine invertebrate Ophryotrocha diadema (Polychaeta, Dorvilleidae). J Environ Radioactiv 34:1–7CrossRefGoogle Scholar
  62. Kosmehl T, Hallare AV, Braunbeck T, Hollert H (2008) DNA damage induced by genotoxicants in zebrafish (Danio rerio) embryos after contact exposure to freeze-dried sediment and sediment extracts from Laguna Lake (The Philippines) as measured by the comet assay. Mutat Res/Gen Tox En 650:1–14CrossRefGoogle Scholar
  63. Marshall DJ (1962) The effects of continuous gamma radiation on the intrinsic rate of natural increase of Daphnia pulex. Ecology 43:598–607CrossRefGoogle Scholar
  64. Marshall JS (1966) Population dynamics of Daphnia pulex as modified by chronic radiation stress. Ecology 47:561–571CrossRefGoogle Scholar
  65. Mitchelmore CL, Chipman JK (1998) DNA strand breakage in aquatic organisms and the potential value of the comet assay in environmental monitoring. Mutat Res/Fund Mol 399:135–147CrossRefGoogle Scholar
  66. Moore MN, Depledge MH, Readman JW, Paul Leonard DR (2004) An integrated biomarker-based strategy for ecotoxicological evaluation of risk in environmental management. Mutat Res/Fund Mol M 552:247–268CrossRefGoogle Scholar
  67. Nelson VA (1971) Effects of ionizing radiation and temperature on the larvae of the paciic oyster Crassostrea gigas. In: Nelson DJ (ed) Third national symposium on radioecology Oak Ridge, TennesseeGoogle Scholar
  68. Pereira S, Bourrachot S, Cavalie I, Plaire D, Dutilleul M, Gilbin R, Adam-Guillermin C (2011) Comparative analysis of genotoxicity induced by acute and chronic gamma-irradiation on zebrafish. Environ Toxicol Chem 30:2831–2837Google Scholar
  69. Pesch GG, Young JS (1981) Baseline study of effects of ionising radiation on the chromosomes of the marine worm, Neanthes arenaceodentata. Report Surveill Emerg Prep Div, Off Radiat Programs, Washington, DC, USAGoogle Scholar
  70. Pieper AA, Verma A, Zhang J, Snyder SH (1999) Poly(ADP-ribose) polymerase, nitric oxide and cell death. Trends Pharmacol Sci 20:171–181CrossRefGoogle Scholar
  71. R Development Core Team (2009) R: A language and environment for statistical computing. R Foundation for Statistical Computing. ISBN 3-900051-07-0, URL, Vienna, Austria.
  72. Rackham BD, Woodhead DS (1984) Effects of chronic gamma-irradiation on the gonads of adult Ameca splendens (Osteichthyes: Teleostei). Int J Radiat Biol 45:645–656CrossRefGoogle Scholar
  73. Ritz C, Streibig JC (2005) Bioassay analysis using R. J Statist Software 12:1–22Google Scholar
  74. Sandrini JZ, Trindade GS, Nery LEM, Marins LF (2009) Time-course expression of DNA repair-related genes in hepatocytes of zebrafish (Danio rerio) after UV-B exposure. Photochem Photobiol 85:220–226CrossRefGoogle Scholar
  75. Shimada A, Eguchi H, Yoshinaga S, Shima A (2005) Dose-rate effect on transgenerational mutation frequencies in spermatogonial stem cells of the medaka fish. Radiat Res 163:112–114CrossRefGoogle Scholar
  76. Shimada A, Shima A (2001) High incidence of mosaic mutations induced by irradiating paternal germ cells of the medaka fish, Oryzias latipes. Mutat Res/Gen Tox En 495:33–42CrossRefGoogle Scholar
  77. Shimada A, Shima A (2004) Transgenerational genomic instability as revealed by a somatic mutation assay using the medaka fish. Mutat Res/Fund Mol M 552:119–124CrossRefGoogle Scholar
  78. Smith RW, Mothersill C, Hinton T, Seymour CB (2011) Exposure to low level chronic radiation leads to adaptation to a subsequent acute X-ray dose and communication of modified acute X-ray induced bystander signals in medaka (Japanese rice fish, Oryzias latipes). Int J Radiat Biol 87:1011–1022CrossRefGoogle Scholar
  79. Stein J, Reichert W, Varanasi U (1994) Molecular epizootiology: assessment of exposure to genotoxic compounds in teleosts. Environ Health Persp 102:19–23CrossRefGoogle Scholar
  80. Strand JA, Templeton WL, Tangen EG (1972a) Effects of short range particle irradiation and embryogenesis of marine teleost fish. In: Vaughan BE (ed) Pacific Northwest laboratory annual report for 1970 to the USAEC division of biology and medicine Volume I Life sciences, Part 2, ecological sciences, BNWL-1550 Vol. I Part 2 U C-48, Batelle Northwest, Richland, WashingtonGoogle Scholar
  81. Strand JA, Fujihara MP, Templeton WL, Genoway RG (1972b) Effect of short-range particle irradiation on embryogenesis of teleost fish. In: Vaughan BE (ed) Pacific Northwest laboratory annual report for 1971 to the USAEC division of biology and medicine Volume I Life sciences, Part 2, Ecological sciences, BNWL-1650 Part 2 U C-48, Batelle Northwest, Richland, WashingtonGoogle Scholar
  82. Strand JA, Fujihara MP, Burdett RD, Poston TM (1977) Suppression of the primary immune response in rainbow trout, Salmo gairdneri, sublethally exposed to tritiated water during embryogenesis. J Fish Res Board Can 34:1293–1304CrossRefGoogle Scholar
  83. Suyama I, Etoh H, Maruyama Y, Kato Y, Ichikawa R (1981) Effects of ionizing radiation on the early development of Oryzias eggs. J Radiat Res 22:125–133CrossRefGoogle Scholar
  84. Suyama I and Etoh H (1985) Chromosomal effects of tritium on lymphocytes of the Teleost, Umbra limi. In: Matsudaira H, Yamaguchi T, Etoh H (eds) Proc. Workshop on Tritium Radiobiology and Health Physics. Oct 1981. NIRS-M-52. National Institute of Radiological Sciences Chiba 260, Japan, pp 146–156Google Scholar
  85. Theodorakis CW, Blaylock BG, Shugart LR (1997) Genetic ecotoxicology I: DNA integrity and reproduction in mosquitofish exposed in situ to radionuclides. Ecotoxicology 6:205–218CrossRefGoogle Scholar
  86. Tsyusko O, Yi Y, Coughlin D, Main D, Podolsky R, Hinton TG, Glenn TC (2007) Radiation-induced untargeted germline mutations in Japanese medaka. Comp Biochem Phys C 145:103–110Google Scholar
  87. Ulsh B, Hinton TG, Congdon JD, Dugan LC, Whicker FW, Bedford JS (2003) Environmental biodosimetry: a biologically relevant tool for ecological risk assessment and biomonitoring. J Environ Rad 66:121–139CrossRefGoogle Scholar
  88. UNSCEAR (1996) Sources and effects of ionizing radiation.A/AC.82/R.549. Report to the general assembly with scientific annex, United Nations, Vienna.Google Scholar
  89. Walden SJ (1971) Effects of tritiated water on the embryonic development of the three-spine stickleback, Gasterosteus aculeatus Linnaeus. In: Nelson DJ (ed). Radionuclides in ecosystems Springfield, VA: National technical information service, U.S. Department of commerce, pp 1087–1097Google Scholar
  90. Weterings E, Chen DJ (2008) The endless tale of non-homologous end-joining. Cell Res 18:114–124CrossRefGoogle Scholar
  91. Wirgin I, Waldman JR (2004) Resistance to contaminants in North American fish populations. Mutat Res/Fund Mol M 552:73–100CrossRefGoogle Scholar
  92. Wirgin I, Grunwald C, Courtenay S, Kreamer G-L, Reichert WL, Stein JE (1994) A biomarker approach to asessing xenobiotic exposure in Atlantic tomcod from the North American Atlantic Coast. Environ Health Persp 102:764–770CrossRefGoogle Scholar
  93. Woodhead DS (1977) The effects of chronic irradiation on the breeding performance of the guppy, Poecilia reticulata (Osteichthyes: Teleostei). Int J Radiat Biol 32:1–22CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Christelle Adam-Guillermin
    • 1
  • Sandrine Pereira
    • 1
  • Claire Della-Vedova
    • 2
  • Tom Hinton
    • 3
  • Jacqueline Garnier-Laplace
    • 3
  1. 1.Laboratoire d’Ecotoxicologie des RadionucléidesInstitut de Radioprotection et Sûreté Nucléaire, Centre de Cadarache (IRSN)Saint-Paul-lez-Durance CedexFrance
  2. 2.MagelisCadenetFrance
  3. 3.Service de Recherche et d’Expertise sur les Risques EnvironnementauxInstitut de Radioprotection et Sûreté Nucléaire, Centre de Cadarache (IRSN)Saint-Paul-lez-Durance CedexFrance

Personalised recommendations