Skip to main content

Mathematical Models of Dopamine Metabolism in Parkinson’s Disease

  • Chapter
  • First Online:
Systems Biology of Parkinson's Disease

Abstract

As discussed in Chap. 1 and elsewhere in this volume, a feature of Parkinson’s disease (PD) is a reduction in dopamine concentration in the striatum, caused by progressive loss of dopamine neurons in the substantia nigra pars compacta. Dopamine is a crucial neurotransmitter that is involved in numerous physiological functions, and its role in PD has been studied extensively. However, the dynamics of dopamine in situ are not fully understood because it is affected by a large number of metabolites, other biological components, and an ill-characterized spectrum of environmental and genetic factors. This chapter describes the state of the art in mathematical models of dopamine metabolism and signal transduction. First, the topology of the dopamine pathway is reviewed. Second, the construction of two types of models is discussed. The first of these models targets dopamine metabolism in the presynaptic terminal, while the second describes dopamine-based signal transduction at the synapse and signal integration in the postsynaptic target neurons. The construction phase of symbolic models is followed by numerical configurations based on data. The resulting parameterized models are then compared with experimental and clinical observations as a means of testing their validity and predictive power. The best model is utilized to analyze ill-understood aspects of the role of dopamine in PD and to identify critical molecules and processes that might be potential therapeutical targets. Simulations of drugs targeting these sites are presented and evaluated with respect to their benefits, possible side effects, and downstream effects of perturbations in dopamine dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Lau LM, Breteler MM (2006) Epidemiology of Parkinson's disease. Lancet Neurol 5:525–535

    Article  PubMed  Google Scholar 

  2. Graham DG (1978) Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones. Mol Pharmacol 14:633–643

    PubMed  CAS  Google Scholar 

  3. Stokes AH, Hastings TG, Vrana KE (1999) Cytotoxic and genotoxic potential of dopamine. J Neurosci Res 55:659–665

    Article  PubMed  CAS  Google Scholar 

  4. Yuan H, Zheng JC, Liu P, Zhang SF, Xu JY et al (2007) Pathogenesis of Parkinson's disease: oxidative stress, environmental impact factors and inflammatory processes. Neurosci Bull 23:125–130

    Article  PubMed  CAS  Google Scholar 

  5. Przedborski S (2005) Pathogenesis of nigral cell death in Parkinson's disease. Parkinsonism Relat Disord 11(Suppl 1):S3–S7

    Article  PubMed  Google Scholar 

  6. Davis GC, Williams AC, Markey SP, Ebert MH, Caine ED et al (1979) Chronic Parkinsonism secondary to intravenous injection of meperidine analogues. Psychiatry Res 1:249–254

    Article  PubMed  CAS  Google Scholar 

  7. Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:979–980

    Article  PubMed  CAS  Google Scholar 

  8. Burns RS, Chiueh CC, Markey SP, Ebert MH, Jacobowitz DM et al (1983) A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc Natl Acad Sci U S A 80:4546–4550

    Article  PubMed  CAS  Google Scholar 

  9. Cohen G, Mytilineou C (1985) Studies on the mechanism of action of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Life Sci 36:237–242

    Article  PubMed  CAS  Google Scholar 

  10. Chang GD, Ramirez VD (1986) The mechanism of action of MPTP and MPP+ on endogenous dopamine release from the rat corpus striatum superfused in vitro. Brain Res 368:134–140

    Article  PubMed  CAS  Google Scholar 

  11. Toulouse A, Sullivan AM (2008) Progress in Parkinson's disease-where do we stand? Prog Neurobiol 85:376–392

    Article  PubMed  Google Scholar 

  12. Fredriksson A, Plaznik A, Sundstrom E, Jonsson G, Archer T (1990) MPTP-induced hypoactivity in mice: reversal by L-dopa. Pharmacol Toxicol 67:295–301

    Article  PubMed  CAS  Google Scholar 

  13. Doudet D, Gross C, Lebrun-Grandie P, Bioulac B (1985) A model of Parkinson's disease: effect of L-dopa therapy on movement parameters and electromyographic activity in monkeys treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). C R Seances Soc Biol Fil 179:85–97

    PubMed  CAS  Google Scholar 

  14. Kennedy RT, Jones SR, Wightman RM (1992) Dynamic observation of dopamine autoreceptor effects in rat striatal slices. J Neurochem 59:449–455

    Article  PubMed  CAS  Google Scholar 

  15. Pothos EN, Przedborski S, Davila V, Schmitz Y, Sulzer D (1998) D2-Like dopamine autoreceptor activation reduces quantal size in PC12 cells. J Neurosci 18:5575–5585

    PubMed  CAS  Google Scholar 

  16. Justice JB Jr, Nicolaysen LC, Michael AC (1988) Modeling the dopaminergic nerve terminal. J Neurosci Methods 22:239–252

    Article  PubMed  Google Scholar 

  17. Qi Z, Miller GW, Voit EO (2008) Computational systems analysis of dopamine metabolism. PLoS One 3:e2444

    Article  PubMed  Google Scholar 

  18. Best JA, Nijhout HF, Reed MC (2009) Homeostatic mechanisms in dopamine synthesis and release: a mathematical model. Theor Biol Med Model 6:21

    Article  PubMed  Google Scholar 

  19. Qi Z, Miller GW, Voit EO (2010) Computational modeling of synaptic neurotransmission as a tool for assessing dopamine hypotheses of schizophrenia. Pharmacopsychiatry 43(Suppl 1):S50–S60

    Article  PubMed  CAS  Google Scholar 

  20. Voit EO, Qi Z, Miller GW (2008) Steps of modeling complex biological systems. Pharmacopsychiatry 41(Suppl 1):S78–S84

    Article  PubMed  Google Scholar 

  21. Wu J, Qi Z, Voit EO (2010) Investigation of delays and noise in dopamine signaling with hybrid functional Petri nets. In Silico Biol 10.

    Google Scholar 

  22. Curto R, Voit EO, Sorribas A, Cascante M (1998) Mathematical models of purine metabolism in man. Math Biosci 151:1–49

    Article  PubMed  CAS  Google Scholar 

  23. Palsson BO, Lightfoot EN (1984) Mathematical modelling of dynamics and control in metabolic networks. I. On Michaelis-Menten kinetics. J Theor Biol 111:273–302

    Article  PubMed  CAS  Google Scholar 

  24. Savageau MA (1969) Biochemical systems analysis. II. The steady-state solutions for an n-pool system using a power-law approximation. J Theor Biol 25:370–379

    Article  PubMed  CAS  Google Scholar 

  25. Savageau MA (1969) Biochemical systems analysis. I. Some mathematical properties of the rate law for the component enzymatic reactions. J Theor Biol 25:365–369

    Article  PubMed  CAS  Google Scholar 

  26. Savageau MA (1970) Biochemical systems analysis. 3. Dynamic solutions using a power-law approximation. J Theor Biol 26:215–226

    Article  PubMed  CAS  Google Scholar 

  27. Growdon JH, Melamed E, Logue M, Hefti F, Wurtman RJ (1982) Effects of oral L-tyrosine administration on CSF tyrosine and homovanillic acid levels in patients with Parkinson's disease. Life Sci 30:827–832

    Article  PubMed  CAS  Google Scholar 

  28. Myohanen TT, Schendzielorz N, Mannisto PT (2010) Distribution of catechol-O-methyltransferase (COMT) proteins and enzymatic activities in wild-type and soluble COMT deficient mice. J Neurochem 113:1632–1643

    PubMed  CAS  Google Scholar 

  29. Bolch WE (2010) The Monte Carlo method in nuclear medicine: current uses and future potential. J Nucl Med 51:337–339

    Article  PubMed  Google Scholar 

  30. Qi Z, Miller GW, Voit EO (2009) Computational analysis of determinants of dopamine (DA) dysfunction in DA nerve terminals. Synapse 63:1133–1142

    Article  PubMed  CAS  Google Scholar 

  31. Fernandez HH, Chen JJ (2007) Monamine oxidase inhibitors: current and emerging agents for Parkinson disease. Clin Neuropharmacol 30:150–168

    Article  PubMed  CAS  Google Scholar 

  32. Youdim MB, Bakhle YS (2006) Monoamine oxidase: isoforms and inhibitors in Parkinson's disease and depressive illness. Br J Pharmacol 147(Suppl 1):S287–S296

    PubMed  CAS  Google Scholar 

  33. Stocchi F, Vacca L, Grassini P, De Pandis MF, Battaglia G et al (2006) Symptom relief in Parkinson disease by safinamide: Biochemical and clinical evidence of efficacy beyond MAO-B inhibition. Neurology 67:S24–S29

    PubMed  CAS  Google Scholar 

  34. Tyce GM, Dousa MK, Muenter MD (1990) MAO and L-dopa treatment of Parkinson's disease. J Neural Transm Suppl 29:233–239

    PubMed  CAS  Google Scholar 

  35. Caudle WM, Richardson JR, Wang MZ, Taylor TN, Guillot TS et al (2007) Reduced vesicular storage of dopamine causes progressive nigrostriatal neurodegeneration. J Neurosci 27:8138–8148

    Article  PubMed  CAS  Google Scholar 

  36. Colebrooke RE, Humby T, Lynch PJ, McGowan DP, Xia J et al (2006) Age-related decline in striatal dopamine content and motor performance occurs in the absence of nigral cell loss in a genetic mouse model of Parkinson's disease. Eur J Neurosci 24:2622–2630

    Article  PubMed  Google Scholar 

  37. Mooslehner KA, Chan PM, Xu W, Liu L, Smadja C et al (2001) Mice with very low expression of the vesicular monoamine transporter 2 gene survive into adulthood: potential mouse model for parkinsonism. Mol Cell Biol 21:5321–5331

    Article  PubMed  CAS  Google Scholar 

  38. Takahashi N, Miner LL, Sora I, Ujike H, Revay RS et al (1997) VMAT2 knockout mice: heterozygotes display reduced amphetamine-conditioned reward, enhanced amphetamine locomotion, and enhanced MPTP toxicity. Proc Natl Acad Sci U S A 94:9938–9943

    Article  PubMed  CAS  Google Scholar 

  39. Glatt CE, Wahner AD, White DJ, Ruiz-Linares A, Ritz B (2006) Gain-of-function haplotypes in the vesicular monoamine transporter promoter are protective for Parkinson disease in women. Hum Mol Genet 15:299–305

    Article  PubMed  CAS  Google Scholar 

  40. Walaas SI, Aswad DW, Greengard P (1983) A dopamine- and cyclic AMP-regulated phosphoprotein enriched in dopamine-innervated brain regions. Nature 301:69–71

    Article  PubMed  CAS  Google Scholar 

  41. Svenningsson P, Nishi A, Fisone G, Girault JA, Nairn AC et al (2004) DARPP-32: an integrator of neurotransmission. Annu Rev Pharmacol Toxicol 44:269–296

    Article  PubMed  CAS  Google Scholar 

  42. Greengard P, Allen PB, Nairn AC (1999) Beyond the dopamine receptor: the DARPP-32/protein phosphatase-1 cascade. Neuron 23:435–447

    Article  PubMed  CAS  Google Scholar 

  43. Spencer HJ (1976) Antagonism of cortical excitation of striatal neurons by glutamic acid diethyl ester: evidence for glutamic acid as an excitatory transmitter in the rat striatum. Brain Res 102:91–101

    Article  PubMed  CAS  Google Scholar 

  44. Girault JA, Spampinato U, Savaki HE, Glowinski J, Besson MJ (1986) In vivo release of [3H]gamma-aminobutyric acid in the rat neostriatum—I. Characterization and topographical heterogeneity of the effects of dopaminergic and cholinergic agents. Neuroscience 19:1101–1108

    Article  PubMed  CAS  Google Scholar 

  45. Lindskog M, Kim M, Wikstrom MA, Blackwell KT, Kotaleski JH (2006) Transient calcium and dopamine increase PKA activity and DARPP-32 phosphorylation. PLoS Comput Biol 2:e119

    Article  PubMed  Google Scholar 

  46. Barbano PE, Spivak M, Flajolet M, Nairn AC, Greengard P et al (2007) A mathematical tool for exploring the dynamics of biological networks. Proc Natl Acad Sci U S A 104:19169–19174

    Article  PubMed  CAS  Google Scholar 

  47. Fernandez É, Schiappa R, Girault JA, Le Novère N (2006) DARPP-32 is a robust integrator of dopamine and glutamate signals. PLoS Comput Biol 2:e176

    Article  PubMed  Google Scholar 

  48. Qi Z, Miller GW, Voit EO (2010) The internal state of medium spiny neurons varies in response to different input signals. BMC Syst Biol 4:26

    Article  PubMed  Google Scholar 

  49. Qi Z, Kikuchi S, Tretter F, Voit EO (2011) Effects of dopamine and glutamate on synaptic plasticity: a computational modeling approach for drug abuse as comorbidity in mood disorders. Pharmacopsychiatry 44(Suppl 1):S62–S75

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the National Institutes of Health (P01-ES016731, G.W.M., PI) and a grant from the University Systems of Georgia (E.O.V., PI). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the sponsoring institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Qi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Qi, Z., Miller, G.W., Voit, E.O. (2012). Mathematical Models of Dopamine Metabolism in Parkinson’s Disease. In: Wellstead, P., Cloutier, M. (eds) Systems Biology of Parkinson's Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3411-5_8

Download citation

Publish with us

Policies and ethics