Skip to main content

Modeling Protein and Oxidative Metabolism in Parkinson’s Disease

  • Chapter
  • First Online:
Systems Biology of Parkinson's Disease

Abstract

Elevated levels of reactive oxygen species (ROS) and accumulation of misfolded α-synuclein (αSYN) are recurrent features in a majority of Parkinson’s disease cases. Building on the brain energy metabolism framework in Chap. 2, a mathematical model is constructed of these key neurochemical players and their interactions. A computer implementation of the model is used to simulate and visualize the dynamics of ROS, αSYN, and their nonlinear interaction within a positive feedback loop. The most important observation from this modeling is that the homogenous nature of known biomarkers (ROS/αSYN) can be reconciled with the heterogeneous nature of the underlying risk factors, including aging, genetics, and toxins. More specifically, our model uses risk factors (aging, toxins) as “inputs” and then provides estimates of PD susceptibility based on their propensity to destabilize the model system. The stability of the model is then used as a criterion to quantify the level of various risks. The importance of rapid biochemical dynamics in evaluating the impact of neuroprotective strategies is also highlighted, with simulations demonstrating the synergistic effect of creatine and antioxidants in buffering ROS levels during transient conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lotharius J, Brundin P (2002) Pathogenesis of Parkinson’s Disease. Nat Rev Neurosci 3:932

    Article  PubMed  CAS  Google Scholar 

  2. Malkus KA, Tsika E, Ischiropoulos H (2009) Oxidative modifications, mitochondrial dysfunction, and impaired protein degradation in Parkinson’s disease: how neurons are lost in the Bermuda triangle. Mol Neurodegener 4:24

    Article  PubMed  Google Scholar 

  3. Litvan I, Halliday G (2007) The etiopathogenesis of Parkinson’s disease and suggestions for future research. J Neuropathol Exp Neurol 1 66:251–257

    Article  CAS  Google Scholar 

  4. Powers WJ (2008) Cerebral mitochondrial metabolism in early Parkinson’s disease. J Cereb Blood Flow Metab 28:1754

    Article  PubMed  CAS  Google Scholar 

  5. Jenner P (2003) Oxidative stress in Parkinson’s disease. Ann Neurol 53(Suppl 3):S26–S36

    Article  PubMed  CAS  Google Scholar 

  6. Gibb WR, Lees AJ (1998) The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease. J Neurol Neurosurg Psychiatry 51:745–752

    Article  Google Scholar 

  7. Cookson MR (2009) Alpha-Synuclein and neuronal cell death. Mol Neurodegener 4:9

    Article  PubMed  Google Scholar 

  8. Devi L, Raghavendran V, Prabhu BM, Avadhani NG, Anandatheerthavarada HK (2008) Mitochondrial import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J Biol Chem 283(14):9089–9100

    Article  PubMed  CAS  Google Scholar 

  9. Martin LJ, Pan Y, Price AC, Sterling W, Copeland NG, Jenkins NA (2006) Parkinson’s disease alpha-synuclein transgenic mice develops neuronal mitochondrial degeneration and cell death. J Neurosci 26:41–50

    Article  PubMed  CAS  Google Scholar 

  10. Klivenyi P, Siwek D, Gardian G, Yang L, Starkov A, Cleren C, Ferrante RJ, Kowall NW, Abeliovich A, Beal MF (2006) Mice lackin alpha-synuclein are resistant to mitochondrial toxins. Neurobiol Dis 21:541–548

    Article  PubMed  CAS  Google Scholar 

  11. Braak H, Ghembremedhin E, Rb U, Bratzke H, Tredici K (2004) Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res 318(1):121–134

    Article  PubMed  Google Scholar 

  12. Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55:181–184

    Article  PubMed  CAS  Google Scholar 

  13. Bennett MC, Bishop JF, Leng Y, Chock PB, Chase TN, Mouradian MM (1999) Degradation of alpha-synuclein by proteasome. J Biol Chem 274:33855–33858

    Article  PubMed  CAS  Google Scholar 

  14. Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272(33):20313–20316. doi:10.1074/jbc.272.33.20313

    Article  PubMed  CAS  Google Scholar 

  15. Lodish H, Berk A, Kaiser CK, Krieger M, Scott MP, Bretscher A, Ploegh H, Matsudeira P (2000) Molecular cell biology, 6th edn. W.H. Freeman and Company, New York, NY

    Google Scholar 

  16. Mosharov EV, Larsen KE, Kanter E, Phillips KA, Wilson K, Schmitz Y, Krantz DE, Kobayashi K, Edwards RH, Sulzer D (2009) Interplay between cytosolic dopamine, calcium and alpha-synuclein causes selective death of substantia nigra neurons. Neuron 62:218–229

    Article  PubMed  CAS  Google Scholar 

  17. Lashuel HA, Hartley D, Petre BM, Walz T, Lansbury PT (2002) Amyloid pores from pathogenic mutations. Nat Rev Neurosci 418:291

    CAS  Google Scholar 

  18. van Rooijen BD, Claessens MMAE, Subramaniam V (2009) Lipid bilayer disruption by oligomeric alpha-synuclein depends on bilayer charge and accessibility of the hydrophobic core. Biochim Biophys Acta 1788:1271–1278

    Article  PubMed  Google Scholar 

  19. Frase H, Hudak J, Lee I (2006) Identification of the proteasome inhibitor MG262 as a potent ATP-dependent inhibitor of the Salmonella enterica serovar Typhimurium Lon Proteaseâ. Biochemistry 45(27):8264–8274. doi:10.1021/bi060542e

    Article  PubMed  CAS  Google Scholar 

  20. Cortes VF, Veiga-Lopes FE, Barrabin H, Alves-Ferreira M, Fontes CFL (2006) The [gamma] subunit of Na+, K+-ATPase: role on ATPase activity and regulatory phosphorylation by PKA. Int J Biochem Cell Biol 38(11):1901–1913

    Article  PubMed  CAS  Google Scholar 

  21. Cloutier M, Bolger FB, Lowry JP, Wellstead P (2009) An integrative dynamic model of brain energy metabolism using in vivo neurochemical measurements. J Comput Neurosci 27:391–414

    Google Scholar 

  22. Cloutier M, Wellstead P (2010) The control systems structures of energy metabolism. J R Soc Interface 7:651–665

    Article  PubMed  CAS  Google Scholar 

  23. Wellstead P, Cloutier M (2011) An energy systems approach to Parkinson’s disease. WIREs Syst Biol Med 3:1–6

    Article  CAS  Google Scholar 

  24. Cloutier M, Wellstead P (2011) Dynamic modelling of protein and oxidative metabolisms simulates the pathogenesis of Parkinson’s disease. IET Syst Biol (In press). doi:10.1049/iet-syb.2011.0071

  25. Cloutier M, Middleton RH, Wellstead P (2011) A feedback motif for the pathogenesis of Parkinson’s disease. IET Syst Biol (In press). doi:10.1049/iet-syb.2011.0072

  26. Stanley F (1996) The case of the frozen addicts. N Engl J Med 335:2002

    Article  Google Scholar 

  27. Schmidt H, Jirstrand M (2006) Systems biology toolbox for Matlab: a computational platform for research in systems biology. Bioinformatics 22(4):514–515

    Article  PubMed  CAS  Google Scholar 

  28. Underwood AH, Holmes EA (1965) Properties of phosphofructokinase from rat liver and their relation to the control of glycolysis and gluconeogenesis. Biochem J 95:868–875

    PubMed  CAS  Google Scholar 

  29. Heinrich R, Schuster S (1996) The regulation of cellular systems. ITP Chapman & Hall, New York, NY

    Book  Google Scholar 

  30. Heldt HW, Klingenberg M, Milovancev M (1972) Differences between the ATP/ADP ratios in the mitochondrial matrix and in the extramitochondrial space. Eur J Biochem 30:434–440

    Article  PubMed  CAS  Google Scholar 

  31. Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci 91:10625–10629

    Article  PubMed  CAS  Google Scholar 

  32. Proctor CJ, Csaba S, Boys RJ, Gillespie CS, Shanley DP, Wilkinson DJ, Kirkwood BL (2005) Modelling the actions of chaperones and their role in ageing. Mech Ageing Dev 126:119–131

    Article  PubMed  CAS  Google Scholar 

  33. Fai Poon H, Frasier M, Shreve N, Calabrese V, Wolozin B, Butterfield DA (2005) Mitochondrial associated metabolic proteins are selectively oxidized in A30P alpha-synuclein transgenic mice—a model of familial Parkinson’s disease. Neurobiol Dis 18:492–498

    Article  PubMed  Google Scholar 

  34. Shlomi T, Benyamini T, Gottlieb E, Sharan R, Ruppin E (2011) Genome-scale metabolic modeling elucidates the role of proliferative adaptation in causing the Warburg effect. PLoS Comput Biol 7(3):e1002018

    Article  PubMed  CAS  Google Scholar 

  35. Lewis NE, Schramm G, Bordbar A, Schellenberger J, Andersen MP, Cheng JK, Patel N, Yee A, Lewis RA, Eils R, Konig R, Palsson BO (2010) Large-scale in silico modeling of metabolic interactions between cell types in the human brain. Nat Biotechnol 28(12):1279–1285

    Article  PubMed  CAS  Google Scholar 

  36. Magistretti P (2006) Neuron-glia metabolic coupling and plasticity. J Exp Biol 209:2304–2311

    Article  PubMed  CAS  Google Scholar 

  37. Clark DD, Sokoloff L (1999) Circulation and energy metabolism. In: Siegel GJ, Agranoff BW, Albers RW, Fisher SK, Uhler MD (eds) Basic neurochemistry: molecular, cellular, and medical aspects, 6th edn. Lippincott Williams & Wilkins, Philadelphia, PA, pp 638–669

    Google Scholar 

  38. Proctor CJ, Tsirigotis M, Gray DA (2007) An in silico model of the ubiquitin-proteasome system that incorporates normal homeostasis and age-related decline. BMC Syst Biol 1:17

    Article  PubMed  Google Scholar 

  39. Sneppen K, Lizana L, Jensen MH, Pigolotti S, Otzen D (2009) Modelling proteasome dynamics in Parkinson’s disease. Phys Biol 6:036005

    Article  PubMed  Google Scholar 

  40. Raichur A, Vali S, Gorin F (2006) Dynamic modeling of alpha-synuclein aggregation for the sporadic and genetic forms of Parkinson’s disease. Neuroscience 142:859–870

    Article  PubMed  CAS  Google Scholar 

  41. Bharathi P, Nagabhushan P, Rao KSJ (2008) Mathematical approach to understand the kinetics of alpha-synuclein aggregation: relevance to Parkinson’s disease. Comput Biol Med 38:1084–1093

    Article  PubMed  CAS  Google Scholar 

  42. Lei B, Adachi N, Arai T (1998) Measurement of the extracellular H2O2 in the brain by microdialysis. Brain Res Protocols 3:33–36

    Article  CAS  Google Scholar 

  43. Desagher S, Glowinski J, Premont J (1996) Astrocytes protect neurons from hydrogen peroxide toxicity. J Neurosci 16:2553–2562

    PubMed  CAS  Google Scholar 

  44. Schapira AH, Cooper JM, Dexter D, Clark JB, Jenner P, Mardsen CD (1990) Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem 54:823–829

    Article  PubMed  CAS  Google Scholar 

  45. Song DD, Shults CW, Sisk A, Rockenstein E, Masliah E (2004) Enhanced substantia nigra mitochondrial pathology in human alpha-synuclein transgenic mice after treatment with MPTP. Exp Neurol 186:158–172

    Article  PubMed  CAS  Google Scholar 

  46. Tyson JJ, Chen KC, Novak B (2003) Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signalling pathways in the cell. Curr Opin Cell Biol 15:221–231

    Article  PubMed  CAS  Google Scholar 

  47. Aguda BD, Kim Y, Piper-Hunter MG, Friedman A, Marsh CB (2009) MicroRNA regulation of a cancer network: consequences of the feedback loops involving miR-17-92, E2F and Myc. Proc Natl Acad Sci 105:19678–19683

    Article  Google Scholar 

  48. Yang L, Calingasan NY, Wille EJ, Cormier K, Smith K, Ferrante RJ, Flint Beal M (2009) Combination therapy with Coenzyme Q10 and creatine produces additive neuroprotective effects in models of Parkinson’s and Huntington’s diseases. J Neurochem 109(5):1427–1439. doi:10.1111/j.1471-4159.2009.06074.x

    Article  PubMed  CAS  Google Scholar 

  49. Parashos SA, Swearingen CJ, Biglan KM, Bodis-Wollner I, Liang GS, Ross GW, Tilley BC, Shulman LM, for the NETPDI (2009) Determinants of the timing of symptomatic treatment in early Parkinson disease: the national institutes of health exploratory trials in parkinson disease (NET-PD) experience. Arch Neurol 66(9):1099–1104. doi:10.1001/archneurol.2009.159

    Google Scholar 

  50. Ben-Yoseph O, Camp DM, Robinson TE, Ross BD (1995) Dynamic measurements of cerebral pentose phosphate pathway activity in vivo using [1,6-13 C2,6,6-2 H2] glucose and microdialysis. J Neurochem 64(3):1336–1342

    Article  PubMed  CAS  Google Scholar 

  51. Vali S, Mythri RB, Jagatha B, Padiapu J, Ramanujan KS, Andersen JK, Gorin F, Bharath MMS (2007) Integrating glutathione metabolism and mitochondrial dysfunction with implications for Parkinson’s disease: a dynamic model. Neuroscience 149:917–930

    Article  PubMed  CAS  Google Scholar 

  52. Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21(10):1133–1145

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Cloutier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cloutier, M., Wellstead, P. (2012). Modeling Protein and Oxidative Metabolism in Parkinson’s Disease. In: Wellstead, P., Cloutier, M. (eds) Systems Biology of Parkinson's Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3411-5_7

Download citation

Publish with us

Policies and ethics