Skip to main content

Real-Time In Vivo Sensing of Neurochemicals

  • Chapter
  • First Online:
  • 1602 Accesses

Abstract

The brain is one of the most complex biological structures known to science. How it works or, more specifically, how the physical brain gives rise to the properties of mind remains an unanswered question. However, it is clear that many drugs used empirically in the treatment of neurological disorders, such as Parkinson’s disease, work through their specific chemical actions on nerve cells in the brain. Thus, if we are to understand brain function and drug performance, there is a need to measure chemical signalling in the brain. Measurement technologies for neurochemical studies in the living brain include spectroscopy, such as NMR, sampling techniques, such as cerebral microdialysis, and the topic of this chapter - in situ electrochemical monitoring using long-term in vivo electrochemistry (LIVE). With LIVE, a microvoltammetric sensor is implanted in a specific brain region to monitor local changes in the concentration of specific substances in the extracellular fluid. It can do this with sub-second time resolution and with measurement periods extending over many hours, potentially days. Spatially, localised, high-temporal resolution, long-term sensing of this kind allows investigations of the functions of chemicals in neuronal signalling, drug actions and well-defined behaviours. In this chapter, we give an overview of the different electrochemical sensor types, the techniques used and the principal neurochemicals potentially associated with Parkinson’s disease that can be measured in vivo.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

3MT:

3-Methoxytyramine

5HIAA:

5-Hydroxyindoleacetic acid

5HT:

5-Hydroxytryptamine

AA:

Ascorbic acid

CAT:

Catalase

CEE:

Carbon epoxy electrode

CFE:

Carbon fibre electrode

CNS:

Central nervous system

CPA:

Constant potential amperometry

CPE:

Carbon paste electrode

CV:

Cyclic voltammetry

DA:

Dopamine

DOPAC:

3,4-Dihydroxyphenylacetic acid

DPA:

Differential pulse amperometry

DPV:

Differential pulse voltammetry

ECF:

Extracellular fluid

FCV:

Fast cyclic voltammetry

GA:

Glutaraldehyde

GluOx:

Glutamate oxidase

GOx:

Glucose oxidase

HPLC:

High-performance liquid chromatography

HVA:

Homovanillic acid

LIVE:

Long-term in vivo electrochemistry

l-NAME:

N ω-nitro-l-arginine methyl ester

LSV:

Linear sweep voltammetry

NA:

Noradrenaline

NMR:

Nuclear magnetic resonance spectroscopy

NO:

Nitric oxide

NOS:

Nitric oxide synthase

o-PPD:

Poly(o-phenylenediamine)

PD:

Parkinson’s disease

SCE:

Saturated calomel electrode

SCV:

Staircase voltammetry

UA:

Uric acid

References

  1. Crespi F, Croce AC, Fiorani S, Masala B, Heidbreder C, Bottiroli G (2004) Autofluorescence spectrofluorometry of central nervous system (CNS) neuromediators. Lasers Surg Med 34:39

    Article  PubMed  Google Scholar 

  2. Parkin MC, Hopwood SE, Strong AJ, Boutelle MG (2003) Resolving dynamic changes in brain metabolism using biosensors and on-line microdialysis. Trends Anal Chem 22:487

    Article  CAS  Google Scholar 

  3. O’Neill RD, Chang SC, Lowry JP, McNeil CJ (2004) Comparisons of platinum, gold, palladium and glassy carbon as electrode materials in the design of biosensors for glutamate. Biosens Bioelectron 19:1521

    Article  PubMed  Google Scholar 

  4. Lada MW, Kennedy RT (1996) Quantitative in vivo monitoring of primary amines in rat caudate nucleus using microdialysis coupled by a flow-gated interface to capillary electrophoresis with laser-induced fluorescence detection. Anal Chem 68:2790

    Article  PubMed  CAS  Google Scholar 

  5. Pantano P, Khur WG (1995) Enzyme-modified microelectrodes for in vivo neurochemical measurements. Electroanalysis 7:405

    Article  CAS  Google Scholar 

  6. O’Neill RD, Lowry JP, Mas M (1998) Monitoring brain chemistry in vivo: voltammetric techniques, sensors, and behavioral applications. Crit Rev Neurobiol 12:69

    PubMed  Google Scholar 

  7. Lowry JP, O’Neill RD (2005) Neuroanalytical chemistry in vivo using biosensors. In: Grimes CA and Dickey EC (eds) Encyclopedia of sensors. American Scientific Publishers, CA, ISBN: 1-58883-062-4, pp. 501–524

    Google Scholar 

  8. Kissinger PT, Hart JB, Adams RN (1973) Voltammetry in brain tissue–a new neurophysiological measurement. Brain Res 55:209

    Article  PubMed  CAS  Google Scholar 

  9. Clark LC Jr, Misrahy G, Fox RP (1958) Chronically implanted polarographic electrodes. J Appl Physiol 13:85

    PubMed  CAS  Google Scholar 

  10. Clark LC Jr, Lyons C (1965) Studies of a glassy carbon electrode for brain polarography with observations on the effect of carbonic anhydrase inhibition. Ala J Med Sci 2:353

    PubMed  CAS  Google Scholar 

  11. Ronkainen NJ, Halsall HB, Heineman WR (2010) Electrochemical biosensors. Chem Soc Rev 39:1747

    CAS  Google Scholar 

  12. Nicholson C, Sykova E (1998) Extracellular space structure revealed by diffusion analysis.Trends Neurosci 21:207

    Google Scholar 

  13. Michael AC, Borland LM (2007) Electrochemical methods for neuroscience. CRC Press, Boca Raton, FL

    Google Scholar 

  14. Shibuki K (1990) An electrochemical microprobe for detecting nitric oxide release in brain tissue. Neurosci Res 9:69

    Article  PubMed  CAS  Google Scholar 

  15. Clark LC Jr (1956) Monitor and control of blood and tissue O2 tensions. T Am Soc Art Int Org 2:41

    Google Scholar 

  16. Malinski T, Taha Z (1992) Nitric oxide release from a single cell measured in situ by a porphyrinic-based microsensor. Nature 358:676

    Article  PubMed  CAS  Google Scholar 

  17. Mas M, Escrig A, Gonzalez-Mora JL (2002) In vivo electrochemical measurement of nitric oxide in corpus cavernosum penis. J Neurosci Methods 119:143

    Article  PubMed  CAS  Google Scholar 

  18. Friedemann MN, Robinson SW, Gerhardt GA (1996) o-Phenylenediamine-modified carbon fiber electrodes for the detection of nitric oxide. Anal Chem 68:2621

    Article  PubMed  CAS  Google Scholar 

  19. Park JK, Tran PH, Chao JK, Ghodadra R, Rangarajan R, Thakor NV (1998) In vivo nitric oxide sensor using non-conducting polymer-modified carbon fiber. Biosens Bioelectron 13:1187

    Article  PubMed  CAS  Google Scholar 

  20. Pontie M (2000) Electrochemical nitric oxide microsensors: sensitivity and selectivity characterisation Anal Chim Acta 411:175

    CAS  Google Scholar 

  21. Brown FO, Lowry JP (2003) Microelectrochemical sensors for in vivo brain analysis: an investigation of procedures for modifying Pt electrodes using Nafion. Analyst 128:700

    Article  PubMed  CAS  Google Scholar 

  22. Brown FO, Finnerty NJ, Lowry JP (2009) Nitric oxide monitoring in brain extracellular fluid: characterisation of Nafion-modified Pt electrodes in vitro and in vivo. Analyst 134:2012

    Article  PubMed  CAS  Google Scholar 

  23. Palsson E, Finnerty N, Fejgin K, Klamer D, Wass C, Svensson L, Lowry J (2009) Increased cortical nitric oxide release after phencyclidine administration. Synapse 63:1083

    Article  PubMed  CAS  Google Scholar 

  24. Fejgin K, Palsson E, Wass C, Svensson L, Klamer D (2007) Nitric oxide signaling in the medial prefrontal cortex is involved in the biochemical and behavioral effects of phencyclidine. Neuropsychopharmacology 33:1874

    Article  PubMed  Google Scholar 

  25. Chen BT, Avshalumov MV, Rice ME (2001) H(2)O(2) is a novel, endogenous modulator of synaptic dopamine release. J Neurophysiol 85:2468

    PubMed  CAS  Google Scholar 

  26. Hyslop PA, Zhang ZY, Pearson DV, Phebus LA (1995) Measurement of striatal H2O2 by microdialysis following global forebrain ischemia and reperfusion in the rat: correlation with the cytotoxic potential of H2O2 in vitro. Brain Res 671:181

    Article  PubMed  CAS  Google Scholar 

  27. Lei BP, Adachi N, Nagaro T, Arai T (1997) The effect of dopamine depletion on the H2O2 production in the rat striatum following transient middle cerebral artery occlusion. Brain Res 764:299

    Article  PubMed  CAS  Google Scholar 

  28. Layton ME, Pazdernik TL, Samson FE (1997) Cerebral penetration injury leads to H2O2 generation in microdialysis samples. Neurosci Lett 236:63

    Article  PubMed  CAS  Google Scholar 

  29. O’Neill RD, Lowry JP, Rocchitta G, McMahon CP, Serra PA (2008) Designing sensitive and selective polymer/enzyme composite biosensors for brain monitoring in vivo. Trends Anal Chem 27:78

    Article  Google Scholar 

  30. Kulagina NV, Michael AC (2003) Monitoring hydrogen peroxide in the extracellular space of the brain with amperometric microsensors. Anal Chem 75:4875

    Article  PubMed  CAS  Google Scholar 

  31. O’Brien KB, Killoran SJ, O’Neill RD, Lowry JP (2007) Development and characterization in vitro of a catalase-based biosensor for hydrogen peroxide monitoring. Biosens Bioelectron 22:2994

    Article  PubMed  Google Scholar 

  32. Sanford AL, Morton SW, Whitehouse KL, Oara HM, Lugo-Morales LZ, Roberts JG, SombersLA (2010) Voltammetric detection of hydrogen peroxide at carbon fiber microelectrodes. Anal Chem 82:5205–5210

    Article  PubMed  CAS  Google Scholar 

  33. Clark LC Jr, Clark EW (1964) Epicardial oxygen measured with a pyrolytic graphite electrode. Ala J Med Sci 1:142

    PubMed  Google Scholar 

  34. Bolger FB, McHugh SB, Bennett R, Li J, Ishwari K, Francois J, Conway MW, Gilmour G, Bannerman DM, Fillenz M, Tricklebank M, Lowry JP (2011) Characterisation of carbon paste electrodes for real-time amperometric monitoring of brain tissue oxygen. J Neurosci Methods 195:135

    Article  PubMed  CAS  Google Scholar 

  35. Bolger FB, Bennett R, Lowry JP (2011) An in vitro characterisation comparing carbon paste and Pt microelectrodes for real-time detection of brain tissue oxygen. Analyst 136:4028

    Article  PubMed  CAS  Google Scholar 

  36. Lowry JP, Boutelle MG, O’Neill RD, Fillenz M (1996) Characterization of carbon paste electrodes in vitro for simultaneous amperometric measurement of changes in oxygen and ascorbic acid concentrations in vivo. Analyst 121:761

    Article  PubMed  CAS  Google Scholar 

  37. Bolger FB, Lowry JP (2005) Brain tissue oxygen: in vivo monitoring with carbon paste electrodes. Sensors 5:473 567

    Google Scholar 

  38. Lowry JP, Boutelle MG, Fillenz M (1997) Measurement of brain tissue oxygen at a carbon paste electrode can serve as an index of increases in regional cerebral blood flow. J Neurosci Methods 71:177

    Article  PubMed  CAS  Google Scholar 

  39. Lowry JP, Griffin K, McHugh SB, Lowe AS, Tricklebank M, Sibson NR (2010) Real-time electrochemical monitoring of brain tissue oxygen: a surrogate for functional magnetic resonance imaging in rodents. Neuroimage 52:549

    Article  PubMed  Google Scholar 

  40. Bazzu G, Puggioni GGM, Dedola S, Calia G, Rocchitta G, Migheli R, Desole MS, Lowry JP, O’Neill RD, Serra PA (2009) Real-time monitoring of brain tissue oxygen using a miniaturized biotelemetric device implanted in freely moving rats. Anal Chem 81:2235

    Article  PubMed  CAS  Google Scholar 

  41. Revsbech NP (1989) An oxygen microsensor with a guard cathode. Limnol Oceanogr 34:474

    Article  CAS  Google Scholar 

  42. Offenhauser N, Thomsen K, Caesar K, Lauritzen M (2005) Activity-induced tissue oxygenation changes in rat cerebellar cortex: interplay of postsynaptic activity and cerebral blood flow. J Physiol 565:279

    Article  PubMed  CAS  Google Scholar 

  43. Piilgaard H, Lauritzen M (2009) Persistent increase in oxygen consumption and impaired neurovascular coupling after spreading depression in rat neocortex. J Cereb Blood Flow Metab 29:1517

    Article  PubMed  CAS  Google Scholar 

  44. Hu Y, Mitchell KM, Albahadily FN, Michaelis EK, Wilson GS (1994) Direct measurement of glutamate release in the brain using a dual enzyme-based electrochemical sensor. Brain Res 659:117

    Article  PubMed  CAS  Google Scholar 

  45. Hu Y, Wilson GS (1997) Rapid changes in local extracellular rat brain glucose observed with an in vivo glucose sensor. J Neurochem 68:1745

    Article  PubMed  CAS  Google Scholar 

  46. Hu Y, Wilson GS (1997) A temporary local energy pool coupled to neuronal activity: fluctuations of extracellular lactate levels in rat brain monitored with rapid-response enzyme-based sensor. J Neurochem 69:1484

    Article  PubMed  CAS  Google Scholar 

  47. Lowry JP, McAteer K, El Atrash SS, Duff A, O’Neill RD (1994) Characterization of glucose oxidase-modified poly(phenylenediamine)-coated electrodes in vitro and in vivo: homogeneous interference by ascorbic acid in hydrogen peroxide detection. Anal Chem 66:1754

    Article  CAS  Google Scholar 

  48. Lowry JP, Miele M, O’Neill RD, Boutelle MG, Fillenz M (1998) An amperometric glucose-oxidase/poly(o-phenylenediamine) biosensor for monitoring brain extracellular glucose: in vivo characterisation in the striatum of freely-moving rats. J Neurosci Methods 79:65

    Article  PubMed  CAS  Google Scholar 

  49. Lowry JP, Ryan MR, O’Neill RD (1998) Behaviourally induced changes in extracellular levels of brain glutamate monitored at 1 s resolution with an implanted biosensor. Anal Commun 35:87

    Article  CAS  Google Scholar 

  50. Lowry JP, Ryan MR, O’Neill RD (2001) Interference in biosensor detection of brain glutamate in vivo: possible role of endogenous ECF hydrogen peroxide. Monitoring molecules in neuroscience. University College Dublin, Dublin, Ireland.

    Google Scholar 

  51. Kulagina NV, Shankar L, Michael AC (1999) Monitoring glutamate and ascorbate in the extracellular space of brain tissue with electrochemical microsensors. Anal Chem 71:5093

    Article  PubMed  CAS  Google Scholar 

  52. Oldenziel WH, Westerink BHC (2005) Improving glutamate microsensors by optimizing the composition of the redox hydrogel. Anal Chem 77:5520

    Article  PubMed  CAS  Google Scholar 

  53. Oldenziel WH, Beukema W, Westerink BHC (2004) Improving the reproducibility of hydrogel-coated glutamate microsensors by using an automated dipcoater. J Neurosci Methods 140:117

    Article  PubMed  CAS  Google Scholar 

  54. Oldenziel WH, de Jong LAA, Dijkstra G, Cremers TIFH, Westerink BHC (2006) Improving the performance of glutamate microsensors by purification of ascorbate oxidase. Anal Chem 78:2456

    Article  PubMed  CAS  Google Scholar 

  55. Oldenziel WH, Dijkstra G, Cremers TIFH, Westerink BHC (2006) In vivo monitoring of extracellular glutamate in the brain with a microsensor. Brain Res 1118:34

    Article  PubMed  CAS  Google Scholar 

  56. Oldenziel WH, Dijkstra G, Cremers TIFH, Westerink BHC (2006) Evaluation of hydrogel-coated glutamate microsensors. Anal Chem 78:3366

    Article  PubMed  CAS  Google Scholar 

  57. Burmeister JJ, Gerhardt GA (2001) Self-referencing ceramic-based multisite microelectrodes for the detection and eliminiation of interferences from the measurement of l-glutamate and other analytes. Anal Chem 73:1037

    Article  PubMed  CAS  Google Scholar 

  58. Albery WJ, Boutelle MG Galley PT (1992) The dialysis electrode—a new method for in vivo monitoring. J Chem Soc, Chem Commun 12:900

    Google Scholar 

  59. Walker MC, Galley PT, Errington ML, Shorvon SD, Jefferys JGR (1995) Ascorbate and glutamate release in the rat hippocampus after perforant path stimulation: a “dialysis electrode” study. J Neurochem 65

    Google Scholar 

  60. Asai S, Iribe Y, Kohno T, Ishikawa K (1996) Real time monitoring of biphasic glutamate release using dialysis electrode in rat acute brain ischemia. Neuroreport 7:1092

    Article  PubMed  CAS  Google Scholar 

  61. Kohno T, Asai S, Iribe Y, Hosoi I, Shibata K, Ishikawa K (1998) An improved method for the detection of changes in brain extracellular glutamate levels. J Neurosci Methods 81:199

    Article  PubMed  CAS  Google Scholar 

  62. Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci 91:10625

    Article  PubMed  CAS  Google Scholar 

  63. Fillenz M (2005) The role of lactate in brain metabolism. Neurochem Int 47:413

    Article  PubMed  CAS  Google Scholar 

  64. Pellerin L (2003) Lactate as a pivotal element in neuron-glia metabolic cooperation. Neurochem Int 43:331

    Article  PubMed  CAS  Google Scholar 

  65. Chih C-P, Lipton P, Roberts EL Jr (2001) Do active cerebral neurons really use lactate rather than glucose? Trends Neurosci 24:573

    Article  PubMed  CAS  Google Scholar 

  66. Demestre M, Boutelle MG, Fillenz M (1997) Stimulated release of lactate in freely moving rats is dependent on the uptake of glutamate. J Physiol 499:825

    PubMed  CAS  Google Scholar 

  67. Burmeister JJ, Palmer M, Gerhardt GA (2005) l-Lactate measures in brain tissue with ceramic-based multisite microelectrodes. Biosens Bioelectron 20:1772

    Article  PubMed  CAS  Google Scholar 

  68. McMahon CP, Rocchitta G, Serra PA, Kirwan SM, Lowry JP, O’Neill RD (2006) The efficiency of immobilised glutamate oxidase decreases with surface enzyme loading: an electrostatic effect, and reversal by a polycation significantly enhances biosensor sensitivity. Analyst 131:68

    Article  PubMed  CAS  Google Scholar 

  69. Serra PA, Puggioni G, Bazzu G, Calia G, Migheli R, Rocchitta G (2010) Design and construction of a distributed sensor NET for biotelemetric monitoring of brain energetic metabolism using microsensors and biosensors. Biosensors 241

    Google Scholar 

  70. Shram NF, Netchiporouk LI,Martelet C, Jaffrezic-Renault N, Cespuglio R (1997) Brain glucose: voltammetric determination in normal and hyperglycaemic rats using a glucose microsensor. Neuroreport 8:1109

    Article  PubMed  CAS  Google Scholar 

  71. Shram NF, Netchiporouk LI, Martelet C, Jaffrezic-Renault N, Bonnet C, Cespuglio R (1998) In vivo voltammetric detection of rat brain lactate with carbon fiber microelectrodes coated with lactate oxidase. Anal Chem 70:2618

    Google Scholar 

  72. Shram N, Netchiporouk L, Cespuglio R (2002) Lactate in the brain of the freely moving rat: voltammetric monitoring of the changes related to the sleep–wake states. Eur J Neurosci 16:461

    Article  PubMed  Google Scholar 

  73. Ikegami Y, Maeda M, Yokota A, Hayashida Y (1997) Cerebral extracellular lactate concentration and blood flow during chemical stimulation of the nucleus tractus solitarii in anesthetized rats. Brain Res 758:33

    Article  PubMed  CAS  Google Scholar 

  74. Bolger FB, Serra PA, O’Neill RD, Fillenz M, Lowry JP (2006) Real-time monitoring of brain extracellular lactate. In: Di Chiara G, Carboni E, Valentini V, Acquas E, Bassareo V, Cadoni C (eds) Monitoring molecules in neuroscience. University of Cagliari, Cagliari, Italy, p 286

    Google Scholar 

  75. Cloutier M, Bolger F, Lowry J, Wellstead P (2009) An integrative dynamic model of brain energy metabolism using in vivo neurochemical measurements.J Comput Neurosci 27:391

    Google Scholar 

  76. Bao L, Avshalumov MV, Patel JC, Lee CR,Miller EW, Chang CJ, RiceME (2009) Mitochondria are the source of hydrogen peroxide for dynamic brain-cell signaling. J Neurosci 29:9002

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fiachra B. Bolger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bolger, F.B., Finnerty, N.J., Lowry, J.P. (2012). Real-Time In Vivo Sensing of Neurochemicals. In: Wellstead, P., Cloutier, M. (eds) Systems Biology of Parkinson's Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3411-5_6

Download citation

Publish with us

Policies and ethics