Skip to main content

Energetics of Ion Transport in Dopaminergic Substantia nigra Neurons

  • Chapter
  • First Online:
Systems Biology of Parkinson's Disease

Abstract

Cytosolic calcium ion levels are critical in sustaining neuronal activity. They have an intricate relationship with the neuronal energy systems, and Parkinson’s disease (PD) probably involves a dysfunctional energy system in the pacemaking neurons of the Substantia nigra. This chapter explores the association of repetitive firing pattern of these neurons and cytosolic calcium using a mathematical model. In particular, a theory is examined that proposes a role of low voltage activated L-type calcium channel in creating an energy stress within vulnerable neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \( \sin {\rm h} c(x) = \displaystyle\frac{{\sin {\rm h} (x)}}{x}. \)

References

  1. Amini B, Clark J Jr, Canavier C (1999) Calcium dynamics underlying pacemaker-like and burst firing oscillations in midbrain dopaminergic neurons: a computational study. J Neurophysiol 82(5):2249

    PubMed  CAS  Google Scholar 

  2. Attwell D, Laughlin SB (2001) An energy budget for signalling in the grey matter of the brain. J Cereb Blood Flow Metab 21:1133–1145

    Article  PubMed  CAS  Google Scholar 

  3. Blaustein MP, Lederer WJ (1999) Sodium/calcium exchange: Its physiological implications. Physiol Rev 79(3):763–854

    PubMed  CAS  Google Scholar 

  4. Brown GC (1992) Control of respiration and ATP synthesis in mammalian mitochondria and cells. Biochem J 284(Pt 1):1–13

    PubMed  CAS  Google Scholar 

  5. Canavier CC, Landry RS (2006) An increase in ampa and a decrease in SK conductance increase burst firing by different mechanisms in a model of a dopamine neuron in vivo. J Neurophysiol 96(5):2549–2563. doi:10.1152/jn.00704.2006

    Article  PubMed  CAS  Google Scholar 

  6. Chan CS, Guzman JN, Ilijic E, Mercer JN, Rick C, Tkatch T, Meredith GE, Surmeier DJ (2007) ‘Rejuvenation’ protects neurons in mouse models of Parkinson’s disease. Nature 447:1081–1086

    Article  PubMed  CAS  Google Scholar 

  7. Chan CS, Gertler TS, Surmeier DJ (2009) Calcium homeostasis, selective vulnerability and Parkinson’s disease. Trends Neurosci 32:249–256

    Article  PubMed  CAS  Google Scholar 

  8. Drion G, Massotte L, Sepulchre R, Seutin V (2011) How modeling can reconcile apparently discrepant experimental results: the case of pacemaking in dopaminergic neurons. PLoS Comput Biol 7(5):e1002050. doi:10.1371/journal.pcbi.1002050

    Article  PubMed  CAS  Google Scholar 

  9. Endresen LP, Hall K, Hoye JS, Myrheim J (2000) A theory for the membrane potential of living cells. Eur Biophys J 29:90–103

    Article  PubMed  CAS  Google Scholar 

  10. Foehring R, Zhang X, Lee J, Callaway J (2009) Endogenous calcium buffering capacity of substantia nigral dopamine neurons. J Neurophysiol 102(4):23–26

    Article  Google Scholar 

  11. Green DR, Wang R (2010) Calcium and energy: making the cake and eating it too? Cell 142:200–202

    Article  PubMed  CAS  Google Scholar 

  12. Guzman JN, Sánchez-Padilla J, Chan CS, Surmeier DJ (2009) Robust pacemaking in subs-tantia nigra dopaminergic neurons. J Neurosci 29:11011–11019

    Article  PubMed  CAS  Google Scholar 

  13. Guzman JN, Sanchez-Padilla J, Wokosin D, Kondapalli J, Ilijic E, Schumacker PT, Surmei-er DJ (2010) Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1. Nature 468:676–680

    Article  Google Scholar 

  14. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500–544

    PubMed  CAS  Google Scholar 

  15. Hund TJ, Kucera JP, Otani NF, Rudy Y (2001) Ionic charge conservation and long-term steady state in the Luo-rudy dynamic cell model. Biophys J 81:3324–3331

    Article  PubMed  CAS  Google Scholar 

  16. Ibanez-Sandoval O, Carrillo-Reid L, Galarraga E, Tapia D, Mendoza E, Gomora JC, Aceves J, Bargas J (2007) Bursting in substantia nigra pars reticulata neurons in vitro: possible relevance for Parkinson disease. J Neurophysiol 98:2311–2323

    Article  PubMed  CAS  Google Scholar 

  17. Izhikevich E (2007) Dynamical systems in neuroscience: the geometry of excitability and bursting. Computational neuroscience, MIT Press

    Google Scholar 

  18. Komendantov AO, Komendantova OG, Johnson SW, Canavier CC (2004) A modeling study suggests complementary roles for gabaa and nmda receptors and the SK channel in regulating the firing pattern in midbrain dopamine neurons. J Neurophysiol 91(1):346–357

    Article  PubMed  CAS  Google Scholar 

  19. Kuznetsova AY, Huertas MA, Kuznetsov AS, Paladini CA, Canavier CC (2010) Regulation of firing frequency in a computational model of a midbrain dopaminergic neuron. J Comput Neurosci 28(3):389–403

    Article  PubMed  Google Scholar 

  20. Lesnick TG, Papapetropoulos S, Mash DC, Ffrench-Mullen J, Shehadeh L, de Andrade M, Henley JR, RoccaWA AJE, Maraganore DM (2007) A genomic pathway approach to a complex disease: axon guidance and Parkinson disease. PLoS Genet 3(6):e98

    Article  PubMed  Google Scholar 

  21. Luo C, Rudy Y (1994) A dynamic model of the cardiac ventricular action potential. i. Simulations of ionic currents and concentration changes. Circ Res 74(6):1071

    PubMed  CAS  Google Scholar 

  22. Manchester KL (1980) Free energy atp hydrolysis and phosphorylation potential. Biochem Educ 8(3):70–72. doi:10.1016/0307-4412(80)90043-6

    Article  CAS  Google Scholar 

  23. Matsuda W, Furuta T, Nakamura KC, Hioki H, Fujiyama F, Arai R, Kaneko T (2009) Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum. J Neurosci 29:444–453

    Article  PubMed  CAS  Google Scholar 

  24. Matsuoka S, Jo H, Kuzumoto M, Takeuchi A, Saito R, Noma A (2007) Modeling energetics of ion transport, membrane sensing and systems biology of the heart, Wiley-VCH Verlag GmbH & Co. KGaA, pp 435–455. DOI 10.1002/9783527621095.ch13

  25. McLaughlin BA, Nelson D, Erecinska M, Chesselet MF (1998) Toxicity of dopamine to striatal neurons in vitro and potentiation of cell death by a mitochondrial inhibitor. J Neurochem 70:2406–2415

    Article  PubMed  CAS  Google Scholar 

  26. Moran L, Duke D, Deprez M, Dexter D, Pearce R, Graeber M (2006) Whole genome expression profilling of the medial and lateral substantia nigra in parkinsons disease. Neurogenetics 7:1–11

    Article  PubMed  CAS  Google Scholar 

  27. Nagerl UV, Novo D, Mody I, Vergara JL (2000) Binding kinetics of calbindin-D(28 k) determined by flash photolysis of caged Ca2+. Biophys J 79:3009–3018

    Article  PubMed  CAS  Google Scholar 

  28. Nelson D, Cox M (2004) Lehninger principles of biochemistry. v. 116–202, W.H. Freeman

    Google Scholar 

  29. Osborn KD, Zaidi A, Mandal A, Urbauer RJ, Johnson CK (2004) Single-molecule dynamics of the calcium-dependent activation of plasma-membrane Ca2+-ATPase by calmodulin. Biophys J 87:1892–1899

    Article  PubMed  CAS  Google Scholar 

  30. Poignard C, Silve A, Campion F, Mir LM, Saut O, Schwartz L (2011) Ion fluxes, transmembrane potential, and osmotic stabilization: a new dynamic electrophysiological model for eukaryotic cells. Eur Biophys J 40:235–246

    Article  PubMed  CAS  Google Scholar 

  31. Powell T, Noma A, Shioya T, Kozlowski RZ (1993) Turnover rate of the cardiac Na+-Ca2+ exchanger in guinea-pig ventricular myocytes. J Physiol (Lond) 472:45–53

    CAS  Google Scholar 

  32. Puopolo M, Raviola E, Bean B (2007) Roles of subthreshold calcium current and sodium current in spontaneous firing of mouse midbrain dopamine neurons. J Neurosci 27(3):645

    Article  PubMed  CAS  Google Scholar 

  33. Putzier I, Kullmann PH, Horn JP, Levitan ES (2009) Cav1.3 Channel voltage dependence, not Ca2+ selectivity, drives pacemaker activity and amplifies bursts in nigral dopamine neurons. J Neurosci 29:15414–15419

    Article  PubMed  CAS  Google Scholar 

  34. Rakowski RF, Gadsby DC, De Weer P (1997) Voltage dependence of the Na/K pump. J Membr Biol 155:105–112

    Article  PubMed  CAS  Google Scholar 

  35. Schapira AH, Cooper JM, Dexter D, Jenner P, Clark JB, Marsden CD (1989) Mitochondrial complex I deficiency in Parkinson’s disease. Lancet 1:1267

    Google Scholar 

  36. Schultz S (1980) Basic principles of membrane transport. IUPAB biophysics series, Cambridge University Press

    Google Scholar 

  37. Sedova M, Blatter LA (1999) Dynamic regulation of Ca2+ by plasma membrane Ca2+-ATPase and Na+/Ca2+ exchange during capacitative Ca2+ entry in bovine vascular endothelial cells. Cell Calcium 25:333–343

    Article  PubMed  CAS  Google Scholar 

  38. Sherer TB, Betarbet R, Greenamyre JT (2002) Environment, mitochondria, and Parkinson’s disease. Neuroscientist 8:192–197

    PubMed  CAS  Google Scholar 

  39. Silva NL, Pechura CM, Barker JL (1990) Postnatal rat nigrostriatal dopaminergic neurons exhibit five types of potassium conductances. J Neurophysiol 64:262–272

    PubMed  CAS  Google Scholar 

  40. Surmeier DJ (2007) Calcium, ageing, and neuronal vulnerability in Parkinson’s disease. Lancet Neurol 6:933–938

    Article  PubMed  CAS  Google Scholar 

  41. Surmeier DJ, Guzman JN, Sanchez-Padilla J (2010) Calcium, cellular aging, and selective neuronal vulnerability in Parkinson’s disease. Cell Calcium 47:175–182

    Article  PubMed  CAS  Google Scholar 

  42. Tadross MR, Dick IE, Yue DT (2008) Mechanism of local and global Ca2+ sensing by calmodulin in complex with a Ca2+ channel. Cell 133:1228–1240

    Article  PubMed  CAS  Google Scholar 

  43. Varghese A, Boland L (2002) Computing transient gating charge movement of voltage-dependent ion channels. J Comput Neurosci 12(2):123–137

    Article  PubMed  Google Scholar 

  44. Verkhratsky A, Toescu E (1998) Integrative aspects of calcium signalling, Plenum Press

    Google Scholar 

  45. Wellstead P, Cloutier M (2011) An energy systems approach to Parkinson’s disease. Wiley Interdiscip Rev Syst Biol Med 3:1–6

    Article  PubMed  CAS  Google Scholar 

  46. Wilson C, Callaway J (2000) Coupled oscillator model of the dopaminergic neuron of the substantia nigra. J Neurophysiol 83(5):3084–3100

    PubMed  CAS  Google Scholar 

  47. Wu F, Zhang EY, Zhang J, Bache RJ, Beard DA (2008) Phosphate metabolite concentrations and atp hydrolysis potential in normal and ischaemic hearts. J Physiol 586(17):4193–4208. doi:10.1113/jphysiol.2008.154732

    Article  PubMed  CAS  Google Scholar 

  48. Xia XM, Fakler B, Rivard A, Wayman G, Johnson-Pais T, Keen JE, Ishii T, Hirschberg B, Bond CT, Lutsenko S, Maylie J, Adelman JP (1998) Mechanism of calcium gating in small-conductance calcium-activated potassium channels. Nature 395:503–507

    Article  PubMed  CAS  Google Scholar 

  49. Yamada T, McGeer PL, Baimbridge KG, McGeer EG (1990) Relative sparing in Parkinson’s disease of substantia nigra dopamine neurons containing calbindin-D28K. Brain Res 526:303–307

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work support by Science Foundation Ireland, grant SFI 07/IN.1/I1838.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Febe Francis .

Editor information

Editors and Affiliations

Appendix: Model Formulation

Appendix: Model Formulation

Membrane Dynamics

Membrane potential

$$ V = \displaystyle\frac{{F{v_{\rm{cyt}}}}}{{{C_{\rm{m}}}}}[{K_{\rm{i}}} - {K_{\rm{e}}} + N{a_{\rm{i}}} - N{a_{\rm{e}}} + 2(C{a_{\rm{i}}} - C{a_{\rm{e}}}) + a{n_{\rm{offset}}}]. $$
(5.15)

Intracellular cations

$$ \begin{array}{lll} {\displaystyle\frac{{{\rm{d}}C{a_i}}}{{{{d}}t}} = \displaystyle\displaystyle\frac{1}{{{z_{\rm{Ca}}}F{v_{\rm{cyt}}}}}\left[ {{I_{\rm{Ca}}} + 2{I_{\rm{pmca}}} - 2{I_{\rm{naca}}}} \right] - \left( {{J_{\rm{calb}}} + 4{J_{\rm{cam}}}} \right)} \hfill \\{\displaystyle\frac{{{\rm{d}}N{a_i}}}{{{\hbox{d}}t}} = \displaystyle\frac{1}{{{z_{\rm{Na}}}F{v_{\rm{cyt}}}}}\left[ {{I_{\rm{Na}}} + 3{I_{\rm{nak}}} + 3{I_{\rm{naca}}}} \right]} \hfill \\{\displaystyle\frac{{{\rm{d}}{K_i}}}{{{\hbox{d}}t}} = \displaystyle\frac{1}{{{z_{\rm{K}}}F{v_{\rm{cyt}}}}}\left[ {{I_{\rm{K}}} - 2{I_{\rm{nak}}}} \right]} \\\end{array} $$
(5.16)

Membrane currents from ion-channels

$$ \begin{array}{*{20}{c}} {{I_{\text{Ca}}} = \left[ {\sum\limits_{\text{c}} {{g_{{{\text{Ca,c}}}}}{O_{{{\text{Ca,c}}}}}} } \right]\sqrt {{C{a_{\text{e}}}C{a_{\text{i}}}}} \frac{{\sin {\rm h} \left( {{{{\left( {V - {{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{V}}}_{\text{Ca}}}} \right)}} \left/ {{{V_{\tau }}}} \right.}} \right)}}{{\sin {\rm h} c\left( {{{V} \left/ {{{V_{\tau }}}} \right.}} \right)}}} \hfill \\ {{I_{\text{Na}}} = \left[ {\sum\limits_{\text{c}} {{g_{{{\text{Na,c}}}}}{O_{{{\text{Na,c}}}}}} } \right]\sqrt {{N{a_{\text{e}}}N{a_{\text{i}}}}} \frac{{\sin {\rm h} \left( {{{{\left( {V - {{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{V}}}_{\text{Na}}}} \right)}} \left/ {{2{V_{\tau }}}} \right.}} \right)}}{{\sin {\rm h} c\left( {{{V} \left/ {{2{V_{\tau }}}} \right.}} \right)}}} \hfill \\ {{I_{\text{K}}} = \left[ {\sum\limits_{\text{c}} {{g_{{{\text{K,c}}}}}{O_{{{\text{K,c}}}}}} } \right]\sqrt {{{K_{\text{e}}}{K_{\text{i}}}}} \frac{{\sin {\rm h} \left( {{{{\left( {V - {{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{V}}}_{\text{K}}}} \right)}} \left/ {{2{V_{\tau }}}} \right.}} \right)}}{{\sin {\rm h} c\left( {{{V} \left/ {{2{V_{\tau }}}} \right.}} \right)}} + \left[ {\sum\limits_{\text{c}} {{\gamma_{{{\text{K,c}}}}}{O_{{{\text{K,c}}}}}} } \right]\left( {V - {{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{V}}}_{\text{K}}}} \right)} \hfill \\ \end{array} . $$
(5.17)

Gating Dynamics

L-type calcium channel [1]

$$ \begin{array}{lll} {{O_{\rm{cal}}} = {m_{\rm{cal}}}{h_{\rm{cal}}}} \hfill & {{\tau_{{{\rm{m,cal}}}}} = 0.943 + 10\exp \left( { - {{\left[ {\displaystyle\frac{{V + 86.4}}{{23.2}}} \right]}^2}} \right)} \hfill \\{{m_{{\infty, {\rm{cal}}}}} = {{\left[ {1 + \exp \left( { - \displaystyle\frac{{V + 15}}{7}} \right)} \right]}^{{ - 1}}}} \hfill & {{h_{\rm{cal}}} = \displaystyle\frac{{0.00045}}{{0.00045 + C{a_{\rm{i}}}}}} \hfill \\\end{array} {.} $$

High voltage activated calcium channel [1]

$$ \begin{array}{lll} {{O_{{{\rm{ca,hva}}}}} = {m_{{{\rm{ca,hva}}}}}{h_{{{\rm{ca,hva}}}}}} \hfill & {} \hfill \\{{m_{{\infty, {\rm{cahva}}}}} = {{\left[ {1 + \exp \left( { - \displaystyle\frac{{V + 10}}{{10}}} \right)} \right]}^{{ - 1}}}} \hfill & {{\tau_{{{\rm{m,cahva}}}}} = 0.05 + 0.1\exp \left( { - {{\left[ {\displaystyle\frac{{V + 62}}{{13}}} \right]}^2}} \right)} \hfill \\{{h_{{\infty, {\rm{cahva}}}}} = {{\left[ {1 + \exp \left( {\displaystyle\frac{{V + 48}}{5}} \right)} \right]}^{{ - 1}}}} \hfill & {{\tau_{{{\rm{h,cahva}}}}} = 0.5 + 0.5\exp \left( { - {{\left[ {\displaystyle\frac{{V + 55.6}}{{18}}} \right]}^2}} \right)} \hfill \\\end{array} $$

T-type calcium channel [6]

$$ \begin{array}{lll} {{O_{\rm{cat}}} = {m_{\rm{cat}}}{h_{\rm{cat}}}} \hfill & {} \hfill \\{{m_{{\infty, {\rm{cat}}}}} = {{\left[ {1 + \exp \left( { - \displaystyle\frac{{V + 63}}{{1.5}}} \right)} \right]}^{{ - 1}}}} \hfill & {{\tau_{{{\rm{m,cat}}}}} = 12 + 65\exp \left( { - {{\left[ {\displaystyle\frac{{V + 68}}{6}} \right]}^2}} \right)} \hfill \\{{h_{{\infty, {\rm{cat}}}}} = {{\left[ {1 + \exp \left( {\displaystyle\frac{{V + 76.2}}{3}} \right)} \right]}^{{ - 1}}}} \hfill & {{\tau_{{{\rm{h,cat}}}}} = 10 + 50\exp \left( { - {{\left[ {\displaystyle\frac{{V + 72}}{{10}}} \right]}^2}} \right)} \hfill \\\end{array} $$

Sodium channel

$$ \begin{array}{lll} {{O_{\rm{Na}}} = m_{\rm{na}}^3{h_{\rm{na}}}} \hfill & {{\alpha_{\rm{mna}}} = 1.965\exp \left( {1.713\displaystyle\frac{V}{{{V_{\tau }}}}} \right)} \hfill & {{\beta_{\rm{mna}}} = 0.0424\exp \left( {1.558\displaystyle\frac{V}{{{V_{\tau }}}}} \right)} \hfill \\\, \hfill & {{\alpha_{\rm{hna}}} = 9.566 \times {{10}^{{ - 5}}}\exp \left( { - 2.432\displaystyle\frac{V}{{{V_{\tau }}}}} \right)} \hfill & {{\beta_{\rm{mna}}} = 0.53\exp \left( { - 1.187\displaystyle\frac{V}{{{V_{\tau }}}}} \right)} \hfill \\\end{array} $$

Small conductance calcium gated potassium channel

$$ {O_{{{\rm{k,sk}}}}} = \displaystyle\frac{{Ca_{\rm{i}}^4}}{{{{\left( {0.00035} \right)}^4} + Ca_{\rm{i}}^4}}. $$

Delayed rectifier potassium channel [1]

$$ \begin{array}{lll} {{O_{\rm{kdr}}} = m_{\rm{kdr}}^3} \hfill & {} \hfill \\{{m_{{\infty, {\rm{kdr}}}}} = {{\left[ {1 + \exp \left( { - \displaystyle\frac{{V + 25}}{{12}}} \right)} \right]}^{{ - 1}}}} \hfill & {{\tau_{{{\rm{m,kdr}}}}} = 18{{\left[ {1 + \exp \left( {\displaystyle\frac{{V + 39}}{8}} \right)} \right]}^{{ - 1}}} + 1} \hfill \\\end{array} $$

Transient A-type potassium channel [1]

$$ \begin{array}{lll} {{O_{\rm{ka}}} = m_{\rm{ka}}^3{h_{\rm{ka}}}} \hfill & {} \hfill \\{{m_{{\infty, {\rm{ka}}}}} = {{\left[ {1 + \exp \left( { - \displaystyle\frac{{V + 43}}{{24}}} \right)} \right]}^{{ - 1}}}} \hfill & {{\tau_{{{\rm{m,ka}}}}} = 1.1 + 2\exp \left( { - {{\left[ {\displaystyle\frac{{V + 50}}{{23.45}}} \right]}^2}} \right)} \hfill \\{{h_{{\infty, {\rm{ka}}}}} = {{\left[ {1 + \exp \left( {\displaystyle\frac{{V + 56}}{8}} \right)} \right]}^{{ - 1}}}} \hfill & {{\tau_{{{\rm{h,ka}}}}} = 20} \hfill \\\end{array} $$

Internal rectifying potassium channel [6]

$$ {O_{\rm{kdr}}} = {\left[ {1 + \exp \left( {\displaystyle\frac{{V + 90}}{{12.1}}} \right)} \right]^{{ - 1}}} $$

HCN channels (based on [6]; see Fig. 5.1f)

$$ \begin{array} {lll}{{O_{\rm{hcn}}} = y} \hfill & {\displaystyle\frac{{{\text{d}}y}}{{{\hbox{d}}t}} = {k_{{{\rm{f,hcn}}}}}y - {k_{{{\rm{r,hcn}}}}}\left( {1 - y} \right)} \hfill \\{{k_{{{\rm{f,hcn}}}}} = {k_{{{\rm{f,free}}}}}{\rm P}(C) + {k_{{{\rm{f,bnd}}}}}\left[ {1 - {\rm P}(C)} \right]} \hfill & {{k_{{{\rm{r,hcn}}}}} = {k_{{{\rm{r,free}}}}}{\rm P}(O) + {k_{{{\rm{r,bnd}}}}}\left[ {1 - {\rm P}(O)} \right]} \hfill \\{{\rm P}(C) = {{\left[ {1 + \displaystyle\frac{\text{cAMP}}{{1.163 \times {{10}^{{ - 3}}}({\hbox{mM}})}}} \right]}^{{ - 1}}}} \hfill & {{\rm P}(O) = {{\left[ {1 + \displaystyle\frac{\text{cAMP}}{{1.45 \times {{10}^{{ - 3}}}({\hbox{mM}})}}} \right]}^{{ - 1}}}} \hfill \\{{k_{{{\rm{f,free}}}}} = \displaystyle\frac{{0.006}}{{1 + \exp \left( {\displaystyle\frac{{V + 87.7}}{{6.45}}} \right)}}} \hfill & {{k_{{{\rm{r,free}}}}} = \displaystyle\frac{{0.08}}{{1 + \exp \left( { - \displaystyle\frac{{V + 51.7}}{7}} \right)}}} \hfill \\{{k_{{{\rm{f,bnd}}}}} = \displaystyle\frac{{0.0268}}{{1 + \exp \left( {\displaystyle\frac{{V + 94.2}}{{13.3}}} \right)}}} \hfill & {{k_{{{\rm{r,bnd}}}}} = \displaystyle\frac{{0.08}}{{1 + \exp \left( { - \displaystyle\frac{{V + 35.5}}{7}} \right)}}} \hfill \\\end{array} $$

Dynamics of Facilitated Transport

Sodium–calcium exchanger (Model modified from [24])

$$ {I_{\rm{naca}}} = {k_{\rm{naca}}}\left[ {{\beta_{ - }}{\rm P}\left( {{{E \prime}_{\!\!\!1}}} \right)y - {\beta_{ + }}{\rm P}\left( {E_2^{\prime}} \right)\left( {1 - y} \right)} \right]. $$
(5.18)
$$ \begin{array}{llll} {\displaystyle\frac{{{\text{d}}y}}{{{\hbox{d}}t}} = {k_{ - }}\left( {1 - y} \right) - {k_{ + }}y} \hfill & \, \hfill \\{{k_{ + }} = {\alpha_{ + }}{\rm P}\left( {E_1^{*}} \right) + {\beta_{ - }}{\rm P}\left( {{{E \prime}_{\!\!\!\!1}}} \right)} \hfill & {{k_{ - }} = {\alpha_{ - }}{\rm P}\left( {E_2^{*}} \right) + {\beta_{ + }}{\rm P}\left( {{{E^{\prime}}_{\!\!\!2}}} \right)} \hfill \\{{\rm P}\left( {E_1^{*}} \right) = {{\left[ {1 + \displaystyle\frac{{0.00138}}{{C{a_{\rm{i}}}}}\left( {1 + {{\left( {\displaystyle\frac{{N{a_{\rm{i}}}}}{{8.75}}} \right)}^3}} \right)} \right]}^{{ - 1}}}} \hfill & {{\rm P}\left( {E_2^{*}} \right) = {{\left[ {1 + \displaystyle\frac{{1.38}}{{C{a_{\rm{e}}}}}\left( {1 + {{\left( {\displaystyle\frac{{N{a_{\rm{e}}}}}{{87.5}}} \right)}^3}} \right)} \right]}^{{ - 1}}}} \hfill \\{{\rm P}\left( {{{E\prime}_{\!\!\!\!1}}} \right) = {{\left[ {1 + {{\left( {\displaystyle\frac{{8.75}}{{N{a_{\rm{i}}}}}} \right)}^3}\left( {1 + \displaystyle\frac{{C{a_{\rm{i}}}}}{{0.00138}}} \right)} \right]}^{{ - 1}}}} \hfill & {{\rm P}\left( {{{E^{\prime}}_{\!\!\!2}}} \right) = {{\left[ {1 + {{\left( {\displaystyle\frac{{87.5}}{{N{a_{\rm{e}}}}}} \right)}^3}\left( {1 + \displaystyle\frac{{C{a_{\rm{e}}}}}{{1.38}}} \right)} \right]}^{{ - 1}}}} \hfill \\{{\alpha_{ + }} = \exp \left( {{{{\left( {1 - 0.32} \right)V}} \left/ {{{V_{\tau }}}} \right.}} \right)} \hfill & {{\beta_{ + }} = \exp \left( {{{{ - 0.32V}} \left/ {{{V_{\tau }}}} \right.}} \right)({\hbox{m}}{{\hbox{s}}^{{ - 1}}})} \hfill \\{{\alpha_{ - }} = \exp \left( {{{{ - 0.32V}} \left/ {{{V_{\tau }}}} \right.}} \right)} \hfill & {{\beta_{ - }} = \exp \left( {{{{\left( {1 - 0.32} \right)V}} \left/ {{{V_{\tau }}}} \right.}} \right)({\hbox{m}}{{\hbox{s}}^{{ - 1}}})} \hfill \\\end{array}. $$

Plasma membrane calcium ATP-ase

$$ {I_{\rm{pmca}}} = {k_{\rm{pmca}}}{A_{\rm{pmca}}}\left[ {{\alpha_{ + }}{\rm P}\left( {E_1^{*}} \right)y - {\alpha_{ - }}{\rm P}\left( {E_2^{*}} \right)\left( {1 - y} \right)} \right]. $$
(5.19)
$$ \begin{array} {lll}{\displaystyle\frac{{{\text{d}}y}}{{{\hbox{d}}t}} = {k_{ - }}\left( {1 - y} \right) - {k_{ + }}y} \hfill & \, \hfill \\{{k_{ + }} = {\alpha_{ + }}{\rm P}\left( {E_1^{*}} \right) + {\beta_{ - }}{\rm P}\left( {{E_1}} \right)} \hfill & {{k_{ - }} = {\alpha_{ - }}{\rm P}\left( {E_2^{*}} \right) + {\beta_{ + }}{\rm P}\left( {{E_2}} \right)} \hfill \\{{\rm P}\left( {E_1^{*}} \right) = {{\left[ {1 + \displaystyle\frac{{{k_{{{\rm{pmca,cai}}}}}}}{{C{a_i}}}} \right]}^{{ - 1}}}} \hfill & {{\rm P}\left( {{E_1}} \right) = 1 - {\rm P}\left( {E_1^{*}} \right)} \hfill \\{{\rm P}\left( {E_2^{*}} \right) = {{\left[ {1 + \displaystyle\frac{2}{{C{a_e}}}} \right]}^{{ - 1}}}} \hfill & {{\rm P}\left( {{E_2}} \right) = 1 - {\rm P}\left( {E_2^{*}} \right)} \hfill \\{{A_{\rm{pmca}}} = \displaystyle\frac{{10.56 \times [cacam]}}{{[cacam] + 0.00005}} + 1.2(pA)} \hfill & \hfill \\\end{array} $$
$$ \begin{array}{lll} {{{k_{{{\rm{pmca,cai}}}}} = \frac{{\left( {180 - 6.4} \right) \times {{10}^{{ - 5}}}}}{{1 + {{{[cacam]}} \left/ {{0.00005}} \right.}}} + 6.4 \times {{10}^{{ - 5}}}({{mM}})}} \hfill \\ {{\alpha_{ + }} = {{\left( {1 + \displaystyle\frac{{0.1}}{{[ATP]}}} \right)}^{{\!\! - 1}}}\quad {\beta_{ + }} = 0.001({{m}}{{{s}}^{{ - 1}}})} \\ {{\alpha_{ - }} = 0.001\quad {\beta_{ - }} = 1({{m}}{{{s}}^{{ - 1}}})} \end{array}$$

Sodium–potassium ATP-ase

$$ {I_{\rm{nak}}} = {k_{\rm{nak}}}\left[ {{\alpha_{ + }}{\rm P}\left( {E_1^{*}} \right)y - {\alpha_{ - }}{\rm P}\left( {E_2^{*}} \right)\left( {1 - y} \right)} \right]. $$
(5.20)
$$ \begin{array}{lll} {\displaystyle\frac{{{\text{d}}y}}{{{\hbox{d}}t}} = {k_{ - }}\left( {1 - y} \right) - {k_{ + }}y} \hfill & \, \hfill \\{{k_{ + }} = {\alpha_{ + }}{\rm P}\left( {E_1^{*}} \right) + {\beta_{ - }}{\rm P}\left( {{{E^{\prime}}_{\!\!\!1}}} \right)} \hfill & {{k_{ - }} = {\alpha_{ - }}{\rm P}\left( {E_2^{*}} \right) + {\beta_{ + }}{\rm P}\left( {{{E^{\prime}}_{\!\!2}}} \right)} \hfill \\{{\rm P}\left( {E_1^{*}} \right) = {{\left[ {1 + \displaystyle\frac{{4.05}}{{N{a_{\rm{i}}}}}\left( {1 + \displaystyle\frac{{{K_{\rm{i}}}}}{{32.88}}} \right)} \right]}^{{ - 1}}}} \hfill & {{\rm P}\left( {{{E^{\prime}}_{\!\!\!1}}} \right) = {{\left[ {1 + \displaystyle\frac{{32.88}}{{{K_{\rm{i}}}}}\left( {1 + \displaystyle\frac{{N{a_{\rm{i}}}}}{{4.05}}} \right)} \right]}^{{ - 1}}}} \hfill \\{{\rm P}\left( {E_2^{*}} \right) = {{\left[ {1 + \displaystyle\frac{{69.8}}{{N{a_{\rm{eff}}}}}\left( {1 + \displaystyle\frac{{{K_{\rm{e}}}}}{{0.258}}} \right)} \right]}^{{ - 1}}}} \hfill & {{\rm P}\left( {{{E^{\prime}}_{\!\!2}}} \right) = {{\left[ {1 + \displaystyle\frac{{0.258}}{{{K_{\rm{e}}}}}\left( {1 + \displaystyle\frac{{N{a_{\rm{eff}}}}}{{69.8}}} \right)} \right]}^{{ - 1}}}} \hfill \\\end{array} $$
$$ \begin{array}{lll} {N{a_{\rm{eff}}} = N{a_{\rm{e}}}\exp \left( {{{{ - 0.82V}} \left/ {{{V_{\tau }}}} \right.}} \right)} \hfill & \, \hfill \\{{\alpha_{ + }} = 0.37{{\left( {1 + \displaystyle\frac{{0.094}}{{[ATP]}}} \right)}^{{ - 1}}}} \hfill & {{\beta_{ + }} = 0.165({\hbox{m}}{{\hbox{s}}^{{ - 1}}})} \hfill \\{{\alpha_{ - }} = 0.04} \hfill & {{\beta_{ - }} = 0.01({\hbox{m}}{{\hbox{s}}^{{ - 1}}})} \hfill \\\end{array} $$

Buffer Dynamics

Calbindin

The dynamics of binding of calcium to the fast buffer, calbindin is modelled using mass action kinetics (Fig. 5.1d) and the kinetic parameters for the high affinity binding adopted from Nagerl et al. [27],

$$ {J_{\rm{calb}}} = {k_{{{\rm{calb,b}}}}}{[Ca]_{\rm{i}}}[Calb] - {k_{{{\rm{calb,d}}}}}[cacalb]. $$

Calmodulin

Calcium has four binding sites on calmodulin. Two of these are located on the C-terminal lobe and two on the N-terminal. However, the binding and dissociation rates to each of these lobes are different. We model the simultaneous binding of calcium [42] as a four state Markov process, and further reduce the model to two states, assuming quasi-steady state for the intermediary states (Fig. 5.1e).

$$ \begin{array}{lll} {{J_{\rm{cam}}} = {\alpha_{\rm{cam}}}[Cam] - {\beta_{\rm{cam}}}[cacam]} \hfill & \, \hfill \\{{\alpha_{\rm{cam}}} = {k_{\rm{cb}}}{k_{\rm{nb}}}\left[ {\displaystyle\frac{1}{{{k_{\rm{cb}}} + {k_{\rm{nd}}}}} + \displaystyle\frac{1}{{{k_{\rm{cd}}} + {k_{\rm{nb}}}}}} \right]} \hfill & {{\beta_{\rm{cam}}} = {k_{\rm{cd}}}{k_{\rm{nd}}}\left[ {\displaystyle\frac{1}{{{k_{\rm{cb}}} + {k_{\rm{nd}}}}} + \displaystyle\frac{1}{{{k_{\rm{cd}}} + {k_{\rm{nb}}}}}} \right]} \hfill \\{{k_{\rm{cb}}} = {k_{{{\rm{cam,cb}}}}}[Ca]_{\rm{i}}^2} \hfill & {{k_{\rm{nb}}} = {k_{{{\rm{cam,nb}}}}}[Ca]_{\rm{i}}^2} \hfill \\\end{array} $$

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Francis, F., García, M.R., Middleton, R.H. (2012). Energetics of Ion Transport in Dopaminergic Substantia nigra Neurons. In: Wellstead, P., Cloutier, M. (eds) Systems Biology of Parkinson's Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3411-5_5

Download citation

Publish with us

Policies and ethics