Gastrointestinal System

  • Virginia E. Wotring
Chapter
Part of the SpringerBriefs in Space Development book series (BRIEFSSPACE)

Abstract

Little is known about the function of the gastrointestinal (GI) system in spaceflight or any changes that might occur in microgravity. Few studies have attempted to address this physiological system in spaceflight, but empirically, our years of spaceflight experience have shown that GI function in microgravity is not very different from GI function in 1 G. Crewmembers have been able to eat and drink without major problems, and when their intake is sufficient, they maintain body weight. Some unsettled questions remain about GI motility and absorption of medications, discussed above under “Absorption.” But by far, the most significant GI complaint in spaceflight is motion sickness, which is not solely a GI problem—it has a significant CNS element (Muth 2006), which is discussed below.

Keywords

Dopamine Cortisol Angiotensin Histamine Norepinephrine 

References

  1. P.L. Andrews, F. Okada et al., The emetic and anti-emetic effects of the capsaicin analogue resiniferatoxin in Suncus murinus, the house musk shrew. Br. J. Pharmacol. 130(6), 1247–1254 (2000)CrossRefGoogle Scholar
  2. R.H. Anken, R. Hilbig, A drop-tower experiment to determine the threshold of gravity for inducing motion sickness in fish. Adv. Space Res. 34(7), 1592–1597 (2004)ADSCrossRefGoogle Scholar
  3. J.P. Bagian, D.F. Ward, A retrospective study of promethazine and its failure to produce the expected incidence of sedation during space flight. J. Clin. Pharmacol. 34(6), 649–651 (1994)Google Scholar
  4. E. Balaban, C. Centini et al., Tonic gravity changes alter gene expression in the efferent vestibular nucleus. Neuroreport 13(1), 187–190 (2002)CrossRefGoogle Scholar
  5. G.R. Banta, W.C. Ridley et al., Aerobic fitness and susceptibility to motion sickness. Aviat. Space Environ. Med. 58(2), 105–108 (1987)Google Scholar
  6. W. Bles, B. de Graaf et al., A sustained hyper-g load as a tool to simulate space sickness. J. Gravit. Physiol. 4(2), P1–P4 (1997)Google Scholar
  7. H.L. Borison, A 1983 neuropharmacologic perspective of space sickness. Brain Behav. Evol. 23(1–2), 7–13 (1983)CrossRefGoogle Scholar
  8. J.E. Bos, W. Bles et al., Eye movements to yaw, pitch, and roll about vertical and horizontal axes: adaptation and motion sickness. Aviat. Space Environ. Med. 73(5), 436–444 (2002)Google Scholar
  9. T.E. Brown, D.L. Eckberg, Promethazine affects autonomic cardiovascular mechanisms minimally. J. Pharmacol. Exp. Ther. 282(2), 839–844 (1997)Google Scholar
  10. J.C. Buckey, Space Physiology (Oxford, New York, 2006)Google Scholar
  11. J.C. Buckey, D. Alvarenga et al., Chlorpheniramine for motion sickness. J. Vestib. Res. 14(1), 53–61 (2004)Google Scholar
  12. G. Clement, Fundamentals of Space Medicine (Microcosm and Kluwer, El Segundo, CA, 2003)Google Scholar
  13. S.P. Clissold, R.C. Heel, Transdermal hyoscine (Scopolamine). A preliminary review of its pharmacodynamic properties and therapeutic efficacy. Drugs 29(3), 189–207 (1985)CrossRefGoogle Scholar
  14. B. Cohen, M. Dai et al., Baclofen, motion sickness susceptibility and the neural basis for velocity storage. Prog. Brain Res. 171, 543–553 (2008)CrossRefGoogle Scholar
  15. G.A. Conder, H.S. Sedlacek et al., Efficacy and safety of maropitant, a selective neurokinin 1 receptor antagonist, in two randomized clinical trials for prevention of vomiting due to motion sickness in dogs. J. Vet. Pharmacol. Ther. 31(6), 528–532 (2008)CrossRefGoogle Scholar
  16. J. Connolly, J. Boulter et al., Alpha 4–2 beta 2 and other nicotinic acetylcholine receptor subtypes as targets of psychoactive and addictive drugs. Br. J. Pharmacol. 105(3), 657–666 (1992)Google Scholar
  17. P. Cowings, C. Stout, et al., The effects of promethazine on human performance, mood states and motion sickness tolerance. NASA Technical Memorandum 110420, 1996Google Scholar
  18. P.S. Cowings, W.B. Toscano et al., Promethazine as a motion sickness treatment: impact on human performance and mood states. Aviat. Space Environ. Med. 71(10), 1013–1022 (2000)Google Scholar
  19. G.H. Crampton, J.B. Lucot, A stimulator for laboratory studies of motion sickness in cats. Aviat. Space Environ. Med. 56(5), 462–465 (1985)Google Scholar
  20. A. Crema, G.M. Frigo et al., A pharmacological analysis of the peristaltic reflex in the isolated colon of the guinea-pig or cat. Br. J. Pharmacol. 39(2), 334–345 (1970)Google Scholar
  21. J.R. Davis, J.M. Vanderploeg et al., Space motion sickness during 24 flights of the space shuttle. Aviat. Space Environ. Med. 59(12), 1185–1189 (1988)Google Scholar
  22. S.G. Diamond, C.H. Markham, Otolith function in hypo- and hypergravity: relation to space motion sickness. Acta Otolaryngol. Suppl. 481, 19–22 (1991)CrossRefGoogle Scholar
  23. E. Faugloire, C.T. Bonnet et al., Motion sickness, body movement, and claustrophobia during passive restraint. Exp. Brain Res. 177(4), 520–532 (2007)CrossRefGoogle Scholar
  24. C. Fernandez, J.R. Lindsay, The vestibular coriolis reaction. Arch. Otolaryngol. 80, 469–472 (1964)CrossRefGoogle Scholar
  25. C.J. Gardner, D.R. Armour et al., GR205171: a novel antagonist with high affinity for the tachykinin NK1 receptor, and potent broad-spectrum anti-emetic activity. Regul. Pept. 65(1), 45–53 (1996)CrossRefGoogle Scholar
  26. A. Gilman, T.W. Rall et al. (eds.), The Pharmacological Basis of Therapeutics (Pergamon Press, New York, 1990)Google Scholar
  27. A. Graybiel, The prevention of motion sickness in orbital flight. Life Sci. Space Res. 14, 109–118 (1976)Google Scholar
  28. A. Graybiel, J. Knepton, Sopite syndrome: a sometimes sole manifestation of motion sickness. Aviat. Space Environ. Med. 47(8), 873–882 (1976)Google Scholar
  29. A. Graybiel, C.D. Wood et al., Human assay of antimotion sickness drugs. Aviat. Space Environ. Med. 46(9), 1107–1118 (1975)Google Scholar
  30. D. Grundy, K. Reid et al., Trans-thoracic fluid shifts and endocrine responses to 6 degrees head-down tilt. Aviat. Space Environ. Med. 62(10), 923–929 (1991)Google Scholar
  31. A. Guyton, J. Hall, Textbook of Medical Physiology (Elsevier Saunders, Philadelphia, 2006)Google Scholar
  32. D.L. Harm, D.E. Parker et al., Relationship between selected orientation rest frame, circular vection and space motion sickness. Brain Res. Bull. 47(5), 497–501 (1998)CrossRefGoogle Scholar
  33. M. Heer, W.H. Paloski, Space motion sickness: incidence, etiology, and countermeasures. Auton. Neurosci. 129(1–2), 77–79 (2006)CrossRefGoogle Scholar
  34. R.M. Heggie, I.R. Entwistle, Seasickness. Br. Med. J. 4(5629), 514 (1968)CrossRefGoogle Scholar
  35. S.J. Herdman, Treatment of benign paroxysmal positional vertigo. Phys. Ther. 70(6), 381–388 (1990)Google Scholar
  36. D. Hershkovitz, N. Asna et al., Ondansetron for the prevention of seasickness in susceptible sailors: an evaluation at sea. Aviat. Space Environ. Med. 80(7), 643–646 (2009)CrossRefGoogle Scholar
  37. R.B. Hoffman, G.A. Salinas et al., Piracetam and fish orientation during parabolic aircraft flight. Aviat. Space Environ. Med. 51(6), 568–576 (1980)Google Scholar
  38. C.C. Horn, Is there a need to identify new anti-emetic drugs? Drug Discov. Today Ther. Strat. 4(3), 183–187 (2007)MathSciNetCrossRefGoogle Scholar
  39. P.J. Hornby, Central neurocircuitry associated with emesis. Am. J. Med. 111(Suppl 8A), 106S–112S (2001)CrossRefGoogle Scholar
  40. J. Howland, D.J. Rohsenow et al., The effects of transdermal scopolamine on simulated ship navigation and attention/reaction time. Int. J. Occup. Environ. Health 14(4), 250–256 (2008)Google Scholar
  41. R.E. Hoyt, B.D. Lawson et al., Modafinil as a potential motion sickness countermeasure. Aviat. Space Environ. Med. 80(8), 709–715 (2009)CrossRefGoogle Scholar
  42. S. Hu, W.F. Grant et al., Motion sickness severity and physiological correlates during repeated exposures to a rotating optokinetic drum. Aviat. Space Environ. Med. 62(4), 308–314 (1991)Google Scholar
  43. D.S. Janowsky, S.C. Risch et al., A cholinomimetic model of motion sickness and space adaptation syndrome. Aviat. Space Environ. Med. 55(8), 692–696 (1984)Google Scholar
  44. R.T. Jennings, J.R. Davis et al., Comparison of aerobic fitness and space motion sickness during the shuttle program. Aviat. Space Environ. Med. 59(5), 448–451 (1988)Google Scholar
  45. S.H. Jo, H.K. Hong et al., H(1) antihistamine drug promethazine directly blocks hERG K(+) channel. Pharmacol. Res. 60(5), 429–437 (2009)CrossRefGoogle Scholar
  46. B.G. Katzung (ed.), Basic and Clinical Pharmacology (McGraw Hill Medical, New York, 2007)Google Scholar
  47. R.S. Kennedy, A. Graybiel et al., Symptomatology under storm conditions in the North Atlantic in control subjects and in persons with bilateral labyrinthine defects. Acta Otolaryngol. 66(6), 533–540 (1968)CrossRefGoogle Scholar
  48. Y. Kitamura, A. Miyoshi et al., Effect of glucocorticoid on upregulation of histamine H1 receptor mRNA in nasal mucosa of rats sensitized by exposure to toluene diisocyanate. Acta Otolaryngol. 124(9), 1053–1058 (2004)CrossRefGoogle Scholar
  49. S. Klosterhalfen, S. Kellermann et al., Latent inhibition of rotation chair-induced nausea in healthy male and female volunteers. Psychosom. Med. 67(2), 335–340 (2005)CrossRefGoogle Scholar
  50. R.L. Kohl, Failure of metoclopramide to control emesis or nausea due to stressful angular or linear acceleration. Aviat. Space Environ. Med. 58(2), 125–131 (1987)Google Scholar
  51. R.L. Kohl, D.S. Calkins et al., Arousal and stability: the effects of five new sympathomimetic drugs suggest a new principle for the prevention of space motion sickness. Aviat. Space Environ. Med. 57(2), 137–143 (1986)Google Scholar
  52. R.L. Kohl, D.S. Calkins et al., Control of nausea and autonomic dysfunction with terfenadine, a peripherally acting antihistamine. Aviat. Space Environ. Med. 62(5), 392–396 (1991)Google Scholar
  53. J.R. Lackner, A. Graybiel, Head movements in non-terrestrial force environments elicit motion sickness: implications for the etiology of space motion sickness. Aviat. Space Environ. Med. 57(5), 443–448 (1986)Google Scholar
  54. W.D. Lakin, S.A. Stevens et al., Modeling intracranial pressures in microgravity: the influence of the blood–brain barrier. Aviat. Space Environ. Med. 78(10), 932–936 (2007)CrossRefGoogle Scholar
  55. M.E. Levine, J.C. Chillas, et al., The effects of serotonin (5-HT3) receptor antagonists on gastric tachyarrhythmia and the symptoms of motion sickness (2000, Nov) Aviat Space Environ Med 2000/11/22. Retrieved 11, 71, from, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11086664
  56. J.B. Lucot, R.S. Obach et al., The effect of CP-99994 on the responses to provocative motion in the cat. Br. J. Pharmacol. 120(1), 116–120 (1997)CrossRefGoogle Scholar
  57. E.I. Matsnev, D. Bodo, Experimental assessment of selected antimotion drugs. Aviat. Space Environ. Med. 55(4), 281–286 (1984)Google Scholar
  58. D. Megighian, A. Martini, Motion sickness and space sickness: clinical and experimental findings. ORL J. Otorhinolaryngol. Relat. Spec. 42(4), 185–195 (1980)CrossRefGoogle Scholar
  59. G.R. Morrow, Susceptibility to motion sickness and chemotherapy-induced side-effects. Lancet 1(8373), 390–391 (1984)CrossRefGoogle Scholar
  60. E.R. Muth, Motion and space sickness: intestinal and autonomic correlates. Auton. Neurosci. 129(1–2), 58–66 (2006)CrossRefGoogle Scholar
  61. Z. Nachum, A. Shupak et al., Transdermal scopolamine for prevention of motion sickness: clinical pharmacokinetics and therapeutic applications. Clin. Pharmacokinet. 45(6), 543–566 (2006)CrossRefGoogle Scholar
  62. W.T. Norfleet, J.J. Degioanni et al., Treatment of motion sickness in parabolic flight with buccal scopolamine. Aviat. Space Environ. Med. 63(1), 46–51 (1992)Google Scholar
  63. C.M. Oman, Motion sickness: a synthesis and evaluation of the sensory conflict theory. Can. J. Physiol. Pharmacol. 68(2), 294–303 (1990)CrossRefGoogle Scholar
  64. C.M. Oman, Sensory conflict theory and space sickness: our changing perspective. J. Vestib. Res. 8(1), 51–56 (1998)CrossRefGoogle Scholar
  65. J.H.J. Ortega, D.L. Harm, Space and entry motion sickness, in Principles of Clinical Medicine for Space Flight, ed. by M.R. Barrat, S.L. Pool (Springer, New York, 2008)Google Scholar
  66. D.E. Parker, Labyrinth and cerebral-spinal fluid pressure changes in guinea pigs and monkeys during simulated zero G. Aviat. Space Environ. Med. 48(4), 356–361 (1977)Google Scholar
  67. L.S. Parnes, S.K. Agrawal et al., Diagnosis and management of benign paroxysmal positional vertigo (BPPV). CMAJ 169(7), 681–693 (2003)Google Scholar
  68. A.C. Parrott, K. Wesnes, Promethazine, scopolamine and cinnarizine: comparative time course of psychological performance effects. Psychopharmacology (Berl.) 92(4), 513–519 (1987)CrossRefGoogle Scholar
  69. M.G. Paule, J.J. Chelonis et al., Effects of drug countermeasures for space motion sickness on working memory in humans. Neurotoxicol. Teratol. 26(6), 825–837 (2004)CrossRefGoogle Scholar
  70. J.R. Plant, D.B. MacLeod, Response of a promethazine-induced coma to flumazenil. Ann. Emerg. Med. 24(5), 979–982 (1994)CrossRefGoogle Scholar
  71. O. Pompeiano, P. d’Ascanio et al., Gene expression in rat vestibular and reticular structures during and after space flight. Neuroscience 114(1), 135–155 (2002)CrossRefGoogle Scholar
  72. L. Putcha, K.L. Berens et al., Pharmaceutical use by U.S. astronauts on space shuttle missions. Aviat. Space Environ. Med. 70(7), 705–708 (1999)Google Scholar
  73. J.T. Reason, J.J. Brand, Motion Sickness (Academic Press, London, 1975)Google Scholar
  74. K. Reid, J.L. Palmer et al., Comparison of the neurokinin-1 antagonist GR205171, alone and in combination with the 5-HT3 antagonist ondansetron, hyoscine and placebo in the prevention of motion-induced nausea in man. Br. J. Clin. Pharmacol. 50(1), 61–64 (2000)CrossRefGoogle Scholar
  75. M.F. Reschke, J.J. Bloomberg et al., Posture, locomotion, spatial orientation, and motion sickness as a function of space flight. Brain Res. Brain Res. Rev. 28(1–2), 102–117 (1998)CrossRefGoogle Scholar
  76. F. Ridout, I. Hindmarch, The effects of acute doses of fexofenadine, promethazine, and placebo on cognitive and psychomotor function in healthy Japanese volunteers. Ann. Allergy Asthma Immunol. 90(4), 404–410 (2003)CrossRefGoogle Scholar
  77. M.D. Ross, D.L. Tomko, Effect of gravity on vestibular neural development. Brain Res. Brain Res. Rev. 28(1–2), 44–51 (1998)CrossRefGoogle Scholar
  78. G.J. Sanger, P.L. Andrews, Treatment of nausea and vomiting: gaps in our knowledge. Auton. Neurosci. 129(1–2), 3–16 (2006)CrossRefGoogle Scholar
  79. G. Sato, A. Uno et al., Effects of hypergravity on histamine H1 receptor mRNA expression in hypothalamus and brainstem of rats: implications for development of motion sickness. Acta Otolaryngol. 129(1), 45–51 (2009)CrossRefGoogle Scholar
  80. S. Schneider, V. Brummer et al., Parabolic flight experience is related to increased release of stress hormones. Eur. J. Appl. Physiol. 100(3), 301–308 (2007)CrossRefGoogle Scholar
  81. D.J. Schroeder, W.E. Collins et al., Effects of some motion sickness suppressants on static and dynamic tracking performance. Aviat. Space Environ. Med. 56(4), 344–350 (1985)Google Scholar
  82. H.S. Sedlacek, D.S. Ramsey et al., Comparative efficacy of maropitant and selected drugs in preventing emesis induced by centrally or peripherally acting emetogens in dogs. J. Vet. Pharmacol. Ther. 31(6), 533–537 (2008)CrossRefGoogle Scholar
  83. J.M. Serrador, T.T. Schlegel et al., Cerebral hypoperfusion precedes nausea during centrifugation. Aviat. Space Environ. Med. 76(2), 91–96 (2005)Google Scholar
  84. J.M. Serrador, T.T. Schlegel et al., Vestibular effects on cerebral blood flow. BMC Neurosci. 10, 119 (2009)CrossRefGoogle Scholar
  85. S.-J. Shi, S.H. Platts, et al.,Effects of midodrine, promethazine, and their combination on orthostatic intolerance in normal subjects. Aviat. Space Environ. Med., in reviewGoogle Scholar
  86. Q.H. Song, K. Toriizuka et al., Effect of Kampo herbal medicines on murine water metabolism in a microgravity environment. Am. J. Chin. Med. 30(4), 617–627 (2002)CrossRefGoogle Scholar
  87. P.C. Stepaniak, S.R. Ramchandani et al., Acute urinary retention among astronauts. Aviat. Space Environ. Med. 78(4 Suppl), A5–A8 (2007)Google Scholar
  88. R.M. Stern, K.L. Koch et al., Tachygastria and motion sickness. Aviat. Space Environ. Med. 56(11), 1074–1077 (1985)Google Scholar
  89. J.R. Stott, G.R. Barnes et al., The effect on motion sickness and oculomotor function of GR 38032F, a 5-HT3-receptor antagonist with anti-emetic properties. Br. J. Clin. Pharmacol. 27(2), 147–157 (1989)Google Scholar
  90. W.E. Thornton, T.P. Moore et al., Clinical characterization and etiology of space motion sickness. Aviat. Space Environ. Med. 58(9 Pt 2), A1–A8 (1987)Google Scholar
  91. D.E. Watenpaugh, S.F. Vissing et al., Pharmacologic atrial natriuretic peptide reduces human leg capillary filtration. J. Cardiovasc. Pharmacol. 26(3), 414–419 (1995)CrossRefGoogle Scholar
  92. D. Watt, L. Lefebvre, Vestibular suppression during space flight. J. Vestib. Res. 13(4–6), 363–376 (2003)Google Scholar
  93. M.L. Wiederhold, J.L. Harrison et al., A critical period for gravitational effects on otolith formation. J. Vestib. Res. 13(4–6), 205–214 (2003)Google Scholar
  94. C.D. Wood, A. Graybiel, Evaluation of sixteen anti-motion sickness drugs under controlled laboratory conditions. Aerosp. Med. 39(12), 1341–1344 (1968)Google Scholar
  95. C.D. Wood, J.E. Manno et al., The effect of antimotion sickness drugs on habituation to motion. Aviat. Space Environ. Med. 57(6), 539–542 (1986)Google Scholar
  96. C.D. Wood, J.E. Manno et al., Side effects of antimotion sickness drugs. Aviat. Space Environ. Med. 55(2), 113–116 (1984)Google Scholar
  97. D. Woodard, G. Knox et al., Phenytoin as a countermeasure for motion sickness in NASA maritime operations. Aviat. Space Environ. Med. 64(5), 363–366 (1993)Google Scholar
  98. B.J. Yates, A.D. Miller et al., Physiological basis and pharmacology of motion sickness: an update. Brain Res. Bull. 47(5), 395–406 (1998)CrossRefGoogle Scholar

Copyright information

© Virginia E. Wotring 2012

Authors and Affiliations

  • Virginia E. Wotring
    • 1
  1. 1.Johnson Space CenterHoustonUSA

Personalised recommendations