Skip to main content

Interactions Between Caveolin-1 and Sphingolipids, and Their Functional Relevance

  • Conference paper
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((volume 749))

Abstract

Caveolin-1 (CAV-1) is the pivot of a very complex network of interactions that are able to regulate the composition of CAV-1-signaling complexes, the lateral organization of CAV-1 with other molecules within the plasma membrane and the equilibrium between different cellular pools of CAV-1, switching on and off CAV-1- mediated biological events depending on the specific context. The role of sphingolipids in this scenario is very important: sphingolipids can affect CAV-1-mediated biological events due to their multifaceted liaison with caveolin-1. In this review, we discuss the role of CAV-1 as a molecular organizer and in particular we focus on the influence of sphingolipids on this role.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CAV-1:

Caveolin-1

DRM:

Detergent-resistant membrane fraction(s)

EGFR:

Epidermal growth factor receptor

EM:

Electron microscopy

HPTLC:

High performance thin layer chromatography

IR:

Insulin receptor

PDGFR:

Platelet-derived growth factor receptor

TNFα:

Tumor necrosis factor α

Ganglioside and glycosphingolipid nomenclature is in accordance with Svennerholm (1980) and the IUPAC–IUBMB recommendations (1998)

References

  • Anderson RG (1998) The caveolae membrane system. Annu Rev Biochem 67:199–225

    Article  PubMed  CAS  Google Scholar 

  • Aoki T, Nomura R, Fujimoto T (1999) Tyrosine phosphorylation of caveolin-1 in the endothelium. Exp Cell Res 253:629–636

    Article  PubMed  CAS  Google Scholar 

  • Benistant C, Chapuis H, Mottet N et al (2000) Deregulation of the cytoplasmic tyrosine kinase cSrc in the absence of a truncating mutation at codon 531 in human bladder carcinoma. Biochem Biophys Res Commun 273:425–430

    Article  PubMed  CAS  Google Scholar 

  • Benistant C, Bourgaux J-F, Chapuis H et al (2001) The COOH-terminal Src kinase Csk is a tumor antigen in human carcinoma. Cancer Res 61:1415–1420

    PubMed  CAS  Google Scholar 

  • Bist A, Fielding PE, Fielding CJ (1997) Two sterol regulatory element-like sequences mediate up-regulation of caveolin gene transcription in response to low density lipoprotein free cholesterol. Proc Natl Acad Sci USA 94:10693–10698

    Article  PubMed  CAS  Google Scholar 

  • Bremer EG, Hakomori S, Bowen-Pope DF et al (1984) Ganglioside-mediated modulation of cell growth, growth factor binding, and receptor phosphorylation. J Biol Chem 259:6818–6825

    PubMed  CAS  Google Scholar 

  • Bremer EG, Schlessinger J, Hakomori S (1986) Ganglioside-mediated modulation of cell growth. Specific effects of GM3 on tyrosine phosphorylation of the epidermal growth factor receptor. J Biol Chem 261:2434–2440

    PubMed  CAS  Google Scholar 

  • Chigorno V, Palestini P, Sciannamblo M et al (2000) Evidence that ganglioside enriched domains are distinct from caveolae in MDCK II and human fibroblast cells in culture. Eur J Biochem 267:4187–4197

    Article  PubMed  CAS  Google Scholar 

  • Couet J, Li S, Okamoto T et al (1997) Identification of peptide and protein ligands for the caveolin-scaffolding domain. Implications for the interaction of caveolin with caveolae-associated proteins. J Biol Chem 272:6525–6533

    Article  PubMed  CAS  Google Scholar 

  • Del Pozo MA, Schwartz MA (2007) Rac, membrane heterogeneity, caveolin and regulation of growth by integrins. Trends Cell Biol 17:246–250

    Article  PubMed  CAS  Google Scholar 

  • Del Pozo MA, Balasubramanian N, Alderson NB et al (2005) Phospho-caveolin-1 mediates integrin-regulated membrane domain internalisation. Nat Cell Biol 7:901–908

    Article  PubMed  CAS  Google Scholar 

  • Drab M, Verkade P, Elger M et al (2001) Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science 293:2449–2452

    Article  PubMed  CAS  Google Scholar 

  • Echarri A, Del Pozo A (2006) Caveolae internalization regulates integrin-dependent signaling pathways. Cell Cycle 5:2179–2182

    Article  PubMed  CAS  Google Scholar 

  • Engelman JA, Zhang XL, Razani B et al (1999) p42/44 MAP kinase-dependent and -independent signaling pathways regulate caveolin-1 gene expression. Activation of Ras-MAP kinase and protein kinase a signaling cascades transcriptionally down-regulates caveolin-1 promoter activity. J Biol Chem 274:32333–32341

    Article  PubMed  CAS  Google Scholar 

  • Fielding CJ, Fielding PE (2000) Cholesterol and caveolae: structural and functional relationships. Biochim Biophys Acta 1529:210–222

    Article  PubMed  CAS  Google Scholar 

  • Fra AM, Williamson E, Simons K et al (1995a) De novo formation of caveolae in lymphocytes by expression of VIP21-caveolin. Proc Natl Acad Sci USA 92:8655–8659

    Article  PubMed  CAS  Google Scholar 

  • Fra AM, Masserini M, Palestini P et al (1995b) A photo-reactive derivative of ganglioside GM1 specifically cross-links VIP21-caveolin on the cell surface. FEBS Lett 375:11–14

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto T (1996) GPI-anchored proteins, glycosphingolipids, and sphingomyelin are sequestered to caveolae only after crosslinking. J Histochem Cytochem 44:929–941

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto T, Hayashi M, Iwamoto M et al (1997) Crosslinked plasmalemmal cholesterol is sequestered to caveolae: analysis with a new cytochemical probe. J Histochem Cytochem 45:1197–1205

    Article  PubMed  CAS  Google Scholar 

  • Galbiati F, Engelman JA, Volonte D et al (2001) Caveolin-3 null mice show a loss of caveolae, changes in the microdomain distribution of the dystrophin-glycoprotein complex, and t-tubule abnormalities. J Biol Chem 276:21425–21433

    Article  PubMed  CAS  Google Scholar 

  • Glenney JR Jr, Soppet D (1992) Sequence and expression of caveolin, a protein component of caveolae plasma membrane domains phosphorylated on tyrosine in Rous sarcoma virus-transformed fibroblasts. Proc Natl Acad Sci USA 89:10517–10521

    Article  PubMed  CAS  Google Scholar 

  • Glenney JR Jr, Zokas L (1989) Novel tyrosine kinase substrates from Rous sarcoma virus-transformed cells are present in the membrane skeleton. J Cell Biol 108:2401–2408

    Article  PubMed  CAS  Google Scholar 

  • Gustavsson J, Parpal S, Karlsson M et al (1999) Localization of the insulin receptor in caveolae of adipocyte plasma membrane. FASEB J 13:1961–1971

    PubMed  CAS  Google Scholar 

  • Haberkant P, Schmitt O, Contreras FX et al (2008) Protein-sphingolipid interactions within cellular membranes. J Lipid Res 49:251–262

    Article  PubMed  CAS  Google Scholar 

  • Hanai N, Nores GA, MacLeod C et al (1988) Ganglioside-mediated modulation of cell growth. Specific effects of GM3 and lyso-GM3 in tyrosine phosphorylation of the epidermal growth factor receptor. J Biol Chem 263:10915–10921

    PubMed  CAS  Google Scholar 

  • Head BP, Insel PA (2007) Do caveolins regulate cells by actions outside of caveolae? Trends Cell Biol 17:51–57

    Article  PubMed  CAS  Google Scholar 

  • Hemler ME (1998) Integrin associated proteins. Curr Opin Cell Biol 10:578–585

    Article  PubMed  CAS  Google Scholar 

  • Hooper NM (1999) Detergent-insoluble glycosphingolipid/cholesterol-rich membrane domains, lipid rafts and caveolae (review). Mol Membr Biol 16:145–156

    Article  PubMed  CAS  Google Scholar 

  • Hyuga S, Yamagata S, Takatsu Y et al (1999) Suppression by ganglioside GD1A of migration capability, adhesion to vitronectin and metastatic potential of highly metastatic FBJ-LL cells. Int J Cancer 83:685–691

    Article  PubMed  CAS  Google Scholar 

  • Ikonen E, Heino S, Lusa S (2004) Caveolins and membrane cholesterol. Biochem Soc Trans 32:121–123

    Article  PubMed  CAS  Google Scholar 

  • Ito J, Nagayasu Y, Kato K et al (2002) Apolipoprotein A-I induces translocation of cholesterol, phospholipid, and caveolin-1 to cytosol in rat astrocytes. J Biol Chem 277:7929–7935

    Article  PubMed  CAS  Google Scholar 

  • Ito J, Kheirollah A, Nagayasu Y et al (2006) Apolipoprotein A-I increases association of cytosolic cholesterol and caveolin-1 with microtubule cytoskeletons in rat astrocytes. J Neurochem 97:1034–1043

    Article  PubMed  CAS  Google Scholar 

  • Iwabuchi K, Handa K, Hakomori S (1998) Separation of “glycosphingolipid signaling domain” from caveolin-containing membrane fraction in mouse melanoma B16 cells and its role in cell adhesion coupled with signaling. J Biol Chem 273:33766–33773

    Article  PubMed  CAS  Google Scholar 

  • Iwabuchi K, Zhang Y, Handa K et al (2000) Reconstitution of membranes simulating “glycosignaling domain” and their susceptibility to Lyso-GM3. J Biol Chem 275:15174–15181. doi:10.1074/jbc.275.20.15174

    Article  PubMed  CAS  Google Scholar 

  • IUPAC-IUBMB JCoBN (1998) Nomenclature of glycolipids. Carbohydr Res 312:167–175

    Google Scholar 

  • Kabayama K, Sato T, Kitamura F et al (2005) TNFalpha-induced insulin resistance in adipocytes as a membrane microdomain disorder: involvement of ganglioside GM3. Glycobiology 15:21–29

    Article  PubMed  CAS  Google Scholar 

  • Kabayama K, Sato T, Saito K et al (2007) Dissociation of the insulin receptor and caveolin-1 complex by ganglioside GM3 in the state of insulin resistance. Proc Natl Acad Sci USA 104:13678–13683

    Article  PubMed  CAS  Google Scholar 

  • Kasahara K, Watanabe Y, Yamamoto T et al (1997) Association of Src family tyrosine kinase Lyn with ganglioside GD3 in rat brain. Possible regulation of Lyn by glycosphingolipid in caveolae-like domains. J Biol Chem 272:29947–29953

    Article  PubMed  CAS  Google Scholar 

  • Kawakami Y, Kawakami K, Steelant WF et al (2002) Tetraspanin CD9 is a “proteolipid,” and its interaction with alpha 3 integrin in microdomain is promoted by GM3 ganglioside, leading to inhibition of laminin-5-dependent cell motility. J Biol Chem 277:34349–34358

    Article  PubMed  CAS  Google Scholar 

  • Kazui A, Ono M, Handa K et al (2000) Glycosylation Affects Translocation of Integrin, Src, and Caveolin into or out of GEM. Biochem Biophys Res Commun 273:159–163

    Article  PubMed  CAS  Google Scholar 

  • Kurzchalia TV, Dupree P, Parton RG et al (1992) VIP21, a 21-kD membrane protein is an integral component of trans-Golgi-network-derived transport vesicles. J Cell Biol 118:1003–1014

    Article  PubMed  CAS  Google Scholar 

  • Lee SW, Reimer CL, Oh P et al (1998) Tumor cell growth inhibition by caveolin re-expression in human breast cancer cells. Oncogene 16:1391–1397

    Article  PubMed  CAS  Google Scholar 

  • Lee H, Volonte D, Galbiati F et al (2000) Constitutive and growth factor-regulated phosphorylation of caveolin-1 occurs at the same site (Tyr-14) in vivo: identification of a c-Src/Cav-1/Grb7 signaling cassette. Mol Endocrinol 14:1750–1775

    Article  PubMed  CAS  Google Scholar 

  • Li S, Couet J, Lisanti MP (1996a) Src tyrosine kinases, Galpha subunits, and H-Ras share a common membrane-anchored scaffolding protein, caveolin. Caveolin binding negatively regulates the auto-activation of Src tyrosine kinases. J Biol Chem 271:29182–29190

    Article  PubMed  CAS  Google Scholar 

  • Li S, Seitz R, Lisanti MP (1996b) Phosphorylation of caveolin by Src tyrosine kinases. J Biol Chem 271:3863–3868. doi:10.1074/jbc.271.7.3863

    Article  PubMed  CAS  Google Scholar 

  • Li S, Song KS, Lisanti MP (1996c) Expression and characterization of recombinant caveolin. J Biol Chem 271:568–573. doi:10.1074/jbc.271.1.568

    Article  PubMed  CAS  Google Scholar 

  • Li WP, Liu P, Pilcher BK et al (2001) Cell-specific targeting of caveolin-1 to caveolae, secretory vesicles, cytoplasm or mitochondria. J Cell Sci 114:1397–1408

    PubMed  CAS  Google Scholar 

  • Liu P, Anderson RG (1995) Compartmentalized production of ceramide at the cell surface. J Biol Chem 270:27179–27185

    Article  PubMed  CAS  Google Scholar 

  • Liu P, Li WP, Machleidt T et al (1999) Identification of caveolin-1 in lipoprotein particles secreted by exocrine cells. Nat Cell Biol 1:369–375

    Article  PubMed  CAS  Google Scholar 

  • Liu P, Wang P, Michaely P et al (2000) Presence of oxidized cholesterol in caveolae uncouples active platelet-derived growth factor receptors from tyrosine kinase substrates. J Biol Chem 275:31648–31654

    Article  PubMed  CAS  Google Scholar 

  • Liu P, Rudick M, Anderson RG (2002) Multiple functions of caveolin-1. J Biol Chem 277:41295–41298

    Article  PubMed  CAS  Google Scholar 

  • Loberto N, Prioni S, Bettiga A et al (2005) The membrane environment of endogenous cellular prion protein in primary rat cerebellar neurons. J Neurochem 95:771–783

    Article  PubMed  CAS  Google Scholar 

  • Lu T-L, Kuo F-T, Lu T-J et al (2006) Negative regulation of protease-activated receptor 1-induced Src kinase activity by the association of phosphocaveolin-1 with Csk. Cell Signal 18:1977–1987

    Article  PubMed  CAS  Google Scholar 

  • Mastick C, Brady M, Saltiel A (1995) Insulin stimulates the tyrosine phosphorylation of caveolin. J Cell Biol 129:1523–1531. doi:10.1083/jcb.129.6.1523

    Article  PubMed  CAS  Google Scholar 

  • Miljan EA, Meuillet EJ, Mania-Farnell B et al (2002) Interaction of the extracellular domain of the epidermal growth factor receptor with gangliosides. J Biol Chem 277:10108–10113

    Article  PubMed  CAS  Google Scholar 

  • Miotti S, Tomassetti A, Facetti I et al (2005) Simultaneous expression of caveolin-1 and E-cadherin in ovarian carcinoma cells stabilizes adherens junctions through inhibition of src-related kinases. Am J Pathol 167:1411–1427

    Article  PubMed  CAS  Google Scholar 

  • Mitsuzuka K, Handa K, Satoh M et al (2005) A specific microdomain (“glycosynapse 3”) controls phenotypic conversion and reversion of bladder cancer cells through GM3-mediated interaction of alpha3beta1 integrin with CD9. J Biol Chem 280:35545–35553

    Article  PubMed  CAS  Google Scholar 

  • Miura Y, Kainuma M, Jiang H et al (2004) Reversion of the Jun-induced oncogenic phenotype by enhanced synthesis of sialosyllactosylceramide (GM3 ganglioside). Proc Natl Acad Sci USA 101:16204–16209

    Article  PubMed  CAS  Google Scholar 

  • Murata M, Peranen J, Schreiner R et al (1995) VIP21/caveolin is a cholesterol-binding protein. Proc Natl Acad Sci USA 92:10339–10343

    Article  PubMed  CAS  Google Scholar 

  • Nakashima H, Hamamura K, Houjou T et al (2007) Overexpression of caveolin-1 in a human melanoma cell line results in dispersion of ganglioside GD3 from lipid rafts and alteration of leading edges, leading to attenuation of malignant properties. Cancer Sci 98:512–520. doi:10.1111/j.1349-7006.2007.00419.x

    Article  PubMed  CAS  Google Scholar 

  • Ono M, Handa K, Withers DA et al (2000) Glycosylation effect on membrane domain (GEM) involved in cell adhesion and motility: a preliminary note on functional [alpha]3, [alpha]5-CD82 glycosylation complex in ldlD 14 cells. Biochem Biophys Res Commun 279:744–750

    Article  PubMed  CAS  Google Scholar 

  • Parton RG (1994) Ultrastructural localization of gangliosides; GM1 is concentrated in caveolae. J Histochem Cytochem 42:155–166

    Article  PubMed  CAS  Google Scholar 

  • Parton RG (1996) Caveolae and caveolins. Curr Opin Cell Biol 8:542–548

    Article  PubMed  CAS  Google Scholar 

  • Parton RG, Simons K (2007) The multiple faces of caveolae. Nat Rev Mol Cell Biol 8:185–194

    Article  PubMed  CAS  Google Scholar 

  • Pelkmans L, Zerial M (2005) Kinase-regulated quantal assemblies and kiss-and-run recycling of caveolae. Nature 436:128–133

    Article  PubMed  CAS  Google Scholar 

  • Pike LJ (2005) Growth factor receptors, lipid rafts and caveolae: an evolving story. Biochim Biophys Acta 1746:260–273

    Article  PubMed  CAS  Google Scholar 

  • Pike LJ, Han X, Gross RW (2005) Epidermal growth factor receptors are localized to lipid rafts that contain a balance of inner and outer leaflet lipids: a shotgun lipidomics study. J Biol Chem 280:26796–26804

    Article  PubMed  CAS  Google Scholar 

  • Prinetti A, Basso L, Appierto V et al (2003) Altered sphingolipid metabolism in N-(4-Hydroxyphenyl)- retinamide-resistant A2780 human ovarian carcinoma cells. J Biol Chem 278:5574–5583

    Article  PubMed  CAS  Google Scholar 

  • Prinetti A, Prioni S, Loberto N et al (2008) Regulation of tumor phenotypes by caveolin-1 and sphingolipid-controlled membrane signaling complexes. Biochim Biophys Acta 1780:585–596

    Article  PubMed  CAS  Google Scholar 

  • Prinetti A, Loberto N, Chigorno V et al (2009) Glycosphingolipid behaviour in complex membranes. Biochim Biophys Acta 1788:184–193

    Article  PubMed  CAS  Google Scholar 

  • Prinetti A, Aureli M, Illuzzi G et al (2010) GM3 synthase overexpression results in reduced cell motility and in caveolin-1 upregulation in human ovarian carcinoma cells. Glycobiology 20:62–77

    Article  PubMed  CAS  Google Scholar 

  • Razani B, Wang XB, Engelman JA et al (2002) Caveolin-2-deficient mice show evidence of severe pulmonary dysfunction without disruption of caveolae. Mol Cell Biol 22:2329–2344

    Article  PubMed  CAS  Google Scholar 

  • Ringerike T, Blystad FD, Levy FO et al (2002) Cholesterol is important in control of EGF receptor kinase activity but EGF receptors are not concentrated in caveolae. J Cell Sci 115:1331–1340

    PubMed  CAS  Google Scholar 

  • Rivaroli A, Prioni S, Loberto N et al (2007) Reorganization of prion protein membrane environment during low potassium-induced apoptosis in primary rat cerebellar neurons. J Neurochem 103:1954–1967

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez MI, Finbow ME, Alonso A (2000) Binding of human papillomavirus 16 E5 to the 16 kDa subunit c (proteolipid) of the vacuolar H+-ATPase can be dissociated from the E5-mediated epidermal growth factor receptor overactivation. Oncogene 19:3727–3732

    Article  PubMed  CAS  Google Scholar 

  • Roepstorff K, Thomsen P, Sandvig K et al (2002) Sequestration of epidermal growth factor receptors in non-caveolar lipid rafts inhibits ligand binding. J Biol Chem 277:18954–18960

    Article  PubMed  CAS  Google Scholar 

  • Rothberg KG, Heuser JE, Donzell WC et al (1992) Caveolin, a protein component of caveolae membrane coats. Cell 68:673–682

    Article  PubMed  CAS  Google Scholar 

  • Sargiacomo M, Sudol M, Tang Z et al (1993) Signal transducing molecules and glycosyl-phosphatidylinositol-linked proteins form a caveolin-rich insoluble complex in MDCK cells. J Cell Biol 122:789–807

    Article  PubMed  CAS  Google Scholar 

  • Scheiffele P, Verkade P, Fra AM et al (1998) Caveolin-1 and -2 in the exocytic pathway of MDCK cells. J Cell Biol 140:795–806

    Article  PubMed  CAS  Google Scholar 

  • Schlegel A, Lisanti MP (2000) A molecular dissection of caveolin-1 membrane attachment and oligomerization. Two separate regions of the caveolin-1 C-terminal domain mediate membrane binding and oligomer/oligomer interactions in vivo. J Biol Chem 275:21605–21617

    Article  PubMed  CAS  Google Scholar 

  • Schnitzer JE, McIntosh DP, Dvorak AM et al (1995) Separation of caveolae from associated microdomains of GPI-anchored proteins. Science 269:1435–1439

    Article  PubMed  CAS  Google Scholar 

  • Shah M, Patel K, Fried VA et al (2002) Interactions of STAT3 with caveolin-1 and heat shock protein 90 in plasma membrane raft and cytosolic complexes. Preservation of cytokine signaling during fever. J Biol Chem 277:45662–45669

    Article  PubMed  CAS  Google Scholar 

  • Shajahan AN, Timblin BK, Sandoval R et al (2004) Role of Src-induced Dynamin-2 phosphorylation in caveolae-mediated endocytosis in endothelial cells. J Biol Chem 279:20392–20400. doi:10.1074/jbc.M308710200

    Article  PubMed  CAS  Google Scholar 

  • Sharma DK, Brown JC, Choudhury A et al (2004) Selective stimulation of caveolar endocytosis by glycosphingolipids and cholesterol. Mol Biol Cell 15:3114–3122. doi:10.1091/mbc.E04-03-0189

    Article  PubMed  CAS  Google Scholar 

  • Singh RD, Marks DL, Holicky EL et al (2010) Gangliosides and beta1-integrin are required for caveolae and membrane domains. Traffic 11:348–360

    Article  PubMed  CAS  Google Scholar 

  • Smart EJ, Graf GA, McNiven MA et al (1999) Caveolins, liquid-ordered domains, and signal transduction. Mol Cell Biol 19:7289–7304

    PubMed  CAS  Google Scholar 

  • Song WX, Vacca MF, Welti R et al (1991) Effects of gangliosides GM3 and De-N-acetyl GM3 on epidermal growth factor receptor kinase activity and cell growth. J Biol Chem 266:10174–10181

    PubMed  CAS  Google Scholar 

  • Sonnino S, Prinetti A (2009) Sphingolipids and membrane environments for caveolin. FEBS Lett 583:597–606

    Article  PubMed  CAS  Google Scholar 

  • Sonnino S, Prinetti A, Mauri L et al (2006) Dynamic and structural properties of sphingolipids as driving forces for the formation of membrane domains. Chem Rev 106:2111–2125

    Article  PubMed  CAS  Google Scholar 

  • Sowa G, Pypaert M, Sessa WC (2001) Distinction between signaling mechanisms in lipid rafts vs. caveolae. Proc Natl Acad Sci USA 98:14072–14077

    Article  PubMed  CAS  Google Scholar 

  • Suprynowicz FA, Disbrow GL, Krawczyk E et al (2008) HPV-16 E5 oncoprotein upregulates lipid raft components caveolin-1 and ganglioside GM1 at the plasma membrane of cervical cells. Oncogene 27:1071–1078

    Article  PubMed  CAS  Google Scholar 

  • Svennerholm L (1980) Ganglioside designation. Adv Exp Med Biol 125:11

    PubMed  CAS  Google Scholar 

  • Tagami S, Inokuchi Ji J, Kabayama K et al (2002) Ganglioside GM3 participates in the pathological conditions of insulin resistance. J Biol Chem 277:3085–3092

    Article  PubMed  CAS  Google Scholar 

  • Thiele C, Hannah MJ, Fahrenholz F et al (2000) Cholesterol binds to synaptophysin and is required for biogenesis of synaptic vesicles. Nat Cell Biol 2:42–49

    Article  PubMed  CAS  Google Scholar 

  • Thomas CM, Smart EJ (2008) Caveolae structure and function. J Cell Mol Med 12:796–809

    Article  PubMed  CAS  Google Scholar 

  • Trimmer C, Whitaker-Menezes D, Bonuccelli G et al (2010) CAV1 inhibits metastatic potential in melanomas through suppression of the integrin/Src/FAK signaling pathway. Cancer Res 70:7489–7499

    Article  PubMed  CAS  Google Scholar 

  • Uittenbogaard A, Everson WV, Matveev SV et al (2002) Cholesteryl ester is transported from caveolae to internal membranes as part of a caveolin-annexin II lipid-protein complex. J Biol Chem 277:4925–4931

    Article  PubMed  CAS  Google Scholar 

  • Veracini L, Franco M, Boureux A et al (2006) Two distinct pools of Src family tyrosine kinases regulate PDGF-induced DNA synthesis and actin dorsal ruffles. J Cell Sci 119:2921–2934. doi:10.1242/jcs.03015

    Article  PubMed  CAS  Google Scholar 

  • Veracini L, Simon V, Richard V et al (2008) The Csk-binding protein PAG regulates PDGF-induced Src mitogenic signaling via GM1. J Cell Biol 182:603–614

    Article  PubMed  CAS  Google Scholar 

  • Wang X-Q, Sun P, Paller AS (2002) Ganglioside induces caveolin-1 redistribution and interaction with the epidermal growth factor receptor. J Biol Chem 277:47028–47034

    Article  PubMed  CAS  Google Scholar 

  • Wang XQ, Sun P, Paller AS (2003) Ganglioside GM3 blocks the activation of epidermal growth factor receptor induced by integrin at specific tyrosine sites. J Biol Chem 278:48770–48778

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Takaku S, Wang P et al (2006) Ganglioside GD1a regulation of caveolin-1 and Stim1 expression in mouse FBJ cells: augmented expression of caveolin-1 and Stim1 in cells with increased GD1a content. Glycoconj J 23:303–315

    Article  PubMed  CAS  Google Scholar 

  • Wang XQ, Yan Q, Sun P et al (2007) Suppression of epidermal growth factor receptor signaling by protein kinase C-alpha activation requires CD82, caveolin-1, and ganglioside. Cancer Res 67:9986–9995

    Article  PubMed  CAS  Google Scholar 

  • Wary KK, Mariotti A, Zurzolo C et al (1998) A requirement for caveolin-1 and associated kinase Fyn in integrin signaling and anchorage-dependent cell growth. Cell 94:625–634

    Article  PubMed  CAS  Google Scholar 

  • Waugh MG, Lawson D, Hsuan JJ (1999) Epidermal growth factor receptor activation is localized within low-buoyant density, non-caveolar membrane domains. Biochem J 337(Pt 3):591–597

    Article  PubMed  CAS  Google Scholar 

  • Waugh MG, Minogue S, Anderson JS et al (2001) Signalling and non-caveolar rafts. Biochem Soc Trans 29:509–511

    Article  PubMed  CAS  Google Scholar 

  • Westermann M, Leutbecher H, Meyer HW (1999) Membrane structure of caveolae and isolated caveolin-rich vesicles. Histochem Cell Biol 111:71–81

    Article  PubMed  CAS  Google Scholar 

  • Wiechen K, Diatchenko L, Agoulnik A et al (2001) Caveolin-1 is down-regulated in human ovarian carcinoma and acts as a candidate tumor suppressor gene. Am J Pathol 159:1635–1643

    Article  PubMed  CAS  Google Scholar 

  • Williams TM, Lisanti MP (2004) The caveolin proteins. Genome Biol 5:214

    Article  PubMed  Google Scholar 

  • Williams TM, Medina F, Badano I et al (2004) Caveolin-1 gene disruption promotes mammary tumorigenesis and dramatically enhances lung metastasis in vivo. Role of Cav-1 in cell invasiveness and matrix metalloproteinase (MMP-2/9) secretion. J Biol Chem 279:51630–51646

    Article  PubMed  CAS  Google Scholar 

  • Yao Y, Hong S, Zhou H et al (2009) The differential protein and lipid compositions of noncaveolar lipid microdomains and caveolae. Cell Res 19:497–506

    Article  PubMed  CAS  Google Scholar 

  • Yoon SJ, Nakayama K, Hikita T et al (2006a) Epidermal growth factor receptor tyrosine kinase is modulated by GM3 interaction with N-linked GlcNAc termini of the receptor. Proc Natl Acad Sci USA 103:18987–18991

    Article  PubMed  CAS  Google Scholar 

  • Yoon SJ, Nakayama K, Takahashi N et al (2006b) Interaction of N-linked glycans, having multivalent GlcNAc termini, with GM3 ganglioside. Glycoconj J 23:639–649

    Article  PubMed  CAS  Google Scholar 

  • Zhou Q, Hakomori S, Kitamura K et al (1994) GM3 directly inhibits tyrosine phosphorylation and de-N-acetyl-GM3 directly enhances serine phosphorylation of epidermal growth factor receptor, independently of receptor-receptor interaction. J Biol Chem 269:1959–1965

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by AIRC grant 2008 to S.S. and by FIRST 2009 grant to A.P., V.C. and S.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Prinetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Sonnino, S., Prioni, S., Chigorno, V., Prinetti, A. (2012). Interactions Between Caveolin-1 and Sphingolipids, and Their Functional Relevance. In: Sudhakaran, P., Surolia, A. (eds) Biochemical Roles of Eukaryotic Cell Surface Macromolecules. Advances in Experimental Medicine and Biology, vol 749. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3381-1_8

Download citation

Publish with us

Policies and ethics