Skip to main content

Engineered Glucose to Generate a Spectroscopic Probe for Studying Carbohydrate Biology

  • Conference paper
  • First Online:
Biochemical Roles of Eukaryotic Cell Surface Macromolecules

Abstract

Metabolic carbohydrate engineering by exogenously added monosaccharide supplement is a technique of importance for studying physiological role of various glycans. Additionally, it also has the potential of developing new drug molecules for specific targeting. Lack of a spectroscopic reporting moiety in carbohydrates makes understanding their biochemical and physiological role very difficult. Towards this goal, we have modified glucose, with a propargyl group, wherein an azido coumarinyl profluorophore has been linked by “click chemistry.” Here, we demonstrate the uptake and incorporation of this modified monosaccharide into bacteria, yeast and mammalian cells. We show that modification at C-2 (carbon numbered 2, according to IUPAC) position is tolerated best, and uptake is only slightly lower compared to glucose. In the presence of C-2-modified glucose, growth kinetics and cellular viability were also minimally affected in all the cell types used. Fluorescence spectroscopy of the labeled biomolecule and fluorescence imaging of the cells demonstrate that C-2-modified glucose is metabolically incorporated not only in the cell membrane but also accumulates in the nucleus. Such a fluorophore, incorporated into biomolecules, can be used as a tool to understand their structure–function relationship. Here, we show that the incorporation of such a fluorophore in a carbohydrate moiety may enable studying the physiological and biochemical processes associated with membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen Toby W (2007) Modeling charged protein side chains in lipid membranes. J Gen Physiol 130:237–240

    Article  PubMed  CAS  Google Scholar 

  • Aoki-Kinoshita KF (2008) An introduction to bioinformatics for glycomics research. PLoS Comput Biol 4:1–7

    Article  Google Scholar 

  • Buchardt J, SchiØdt CB, Krog-Jensen C et al (2000) Solid phase combinatorial library of phosphinic peptides for discovery of matrix metalloproteinase inhibitors. J Comb Chem 2:624–638

    Article  PubMed  CAS  Google Scholar 

  • Campbell CT, Yarema KJ (2005) Large-scale approaches for glycobiology. J Genome Biol 6:236. 1–236.7

    Google Scholar 

  • Campbell CT, Sampathkumar S-G, Yarema KJ (2007) Metabolic oligosaccharide engineering: perspectives, applications and future directions. J Mol Biosyst 3:187–194

    Article  CAS  Google Scholar 

  • Chang PV, Prescher JA, Hangauer MJ, Bertozzi CR (2007) Imaging cell surface glycans with bioorthogonal chemical reporters. J Am Chem Soc 129:8400–8401

    Article  PubMed  CAS  Google Scholar 

  • Dube DH, Bertozzi CR (2003) Metabolic oligosaccharide engineering as a tool for glycobiology. Curr Opin Chem Biol 7:616–625

    Article  PubMed  CAS  Google Scholar 

  • García-Alles LF, Zahn A, Erni B (2002) Sugar recognition by the glucose and mannose permeases of Escherichia coli steady-state kinetics and inhibition studies. Biochemistry 41:10077–10086

    Google Scholar 

  • Hotha S, Kashyap S (2006a) Propargyl glycosides as stable glycosyl donors: anomeric activation and glycoside syntheses. J Am Chem Soc 128:9620–9621

    Article  PubMed  CAS  Google Scholar 

  • Hotha S, Kashyap S (2006b) “Click chemistry” inspired synthesis of pseudo-oligosaccharides and amino acid glycoconjugates. J Org Chem 71:364–367

    Article  PubMed  CAS  Google Scholar 

  • Hotha S, Tripathi A (2005) Diversity oriented synthesis of tricyclic compounds from glycals using the Ferrier and the Pauson-Khand reactions. J Comb Chem 7:968–976

    Article  PubMed  CAS  Google Scholar 

  • Huisgen R (1984) 1,3-dipolar cycloadditions—introduction, survey, mechanism. In: Padwa A (ed) 1,3-Dipolar cycloadditions chemistry. Wiley, New York

    Google Scholar 

  • Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40:2004–2021

    Article  CAS  Google Scholar 

  • Laughlin ST, Agard NJ, Baskin JM et al (2006) Metabolic labeling of glycans with azido sugars for visualization and glycoproteomics. Methods Enzymol 415:230–250

    Article  PubMed  CAS  Google Scholar 

  • Lewis WG, Green LG, Grynszpan F, Sharpless KB (2002) Click chemistry in situ: acetylcholinesterase as a reaction vessel for the selective assembly of a femtomolar inhibitor from an array of building blocks. Angew Chem Int Ed 41:1053–1057

    CAS  Google Scholar 

  • Link AJ, Tirrell DA (2003) Cell surface labeling of Escherichia coli via copper (I)-catalyzed [3  +  2] cycloaddition. J Am Chem Soc 125:11164–11165

    Article  PubMed  CAS  Google Scholar 

  • Link AJ, Vink MKS, Tirrell DA (2004) Presentation and detection of azide functionality in bacterial cell surface proteins. J Am Chem Soc 126:10598–10602

    Article  PubMed  CAS  Google Scholar 

  • Mahal LK, Bertozzi CR (1997) Engineered cell surfaces: fertile ground for molecular landscaping. Chem Biol 4:415–422

    Article  PubMed  CAS  Google Scholar 

  • Mahal LK, Yarema KJ, Bertozzi CR (1997) Engineering chemical reactivity on cell surfaces through oligosaccharide biosynthesis. Science 276:1125–1128

    Google Scholar 

  • McAuliffe JC, Hindsgaul O (2000) Applications to medicine. Front Mol Biol 30:249–280

    CAS  Google Scholar 

  • Mehtap A-Q, Jerry E, Nathan S (2008) Not just for Eukarya anymore: protein glycosylation in Bacteria and Archaea. Curr Opin Struct Biol 18:544–550

    Google Scholar 

  • Miller GL (1958) Use of dinitrosaIicyIic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  Google Scholar 

  • Murrell MP, Yarema KJ, Levchenko A (2004) The systems biology of glycosylation. ChemBioChem 5:1334–1347

    Article  PubMed  CAS  Google Scholar 

  • Prescher JA, Bertozzi CR (2006) Chemical technologies for probing glycans. Cell 126:851–854

    Article  PubMed  CAS  Google Scholar 

  • Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) A stepwise Huisgen cycloaddition process: copper(Ι)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed 41:2596–2599

    Article  CAS  Google Scholar 

  • Rudd PM, Elliott T, Cresswell P, Wilson IA, Dwek RA (2001) Glycosylation and the immune system. Science 291:2370–2376

    Google Scholar 

  • Sadamoto R (2005) Artificial modification of bacterial surface with cell-wall engineering. Trends Glycosci Glycotechnol 17:97–105

    Google Scholar 

  • Sadamoto R, Niikura K, Sears PS et al (2002) Cell wall engineering of living bacteria. J Am Chem Soc 124:9018–9019

    Article  PubMed  CAS  Google Scholar 

  • Sadamoto R, Niikura K, Monde K, Nishimura S-I (2003) Cell wall engineering of living bacteria through biosynthesis. Methods Enzymol 362:273–286

    Article  PubMed  CAS  Google Scholar 

  • Sadamoto R, Niikura K, Ueda T et al (2004) Control of bacteria adhesion by cell wall engineering. J Am Chem Soc 126:3755–3761

    Article  PubMed  CAS  Google Scholar 

  • Sampathkumar SG, Li AV, Jones MB, Sun Z, Yarema KJ (2006) Metabolic installation of thiols into sialic acid modulates adhesion and stem cell biology. Nat Chem Biol 2:149–152

    Google Scholar 

  • Sawa M, Hsu T-L, Itoh T, Sugiyama M, Hanson SR, Vogt PK, Wong C-H (2006) Glycoproteomic probes for fluorescent imaging of fucosylated glycans in vivo. Proc Natl Acad Sci USA 103:12371–12376

    Article  PubMed  CAS  Google Scholar 

  • Saxon E, Bertozzi CR (2000) Cell surface engineering by a modified Staudinger reaction. Science 287:2007–2010

    Article  PubMed  CAS  Google Scholar 

  • Sharon N (1987) Bacterial lectins, cell-cell recognition and infectious disease. FEBS Lett 217:145–157

    Article  PubMed  CAS  Google Scholar 

  • Sharon N (2006) Carbohydrates as future anti-adhesion drugs for infectious diseases. Biochem Biophys Acta 1760:527–537

    Article  PubMed  CAS  Google Scholar 

  • Sivakumar K, Xie F, Cash BM et al (2004) A fluorogenic 1,3-dipolar cycloaddition reactions of 3-azidocoumarins and acetylenes. Org Lett 6:4603–4606

    Article  PubMed  CAS  Google Scholar 

  • Speers AE, Cravatt BF (2004) Profiling enzyme activities in vivo using click chemistry methods. Chem Biol 11:535–545

    Article  PubMed  CAS  Google Scholar 

  • Tai H-C, Kidekel N, Ficarro SB, Peters EC, Hsieh WLC (2004) Parallel identification of O-GlcNAc-modified proteins from cell lysates. J Am Chem Soc 126:10500–10501

    Article  PubMed  CAS  Google Scholar 

  • TornØe C, Christensen C, Meldal M (2002) Peptidotriazoles on solid phase: [1–3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem 67:3057–3064

    Article  PubMed  Google Scholar 

  • Varki A (1993) Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3:97–130

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Chan TR, Hilgraf R, Fokin VV, Sharpless KB, Finn MG (2003) Bioconjugation by copper (I)-catalyzed azide-alkyne [3  +  2] cycloaddition. J Am Chem Soc 125:3192–3193

    Article  PubMed  CAS  Google Scholar 

  • White DC, Frerman FE (1967) Extraction, characterization, and cellular localization of the Lipids of Staphylococcus aureus. J Bacteriol 94:1854–1867

    PubMed  CAS  Google Scholar 

  • Wuthier RE (1966) Purification of lipids from nonlipid contaminants on Sephadex bead Columns. J Lipid Res 7:558–561

    PubMed  CAS  Google Scholar 

  • Yarema KJ, Bertozzi CR (1998) Chemical approaches to glycobiology and emerging Carbohydrate-based therapeutic agents. Curr Opin Chem Biol 2:49–61

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Campbell RE, Ting AY, Tsien RY (2002) Creating new fluorescent probes for cell biology. Nat Rev Mol Cell Biol 3:906–918

    Article  PubMed  CAS  Google Scholar 

  • Zhou Z, Fahrni CJ (2004) A fluorogenic probe for the copper (I)-catalyzed azide-alkyne ligation reaction: modulation of the fluorescence emission via 3(n, ð*)-1(ð, ð*) inversion. J Am Chem Soc 126:8862–8863

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

SH thanks Director, NCL for financial support for LC-MS facility. The authors thank Dr. Sathyanarayana Gummadi for critical reading of the manuscript and encouragement. GKA thanks IIT Madras for the financial support. AT thanks the fellowship from CSIR-New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gopala Krishna Aradhyam or Srinivas Hotha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Tripathi, A., Singh, V., Aishwarya, K.G., Aradhyam, G.K., Hotha, S. (2012). Engineered Glucose to Generate a Spectroscopic Probe for Studying Carbohydrate Biology. In: Sudhakaran, P., Surolia, A. (eds) Biochemical Roles of Eukaryotic Cell Surface Macromolecules. Advances in Experimental Medicine and Biology, vol 749. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3381-1_21

Download citation

Publish with us

Policies and ethics