Skip to main content

Sphingolipid-Binding Domain in the Serotonin1A Receptor

  • Conference paper
  • First Online:
Biochemical Roles of Eukaryotic Cell Surface Macromolecules

Abstract

Sphingolipids are essential components of eukaryotic cell membranes and are responsible for important cellular functions. A characteristic feature of sphingolipid organization in cellular membranes is their segregation in membrane domains. Serotonin1A receptors are representative members of the superfamily of G-protein coupled receptors (GPCRs) and are implicated in the generation and modulation of various cognitive, developmental, and behavioral functions. We previously reported that sphingolipids are necessary for ligand binding and cellular signaling of the human serotonin1A receptor. Proteins that interact with (glyco)sphingolipids are reported to have a characteristic amino acid sequence, termed the “sphingolipid-binding domain” (SBD). We report here that the human serotonin1A receptor contains a putative SBD, corresponding to amino acids 99 to 109. Interestingly, our analysis shows that the SBD motif appears to be an inherent feature of the serotonin1A receptor and is conserved over natural evolution across various phyla. However, experiments with the 11-mer SBD peptide in model membranes utilizing intrinsic tryptophan fluorescence did not show significant binding, probably highlighting the importance of the overall “context” of the receptor architecture in lipid–GPCR interactions. These results constitute the first report of the presence of SBD in serotonin receptors and could provide novel insight into the molecular nature of GPCR–sphingolipid interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5-HT1A receptor:

5-Hydroxytryptamine-1A receptor

CRAC:

Cholesterol recognition/interaction amino acid consensus

DMPC:

Dimyristoyl-sn-glycero-3-phosphocholine

FB1 :

Fumonisin B1

GPCR:

G-protein coupled receptor

LED:

Light-emitting diode

LUV:

Large unilamellar vesicle

POPC:

1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine

SBD:

Sphingolipid-binding domain

Serotonin:

5-Hydroxytryptamine

References

  • Berezin MY, Achilefu S (2010) Fluorescence lifetime measurements and biological imaging. Chem Rev 110:2641–2684

    Article  PubMed  CAS  Google Scholar 

  • Brown RE (1998) Sphingolipid organization in biomembranes: what physical studies of model membranes reveal. J Cell Sci 111:1–9

    PubMed  CAS  Google Scholar 

  • Chakrabandhu K, Huault S, Garmy N, Fantini J, Stebe E, Mailfert S, Marguet D, Hueber A-O (2008) The extracellular glycosphingolipid-binding motif of Fas defines its internalization route, mode and outcome of signals upon activation by ligand. Cell Death Differ 15: 1824–1837

    Article  PubMed  CAS  Google Scholar 

  • Chattopadhyay A, Raghuraman H (2004) Application of fluorescence spectroscopy to membrane protein structure and dynamics. Curr Sci 87:175–179

    CAS  Google Scholar 

  • Dittmer JC, Lester RL (1964) Simple, specific spray for the detection of phospholipids on the thin-layer chromatograms. J Lipid Res 5:126–127

    CAS  Google Scholar 

  • Epand RM (2006) Cholesterol and the interaction of proteins with membrane domains. Prog Lipid Res 45:279–294

    Article  PubMed  CAS  Google Scholar 

  • Fantini J (2003) How sphingolipids bind and shape proteins: molecular basis of lipid- protein interactions in lipid shells, rafts and related biomembrane domains. Cell Mol Life Sci 60:1027–1032

    PubMed  CAS  Google Scholar 

  • Fantini J, Barrantes FJ (2009) Sphingolipid/cholesterol regulation of neurotransmitter receptor conformation and function. Biochim Biophys Acta 1788:2345–2361

    Article  PubMed  CAS  Google Scholar 

  • Fantini J, Yahi N (2011) Molecular basis for the glycosphingolipid-binding specificity of α-synuclein: key role of tyrosine 39 in membrane insertion. J Mol Biol 408:654–669

    Article  PubMed  CAS  Google Scholar 

  • Fantini J, Garmy N, Yahi N (2006) Prediction of glycolipid-binding domains from the amino acid sequence of lipid raft-associated proteins: application to HpaA, a protein involved in the adhesion of Helicobacter pylori to gastrointestinal cells. Biochemistry 45:10957–10962

    Article  PubMed  CAS  Google Scholar 

  • Gardier AM (2009) Mutant mouse models and antidepressant drug research: focus on serotonin and brain-derived neurotrophic factor. Behav Pharmacol 20:18–32

    Article  PubMed  CAS  Google Scholar 

  • Grinvald A, Steinberg IZ (1974) On the analysis of fluorescence decay kinetics by the method of least-squares. Anal Biochem 59:583–598

    Article  PubMed  CAS  Google Scholar 

  • Hebbar S, Lee E, Manna M, Steinert S, Kumar GS, Wenk M, Wohland T, Kraut R (2008) A fluorescent sphingolipid binding domain peptide probe interacts with sphingolipids and cholesterol-dependent raft domains. J Lipid Res 49:1077–1089

    Article  PubMed  CAS  Google Scholar 

  • Heilker R, Wolff M, Tautermann CS, Bieler M (2009) G-protein-coupled receptor- focused drug discovery using a target class platform approach. Drug Discov Today 14:231–240

    Article  PubMed  CAS  Google Scholar 

  • Holthuis JC, Pomorski T, Raggers RJ, Sprong H, van Meer G (2001) The organizing potential of sphingolipids in intracellular membrane transport. Physiol Rev 81:1689–1723

    PubMed  CAS  Google Scholar 

  • Hoyer D, Hannon JP, Martin GR (2002) Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav 71:533–554

    Article  PubMed  CAS  Google Scholar 

  • Huber T, Botelho AV, Beyer K, Brown MF (2004) Membrane model for the G-protein- coupled receptor rhodopsin: hydrophobic interface and dynamical structure. Biophys J 86:2078–2100

    Article  PubMed  CAS  Google Scholar 

  • Jacobson K, Mouritsen OG, Anderson RGW (2007) Lipid rafts: at a crossroad between cell biology and physics. Nat Cell Biol 9:7–14

    Article  PubMed  CAS  Google Scholar 

  • Jafurulla M, Pucadyil TJ, Chattopadhyay A (2008) Effect of sphingomylinase treatment on ligand binding activity of human serotonin1A receptors. Biochim Biophys Acta 1778:2022–2025

    Article  PubMed  CAS  Google Scholar 

  • Jafurulla M, Tiwari S, Chattopadhyay A (2011) Identification of cholesterol recognition amino acid consensus (CRAC) motif in G-protein coupled receptors. Biochem Biophys Res Commun 404:569–573

    Article  PubMed  CAS  Google Scholar 

  • Kalipatnapu S, Chattopadhyay A (2007) Membrane organization and function of the serotonin1A receptor. Cell Mol Neurobiol 27:1097–1116

    Article  PubMed  CAS  Google Scholar 

  • Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Book  Google Scholar 

  • Lampert RA, Chewter LA, Phillips D, O’Connor DV, Roberts AJ, Meech SR (1983) Standards for nanosecond fluorescence decay measurements. Anal Chem 55:68–73

    Article  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  PubMed  CAS  Google Scholar 

  • Li H, Papadopoulos V (1998) Peripheral-type benzodiazepine receptor function in cholesterol transport. Identification of a putative cholesterol recognition/interaction amino acid sequence and consensus pattern. Endocrinology 139:4991–4997

    Article  PubMed  CAS  Google Scholar 

  • MacDonald RC, MacDonald RI, Menco BP, Takeshita K, Subbarao NK, Hu LR (1991) Small-volume extrusion apparatus for preparation of large, unilamellar vesicles. Biochim Biophys Acta 1061:297–303

    Article  PubMed  CAS  Google Scholar 

  • Mahfoud R, Garmy N, Maresca M, Yahi N, Puigserver A, Fantini J (2002) Identification of a common sphingolipid-binding domain in Alzheimer, prion, and HIV-1 proteins. J Biol Chem 277:11292–11296

    Article  PubMed  CAS  Google Scholar 

  • Masserini M, Ravasi D (2001) Role of sphingolipids in the biogenesis of membrane domains. Biochim Biophys Acta 1532:149–161

    Article  PubMed  CAS  Google Scholar 

  • Matsubara T, Ishikawa D, Taki T, Okahata Y, Sato T (1999) Selection of ganglioside GM1-binding peptides by using a phage library. FEBS Lett 456:253–256

    Article  PubMed  CAS  Google Scholar 

  • McClare CWF (1971) An accurate and convenient organic phosphorus assay. Anal Biochem 39:527–530

    Article  PubMed  CAS  Google Scholar 

  • Merritt EA, Sarfaty S, van den Akker F, L’Hoir C, Martial JA, Hol WGH (1994) Crystal structure of cholera toxin B-pentamer bound to receptor GM1 pentasaccharide. Protein Sci 3:166–175

    Article  PubMed  CAS  Google Scholar 

  • Mutoh T, Tokuda A, Miyadai T, Hamaguchi M, Fujiki N (1995) Ganglioside GM1 binds to the Trk protein and regulates receptor function. Proc Natl Acad Sci USA 92:5087–5091

    Article  PubMed  CAS  Google Scholar 

  • Nick Pace C, Vajdos F, Fee L, Grimsley G, Gray T (1995) How to measure and predict the molar absorption coefficient of a protein. Protein Sci 4:2411–2423

    Article  Google Scholar 

  • O’Connor DV, Philips D (1984) Time-correlated single photon counting. Academic, London, pp 180–189

    Google Scholar 

  • Paila YD, Chattopadhyay A (2010) Membrane cholesterol in the function and organization of G-protein coupled receptors. Subcell Biochem 51:439–466

    Article  PubMed  CAS  Google Scholar 

  • Paila YD, Murty MRVS, Vairamani M, Chattopadhyay A (2008) Signaling by the human serotonin1A receptor is impaired in cellular model of Smith-Lemli-Opitz Syndrome. Biochim Biophys Acta 1778:1508–1516

    Article  PubMed  CAS  Google Scholar 

  • Paila YD, Ganguly S, Chattopadhyay A (2010) Metabolic depletion of sphingolipids impairs ligand binding and signaling of human serotonin1A receptors. Biochemistry 49:2389–2397

    Article  PubMed  CAS  Google Scholar 

  • Paila YD, Tiwari S, Sengupta D, Chattopadhyay A (2011) Molecular modeling of the human serotonin1A receptor: role of membrane cholesterol in ligand binding of the receptor. Mol Biosyst 7:224–234

    Article  PubMed  CAS  Google Scholar 

  • Peroutka SJ, Howell TA (1994) The molecular evolution of G Protein-coupled receptors: focus on 5-hydroxytryptamine receptors. Neuropharmacology 33:319–324

    Article  PubMed  CAS  Google Scholar 

  • Pierce KL, Premont RT, Lefkowitz RJ (2002) Seven-transmembrane receptors. Nat Rev Mol Cell Biol 3:639–650

    Article  PubMed  CAS  Google Scholar 

  • Prendergast FG (1991) Time-resolved fluorescence techniques: methods and applications in biology. Curr Opin Struct Biol 1:1054–1059

    Article  CAS  Google Scholar 

  • Pucadyil TJ, Chattopadhyay A (2004) Cholesterol modulates the ligand binding and G- protein coupling to serotonin1A receptors from bovine hippocampus. Biochim Biophys Acta 1663:188–200

    Article  PubMed  CAS  Google Scholar 

  • Pucadyil TJ, Chattopadhyay A (2007) Cholesterol: a potential therapeutic target in Leishmania infection? Trends Parasitol 23:49–53

    Article  PubMed  CAS  Google Scholar 

  • Pucadyil TJ, Kalipatnapu S, Chattopadhyay A (2005) The serotonin1A receptor: a representative member of the serotonin receptor family. Cell Mol Neurobiol 25:553–580

    Article  PubMed  CAS  Google Scholar 

  • Renner U, Glebov K, Lang T, Papusheva E, Balakrishnan S, Keller B, Richter DW, Jahn R, Ponimaskin E (2007) Localization of the mouse 5-hydroxytryptamine1A receptor in lipid microdomains depends on its palmitoylation and is involved in receptor-mediated signaling. Mol Pharmacol 72:502–513

    Article  PubMed  CAS  Google Scholar 

  • Riethmüller J, Riehle A, Grassmé H, Gulbins E (2006) Membrane rafts in host-pathogen interactions. Biochim Biophys Acta 1758:2139–2147

    Article  PubMed  Google Scholar 

  • Rosenbaum DM, Rasmussen SGF, Kobilka BK (2009) The structure and function of G protein-coupled receptors. Nature 459:356–363

    Article  PubMed  CAS  Google Scholar 

  • Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39

    Article  PubMed  CAS  Google Scholar 

  • Simons K, van Meer G (1988) Lipid sorting in epithelial cells. Biochemistry 27:6197–6202

    Article  PubMed  CAS  Google Scholar 

  • Sjögren B, Svenningsson P (2007) Depletion of the lipid raft constituents, sphingomyelin and ganglioside, decreases serotonin binding at human 5-HT7(a) receptors in HeLa cells. Acta Physiol 190:47–53

    Article  Google Scholar 

  • Snook CF, Jones JA, Hannun YA (2006) Sphingolipid-binding proteins. Biochim Biophys Acta 1761:927–946

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Council of Scientific and Industrial Research, India (A.C.), and Centre National de la Recherche Scientifique, France (J.F.). Y.D.P. was the recipient of a Postdoctoral Fellowship from a CSIR Network project on Nanomaterials and Nanodevices (NWP0035). P.S. thanks the Council of Scientific and Industrial Research for the award of a Senior Research Fellowship. A.C. is an Adjunct Professor at the Special Centre for Molecular Medicine of Jawaharlal Nehru University (New Delhi, India) and Indian Institute of Science Education and Research (Mohali, India), and Honorary Professor of the Jawaharlal Nehru Centre for Advanced Scientific Research (Bangalore, India). A.C. gratefully acknowledges support from J.C. Bose Fellowship (Department of Science and Technology, Govt. of India). We thank Sourav Haldar for helpful discussion and members of A.C.’s research group for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amitabha Chattopadhyay or Jacques Fantini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Chattopadhyay, A., Paila, Y.D., Shrivastava, S., Tiwari, S., Singh, P., Fantini, J. (2012). Sphingolipid-Binding Domain in the Serotonin1A Receptor. In: Sudhakaran, P., Surolia, A. (eds) Biochemical Roles of Eukaryotic Cell Surface Macromolecules. Advances in Experimental Medicine and Biology, vol 749. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3381-1_19

Download citation

Publish with us

Policies and ethics