Skip to main content

Apoptosis of Breast Cancer Cells: Modulation of Genes for Glycoconjugate Biosynthesis and Targeted Drug Delivery

  • Conference paper
  • First Online:
Biochemical Roles of Eukaryotic Cell Surface Macromolecules

Part of the book series: Advances in Experimental Medicine and Biology ((volume 749))

Abstract

Evidence indicates that blood group-related Lewis (Le) antigens (glycosphingolipids: GSLs and Glycoproteins: GPs) are tumor-associated cell surface molecules. The Lea, Leb, LeX, LeY, and their sialosyl-derivatives, all N-acetylglucosaminyl-containing glycoconjugate antigens, are overexpressed on the surfaces of breast, colon, and ovarian cancer cells during metastasis. A few inhibitors of GSLs (l-/d-PPMP) and DNA (cisplatin) biosynthesis, betulinic acid (a herbal origin of a triterpenoid used for cancer treatment in China), melphalan, and disialosylgangliosides (GD3 and GD1b) induced apoptosis (intrinsic mitochondrial or extrinsic receptor-mediated pathways) in human breast (SKBR-3, MCF-7, and MDA-468) and colon (Colo-205) cells. These chemicals are suggested to be potential anticancer drugs. In this review, we try to compare our recent observations with reported observations from many other laboratories. We discuss the induction of apoptosis in breast and other cancer cells by various new chemicals. We also discuss the biosynthesis and regulation of GSLs in nonapoptotic and apoptotic cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • American Cancer Society http://www.cancer.org/Research/CancerFactsFigures

  • Araki S, Eitel JA, Batuello CN, Bijangi-Vishehsaraei K, Xie XJ, Danielpour D, Pollok KE, Boothman DA, Mayo LD (2010) TGF-beta1-induced expression of human Mdm2 correlates with late-stage metastatic breast cancer. J Clin Invest 120(1):290–302

    Article  PubMed  CAS  Google Scholar 

  • Arsawang U, Saengsawang O, Rungrotmongkol T, Sornmee P, Remsungnen T, Hannongbua S (2010) How do carbon nanotubes serve as carriers for gemcitabine transport in a drug delivery system? J Mol Graph Model 29(1–8):591–598

    PubMed  Google Scholar 

  • Arunkumar E, Fu N, Smith BD (2006) Squarine-derived rotaxanes: highly stable, fluorescent near-IR dyes. Chemistry 12(17):4684–4690

    Article  PubMed  CAS  Google Scholar 

  • Balabhadrapatharuni S, Santhakumaran LM, Tjomas TJ, Shirahata A, Gallo MA, Thomas T (2005) Bis(ethyl)norspermine potentiate4s the apoptotic activity of the pure antieestrogen ICI 182780 in breast cancer cells. Oncol Rep 13(1):101–108

    Google Scholar 

  • Banerjee M, Singh P, Panda D (2010) Curcumin suppresses the dsynamic instability of microtubles activates the mitotic checkpoint and induces apoptosis in MCF-7 cells. FEBS J 277(16): 3437–3448

    Article  PubMed  CAS  Google Scholar 

  • Banerjee A, Lang JY, Hung M-C, Sengupta K, Banerjee SK, Bakshi K, Banerjee DK (2011) Unfolded protein response is required in Nu/Nu mice microvasculature for treating breast tumor with Tunicamycin. J Biol Chem 286(33):29127–29138

    Google Scholar 

  • Basu SC (1991) The serendipity of ganglioside biosynthesis: pathway to CARS and HY-CARS glycosyltransferases. Glycobiology 1(5):469–475

    Article  PubMed  CAS  Google Scholar 

  • Basu M, Basu S (1972) Enzymatic synthesis of a tetraglycosylceramide by a galactosyltransferase from rabbit bone marrow. J Biol Chem 247(5):1489–1495

    PubMed  CAS  Google Scholar 

  • Basu M, Basu S (1973) Enzymatic synthesis of a blood group B related pentaglycosyl -ceramide by an alpha-galactosyltransferase from rabbit bone marrow. J Biol Chem 248(5):1700–1706

    PubMed  CAS  Google Scholar 

  • Basu S, Basu M (1982) Expression of glycolipid glycosyltransferases in development and transformation. In: Horowitz M (ed) Glycoconjugates, vol 3. Academic, New York, pp 265–285

    Google Scholar 

  • Basu M, Basu S (2002) Micelles and liposomes in metabolic enzymes and glycolipid glycosyltransferase assays. In: Basu SC, Basu M (eds) Liposome methods and protocols. Humana, Totowa, NJ, pp 107–130

    Google Scholar 

  • Basu S, Kaufman B, Roseman S (1973) Enzymatic synthesis of glucocerebroside by a glucosyltransferase from embryonic chicken brain. J Biol Chem 248(4):1388–1394

    PubMed  CAS  Google Scholar 

  • Basu M, De T, Das K, Kyle JW, Chon HC, Schaeper RJ, Basu S (1987) Glycosyltransferases involved in glycolipid biosynthesis. In: Ginsburg V (ed) Methods in enzymology. Academic Press, New York, pp 575–607

    Google Scholar 

  • Basu M, Hawes JW, Li Z, Ghosh S, Khan FA, Zhang BJ, Basu S (1991) Biosynthesis in vitro of SA-LeX and SA-diLeX by alpha 1-3 fucosyltransferases from colon carcinoma cells and embryonic brain tissues. Glycobiology 1(5):527–535

    Article  PubMed  CAS  Google Scholar 

  • Basu S, Basu M, Dastgheib S, Hawes JW (1999) Biosynthesis and regulation of glycosphingolipids. In: Meth-Cohn O, Pinto BM, Barton DHR, Nakanishi K (eds) Comprehensive natural products chemistry. Pergamon, New York, pp 107–128

    Chapter  Google Scholar 

  • Basu S, Das K, Basu M (2000) Glycosyltransferase in glycosphingolipid biosynthesis. In: Ernst B, Sinay P, Hart G (eds) Oligosaccharides in chemistry and biology—a comprehensive handbook. Wiley-VCH Verlag Gmbh, Germany, pp 329–347

    Google Scholar 

  • Basu S, Ma R, Mikulla B, Bradley M, Moulton C, Basu M, Banerjee S, Inokuchi J (2004) Apoptosis of human carcinoma cells in the presence of inhibitors of Glycosphingolipid biosynthesis: I. Treatment of Colo-205 and SKBR3 cells with isomers of PDMP and PPMP. Glycoconj J 20(3):157–168

    Google Scholar 

  • Basu S, Ma R, Boyle PJ, Mikulla B, Bradley M, Smith B, Basu M, Banerjee S (2004b) Apoptosis of human carcinoma cells in the presence of potential anti-cancer drugs: III. Treatment of Colo-205 and SKBR3 cells with: cis -Platin, Tamoxifen, Melphalan, Betulinic acid, L-PDMP, L-PPMP, and GD3 ganglioside. Glycoconj J 20(9):563–577

    Article  PubMed  CAS  Google Scholar 

  • Basu S, Ma R, Basu M, Goodson H, Smith B, Banerjee S (2004) In: Haldar Das SK (ed) Glycosphingolipid metabolism and signaling in apoptotic cancer cells, lipids: sphingolipid metabolizing enzymes. Research Signpost, India, pp 81–100

    Google Scholar 

  • Beq S, Rizwan M, Sheikh AM, Hasnain MS, Anwer K, Kohli K (2011) Advancement in carbon nanotubes: basics, biomedical applications and toxicity. J Pharm Pharmacol 63(2):141–163

    Google Scholar 

  • Blagosklonny MV (2000) Cell death beyond apoptosis. Leukemia 14(8):1502–8

    Article  PubMed  CAS  Google Scholar 

  • Boyle PJ, Ma R, Tuteja N, Banerjee S, Basu S (2006) Apoptosis of human breast carcinoma cells in the presence of cis-platin and L-/D-PPMP: IV. Modulation of replication complexes and glycolipid: glycosyltransferases. Glycoconj J 23(3–4):175–187

    Google Scholar 

  • Bzesk W, Stepulak A, Szymanski M, Sifringer M, Welkksza K Zdzisinska B, Kandefer-Szerszen M (2006) Betulinic acid decreases expression of bcl-2 and cyclin D1. Inhibhits proliferation, migration, and induces apoptosis in cancer cells. Nauyn Schmiedebergs Arch Pharmacol 374(1):11–20

    Google Scholar 

  • Bzesk W, Stepulak A, Szymanski M, Sifringer M, Welkksza K Zdzisinska B, Kandefer-Szerszen M (2006) Betulinic acid decreases expression of bcl-2 and cyclin D1 inhibits proliferation, migration, and induces apoptosis in cancer cells. Nauyn Schmiedebergs Arch Pharmacol 374(1):11–20

    Google Scholar 

  • Camarillo IG, Nichol M, Zheng M, Sonnenburg D, Sundarajan R (2008) Electro-endocrine combination therapy for aggressive breast tumors. J Electrostat 66:99–106

    Article  Google Scholar 

  • Castor TP (2011) Phospholipid nanosomes. Curr Drug Deliv 2(4):1567–2018

    Google Scholar 

  • Cazet A, Lefebvre J, Adriaenssens E, Julien S, Bobowski H, Grigoriads A, Tutt A, Tulasne D, LeBourhis X, Delannoy P (2010) GD3 synthase expression enhances proliferation and tumor growth of MDA-MB-231 breast cancer cells through c-met activation. Mol Cancer Res 8(11):1526–35

    Article  PubMed  CAS  Google Scholar 

  • Chaouki W, Leger DY, Eliastimi JL, Hmamouchi M (2010) Antiproliferative effect of extracts from Aristolochia baetica and Origanum compactumm on human breast cancer cell line MCF-7. Pharm Biol 48(3):269–74

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee S, Cleveland T, Shi WY, Inokuchi J, Radin NS (1996) Studies of the action of ceramide-like substances (D- and LPDMP) on sphingolipid glycosyltransferases and purified lactosylceramide synthase. Glycoconj J 13(3):481–486

    Article  PubMed  CAS  Google Scholar 

  • Chou CC, Yang JS, Lu HF, Ip SW, Lo C, Wu CC, Lin JP, Tang NNY, Chung JG, Chou MJ, Teng YH, Chen DR (2010) Quercetin-mediated cell cycle arrest and apoptosis involving activation of a Caspase cascade through mitochondrial pathway in human breast cancer MCF-7 cells. Arch Pharm Res 33(8):1181–91

    Article  PubMed  CAS  Google Scholar 

  • Chung YL, Sheu ML, Yang SC, Lin CH, Yen SH (2002) Resistance to tamoxifen-induced apoptosis is associated with direct interaction between Her2/neu and cell membrane estrogen receptor in breast cancer. Int J Cancer 97(3):306–312

    Article  PubMed  CAS  Google Scholar 

  • Daniotti JL, Zurita AR, Trindade VM, Maccioni HJ (2002) GD3 expression in CHO-K1 cells increases growth rate, induces morphological changes, and affects cell-substrate interactions. Neurochem Res 27:1421–9

    Article  PubMed  CAS  Google Scholar 

  • de Graauw M, van Miltenburg MH, Schmidt MK, Pont C, Lalai R, Kartopawiro J, Pardali E, Le Devedec SE, Smit VT, van der Wal A, Van’t Veer LJ, Cleton-Jansen AM, ten Dijke P, van de Water B (2010) Annexin A1 regulates TGF-beta signaling and promotes metastasis formation of basal-like breast cancer cells. Proc Natl Acad Sci USA 107(14):6340–6345

    Google Scholar 

  • Deng B, Yang X, Liu J, He F, Zhu Z, Zhang C (2010) Focal adhesion kinase mediates TGF-beta1-induced renal tubular epithelial-to-mesenchymal transition in vitro. Mol Cell Biochem 340(1–2):21–9

    Article  PubMed  CAS  Google Scholar 

  • Distefano M, Scambia G, Ferini C, Gallo D, De Vincenzo R, Fillippini P, Riva A, Bombardelli E, Mancuso S (1998) Antitumor activity of paclitaxel (taxol) analogues on MDR-positive human cancer cells. Anticancer Drug Des 13(5):489–499

    PubMed  CAS  Google Scholar 

  • Domingo-Domenech J, Pippa R, Tapia M, Gascon P, Bachs O, Bosch M (2008) Inactivation of NF-kappaB by proteasome inhibition contributes to increased apoptosis induced by histone deacetylase inhibitors in human breast cancer cells. Breast Cancer Res Treat 112(1):53–62

    Article  PubMed  CAS  Google Scholar 

  • Drazba J, Pierce M, Lemmon V (1991) Studies of the developing chick retina using monoclonal antibody 8A2 that recognizes a novel set of gangliosides. Dev Biol 145(1):154–163

    Article  PubMed  CAS  Google Scholar 

  • Ellerby HM, Arap W, Ellerby LM, Kain R, Andrusiak R, Rio GD, Krajewski S, Lomkbardo CR, Rao R, Ruosalahti, Bredessen DE, Pasqualini R (1999) Anti-cancer activity of targeted proapoptotic peptides. Nat Med 5(9i):1032–1038

    Google Scholar 

  • Ellerby HM, Arap W, Ellerby LM, Kain R, Andrusiak R, Rio GD, Krajewski S, Lomkbardo CR, Rao R, Ruosalahti, Bredessen DE, Pasqualini R (2009) Anti-cancer activity of targeted proapoptotic Peptides. Nat Med 5(9i):1032–1038

    Google Scholar 

  • Elton GF, Gu J, Slater LM, Hara K, Jacobs JW (2000) Tumor apoptosis induced by epoxide-containing piperazines a new class of anti-cancer agents. Cancer Chemother Pharmacol 45(3):183–191

    Google Scholar 

  • Fredman P, Nilsson O, Svennerholm L, Myrvold H, Persson B, Pettersson S, Holmgren J, Lindhom L (1983) Colorectal carcinomas have a characteristic ganglioside pattern. Med Biol 61(1):45–8

    PubMed  CAS  Google Scholar 

  • Fredman P, Dumanski J, Davidsson P, Svennerholm L, Collins VP (1990) Expression of the ­ganglioside GD3 in human meningiomas is associated with monosomy of chromorome 22. J Neurochem 55:1838–1840

    Article  PubMed  CAS  Google Scholar 

  • Fromigue O, Lagneaux L, Body JJ (2003) Bisphosphonates induce breast cancer cell death in vitro. J Bone Miner Res 15(11):2211–2221

    Google Scholar 

  • Fulda S, Friesen C, Los M, Mier W, Benedict M, Nunez G, Krammer PH, Peter ME, Debatin KM (1997) Betulinic acid triggers CD95 (APO-1/Fas)- and p53- independent apoptosis via activation of caspases in neurroectodermal tumors. Cancer Res 37:4956–4964

    Google Scholar 

  • Ghosh S, Bell R (2002) Liposomes: applications and protein-lipid interaction studies. In: Basu SC, Basu M (eds) Liposome methods and protocols. Humana, Totowa, NJ, pp 49–60

    Google Scholar 

  • Goldoni S, Seidler DG Health J, Fassan M, Baffa R, Thakur ML, Owens RT, McQuillan DJ, Lozzo R (2008) An antimetastatic role for Decorin in breast cancer. Am J Pathol 173(3):844–855

    Google Scholar 

  • Guo J, Zhou J, Ying X, Men Y, Li RJ, Zhang Y, Du J, Tian W, Yao HJ, Wang XX, Ju RJ, Lu WL (2010) Effects of stealth liposomal daunorubicin plus tanmoxifen on the breast cancer and cancer stem cells. J Pharm Sci 13(2):136–151

    CAS  Google Scholar 

  • Han EK, Aber N, Yamamoto H, Lim JT, Delohery T, Pamukcu R, Piazza GA, Xing WQ, Weynstein IB (1998) Effects of sulindac and its metabolites on growth and apoptosis in human mammary epithelial and breast carcinoma cell lines. Breast Cancer Res Treat 48(3):195–203

    Article  PubMed  CAS  Google Scholar 

  • Hansen CM, Hansen D, Holm PK, Larson R, Binderup L (2000) Cyanoguanidine CHS 828 induces programmed cell death with apoptotic feature in human breast cancer cells in vitro. Anticancer Res 20(6B):4211–4220

    Google Scholar 

  • Hatasukari I, Hitosugi N, Matsumoto I, Nagasaka H, Sakagami I (2003) Induction of early apoptosis marker by morphine in human lung and breast carcinoma cell lines. Anticancer Res 239(2B):2413–2417

    Google Scholar 

  • Heney M, Alipour M, Vergidis D, Omri A, Mugabe C, Th’ng J, Suntres Z (2010) Effectiveness of liposomal pacletaxel against MCF-7 breast cancer cells. Can J Physiol Pharmacol 88(12): 1172–1180

    Google Scholar 

  • Higashi H, Basu M, Basu S (1985) Biosynthesis in vitro of disialosylneolacto- tetraosyl- ceramide by a solubilized sialyltransferase from embryonic chicken brain. J Biol Chem 260(2): 824–828

    Google Scholar 

  • Holm M, Mansson JE, Vanier MT, Svennerholm L (1972) Gangliosides of human, bovine and rabbit retina. Biochim Biophys Acta 280:356–364

    Article  PubMed  CAS  Google Scholar 

  • Huang WS, Chin CC, Chen CN, Kuo YH, Chen TC, Yu HR, Tung SY, Shen CH, Hsieh YY, Guo SE, Shi CS, Liu TJ, Kuo HC (2011) Stromal cell-derived factor-1/CXC receptor 4 and b1 integrin interaction regulates urokinase-type plasminogen activator expression on human colorectal cancer cells. J Cell Physiol. doi: 10.1002/jcp. 22831

    Google Scholar 

  • Ito H, Murakami M, Furuhata A, Gao S, Yoshida K, Sobue S, Hagiwara K, Takagi A, Kojima T, Banno Y, Tanaka K, Tamiya-Koizumi K, Kyogashima M, Nozawa Y, Murate T (2009) Transcriptional regulation of neutral sphingomyelinase 2 gene expression of a human breast cancer cell line, MCF-7 induced by the anti-cancer drug, daunorubicin. Biochim Biophys Acta 1789(11–12):681–690

    PubMed  CAS  Google Scholar 

  • Jada SR, Mathews C, Saad MS, Hamzah AS, Lajis NH, Stevens MF, Stanslas J (2008) Benzylidine derivatives of andrographolide inhibit growth of breast and colon cancer cells in vitro by inducing G(1) arrest and apoptosis. Br J Pharmacol 155(5):641–654

    Article  PubMed  CAS  Google Scholar 

  • Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119(6):1420–8

    Article  PubMed  CAS  Google Scholar 

  • Kaufman B, Basu S, Roseman S (1968) Enzymatic synthesis of disialogangliosidees from monosialogangliosides by sialyltransferases from embryonic chicken brain. J Biol Chem 243:5804–5806

    PubMed  CAS  Google Scholar 

  • Keenan TW, Morre JD, Basu S (1974) Ganglioside biosynthesis: concentration of glycolipid glycosyltransferases in Golgi apparatus from rat liver. J Biol Chem 249:410–416

    Google Scholar 

  • Kessler JH, Mullauer FB, de Roo GM, Medema JP (2007a) Broad in vitro efficacy of plant-derived Betulinic acid against cell lines derived from the most prevent human cancer types. Cancer Lett 251(1):132–145

    Google Scholar 

  • Kessler JH, Mullauer FB, de Roo GM, Medema JP (2007b) Broad in vitro efficacy of plant-derived Betulinic acid against cell lines derived from the most prevent human cancer types. Cancer Lett 251(1):132–145

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi N, Narimatsu H (2006) Bioinformatics for comprehensive finding and analysis of glycosyltransferases. Biochim Biophys Acta 1760(4):578–583

    Article  PubMed  CAS  Google Scholar 

  • Kim DY, Kang SH, Ghil SH (2010) Circium japonicum extract induces apoptosis and anti-proliferation in the human breast cancer cell line MCF-. Mol Med Rep 3(3):427–432

    Article  CAS  Google Scholar 

  • Kostrzewa RM (2000) Review of apoptosis vs. necrosis of substantia nigra pars compacta in Parkinson’s disease. Neurotox Res 2(2–3):239–50

    Article  PubMed  CAS  Google Scholar 

  • Koulov AV, Stucker KA, Lakshmi C, Robinson JP, Smith BD (2003) Detection of apoptotic cells using a synthetic fluorescent sensor for membrane surfaces that contain phosphatidylserine. Cell Death Differ 10(12):1357–1359

    Article  PubMed  CAS  Google Scholar 

  • Kroes RA, He H, Emmett MR, Nilsson CL, Leach III FE, Amster IJ, Marshall AG, Moskal JR (2011) Overexpression of ST6GalNAcV, a gangliposide-specific alpha-2,6-sialyltransferase, inhibits glioma growth in vivo. Proc Nartl Acad Sci USA 107(28):12646–12651

    Google Scholar 

  • Kruger JS, Reddy KB (2003) Distinct mechanisms mediate the initial and sustained phases of cell migration in epidermal growth factor receptor-overexpressing cells. Mol Cancer Res 11:801–809

    Google Scholar 

  • Laezza C, Malfitano AM, DiMatola T, Ricchi P, Bifulco M (2010) Involvement of Akt/NF-kappaB pathway in N6-isopentenyladenosine-induced apoptosis in human breast cancer cells. Mol Carcinog 49(10):892–901

    Article  PubMed  CAS  Google Scholar 

  • Laszczyk MN (2009) Pentacyclic triterpenes of the lupine, oleanane and ursane group as tools in cancer therapy. Planta Med 75(15):1549–1560

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Moon HJ, Lee JM, Joo CK (2010) Smad3 regulates Rho signaling via NET1 in the transforming growth factor-beta-induced epithelial-mesenchymal transition of human retinal pigment epithelial cells. J Biol Chem 285(34):26618–27

    Article  PubMed  CAS  Google Scholar 

  • Leung E, Kim JE, Rewcastle GW, Finlay GJ, Baguley BC (2011) Comparison of the effects of the P13K/mTOR inhibitors NVP-BEZ235 and GSK2126458 on tamoxifen-resistant breast cancer cells. Cancer Biol Ther 11(11):938–46

    Article  PubMed  CAS  Google Scholar 

  • Li Y, He K, Huang Y, Zheng D, Gap C, Jin YH (2010a) Betulin induces mitochondrial cytochrome c release associated apoptosis in human cancer cells. Mol Carcinog 49(7):630–640

    Google Scholar 

  • Li Y, He K, Huang Y, Zheng D, Gap C, Jin YH (2010b) Betulin induces mitochondrial cytochrome c release associated apoptosis in human cancer cells. Mol Carcinog 49(7):630–640

    PubMed  CAS  Google Scholar 

  • Li S, Goins B, Phillips WT, Saenz M, Otto PM, Bao A (2011) Post-humpectomy intracavitary retenation and lymph node targeting of (99m)Tc-encapsulated liposomes in nude rats with breast cancer xenograft. Breast Cancer Res Treat 130(1):97–107

    Article  PubMed  CAS  Google Scholar 

  • Lu PH, Kung FL, Kug SC, Chueh SC, Guh JH (2006) Investigation of anti-tumor mechanisms of k2154:characterization of tubulin isotypes, mitotic arrest and apoptotic machinery. Nauyn Schmiedebergs Arch Pharmacol 374(3):223–233

    Google Scholar 

  • Ma R (2008) Apoptosis of breast and colon carcinoma cells by inhibitors of glycolipid and DNA biosynthesis. Ph.D. Thesis, University of Notre Dame, Notre Dame, p. 272

    Google Scholar 

  • Ma R, Koulov A, Moulton C, Basu M, Banerjee S, Goodson H, Basu S (2004) Apoptosis of human breast carcinoma cells in the presence of disialosyl gangliosides: II. Treatment of SKBR3 cells with GD3 and GD1b gangliosides. Glycoconj J 20(5):319–330

    Google Scholar 

  • Ma R, Decker NM, Anilas V, Moskal JR, Burgdor J, Johnson JR, Basu M, Banerjee S, Basu S (2009) Post-translational and transcriptional regulation of glycolipid glycosyltransferase genes in apoptotic breast carcinoma cells: VII. Studied by DNA-microarray after treatment with L-PPMP. Glycoconj J 26:647–661

    Google Scholar 

  • Ma R, Hopp EA, Decker MN, Loucks AJ, Johnson JR, Moskal JR, Basu M, Banerjee S, Basu S (2011) Regulation of glycosyltransferase genes in apoptotic breast cancer cells induced by L-PPMP and cis-Platin. In: Proceedings of the molecular immunology cancer congress (MICC-3). Advances in experimental biology. Springer, New York, pp 699–714

    Google Scholar 

  • Malisan F, Testi R (2002a) GD3 ganglioside and apoptosis. Biochim Biophys Acta 1585:179–87

    Article  PubMed  CAS  Google Scholar 

  • Malisan F, Testi R (2002b) GD3 in cellular ageing and apoptosis. Exp Gerontol 37:1273–82

    Article  PubMed  CAS  Google Scholar 

  • Marchetti M, Russo L, Balducci D, Falanga A (2011) All trans-retinoic acid modulates the procoagulant activity of human breast cancer cells. Thromb Res 128(4):368–74

    Article  PubMed  CAS  Google Scholar 

  • Marquina G, Waki H, Fernandez LE, Kon K, Carr A, Valiente O, Perez R, Ando S (1996) Gangliosides expressed in human breast cancer. Cancer Res 56:5165–71

    PubMed  CAS  Google Scholar 

  • Masserini M, Palestini P, Pitto M, Chigormo, Sonnino S (2002) Preparation and use for the study of sphingolipid segregation in membrane model systems. In: Basu SC, Basu M (eds) Liposome methods and protocols. Humana, Totowa, NJ, pp 17–27

    Google Scholar 

  • Matsuura N, Narita T, Hiraiwa N, Murai H, Iwase T, Funahashi H, Imai T, Takagi H, Kannagi R (1998) Gene expression of fucosyl-and sialyl-transferases which synthesize sialyl LewisX, the carbohydrate ligands for E-selectin, in human breast cancer. Int J Oncol 12(5):1157–1164

    PubMed  CAS  Google Scholar 

  • Melchiorri D, Martini F, Lococo E, Gradini R, Barletta E, De Maria R, Caricasole A, Nicoletti F, Lenti L (2002) An early increase in the disialoganglioside GD3 contributes to the development of neuronal apoptosis in culture. Cell Death Differ 9:609–15

    Article  PubMed  CAS  Google Scholar 

  • Mullauer EB, van Bloois L, Daalhusin JB, Ten Brink MS, Storm G, Medema JP, Schiffelers RM, Kesseler JH (2011a) Betulinic acid delivered in liposomes reduces growth of human lung and colon cancers in mice without causing systemic toxicity. Anticancer Drugs 22(3):223–233

    Google Scholar 

  • Mullauer EB, van Bloois L, Daalhusin JB, Ten Brink MS, Storm G, Medema JP, Schiffelers RM, Kesseler JH (2011b) Betulinic acid delivered in liposomes reduces growth of human lung and colon cancers in mice without causing systemic toxicity. Anticancer Drugs 22(3):223–233

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa A, Sawada TM, Okada T, Ohsawa T, Adachi M, Kubota K (2007) New antineoplastic agent, MK635 from UME (a variety of) Japanese apricot inhibits growth of breast cancer cells in vitro. Breast J 13(1):44–49

    Article  PubMed  CAS  Google Scholar 

  • Nakajima H, Sakeguchi K, Mizuta N, Fujiwara I, Hayakawa A, Magae J (2007) Apoptotic mechanisms induced in breast cancer cells by vinorelbine. Gan To Kagaku Ryoho (Japanese) 34(4):583–588

    Google Scholar 

  • Neuzil J, Dong LF, Ramanathapurram L, Hahn T, Chladova M, Wang XF, Zobalova R, Prochazaka L, Gold M, Freeman R, Turaneek J, Akporiaye ET, Dyason JC, Ralph SJ (2007) Vitamin E analogues as a novel group of mitocans:anti-cancer agents that act by targeting mitochondria. Mol Aspects Med 28(5–6):607–645

    Article  PubMed  CAS  Google Scholar 

  • Nohara K, Wang F, Spiegel S (1998) Glycosphingolipid composition of MDA-MB-231 and MCF-7 human breast cancer cells. Breast Cancer Res Treat 48(2):149–157

    Article  PubMed  CAS  Google Scholar 

  • Oskouian B, Saba JD (2010) Cancer treatment strategies targeting sphingolipid metabolism. Adv Exp Med Biol 688:185–205

    Google Scholar 

  • Paris R, Morales A, Coll O, Sanchez-Reyes A, Garcia-Ruiz C, Fernandez-Checa JC (2002) Ganglioside GD3 sensitizes human hepatomacells to cancer therapy. J Biol Chem 277: 49870–6

    Article  PubMed  CAS  Google Scholar 

  • Patel VA, Lee DJ, Longacre-Antoni A, Feng L, Lieberthal W, Rauch J, Ucker DS, Levine JS (2009) Apoptotic and necrotic cells as sentinels of local tissue stress and inflammation: response pathways initiated in nearby viable cells. Autoimmunity 42(4):317–21

    Article  PubMed  CAS  Google Scholar 

  • Patil JB, Kim J, Jayprakasha GK (2010) Berbarine induces apoptosis in breast cancer cells (MCF-7) through mitochondrial-dependent pathway. Eur J Pharmacol 645(1–3):70–78

    Article  PubMed  CAS  Google Scholar 

  • Pecheur E-I, Hoekstra (2002) Peptide-induced fusion of liposomes. In: Basu SC, Basu M (eds) Liposome methods and protocols. Humana, Totowa, NJ, pp 31–48

    Google Scholar 

  • Radin NS (1999) Chemotherapy by slowing glucosphingolipid synthesis. Biochem Pharmacol 57(6):0589–595

    Article  CAS  Google Scholar 

  • Rai S, Paliwal R, Vyas SP (2011) Doxorubicin encapsulated nanocarriers for targeted delivery to estrogen responsive breast cancer. J Biomed Nanotechnol 7(1):121–122

    Google Scholar 

  • Saltzman WM (2001) Diffusion and drug dispersion. In: Drug delivery: engineering principles for drug therapy. Oxford University Press, Oxford, pp 23–48

    Google Scholar 

  • Sanchez-Martin D, Cuesta AM, Fogal V, Ruosslahti E, Alvarez-Vallina (2011) The multicompartmental p32/ggClgR as a new target for antibody-based tumor targeting strategies. J Biol Chem 286(7):5197–5203

    Google Scholar 

  • Sanchez-Navarro M, Rojo J (2010) Targeting DC-SIGN with carbohydrate multivalent systems. Drug News Prospect 23(9):557–572

    Google Scholar 

  • Santibanez JF, Kocic J, Fabra A, Cano A, Quintanilla M (2010) Rac1 modulates TGF-beta1-mediated epithelial cell plasticity and MMP9 production in transformed keratinocytes. FEBS Lett 584(11):2305–10

    Article  PubMed  CAS  Google Scholar 

  • Sarkar FH, Adsule S, Li Y, Padhye S (2007) Back to the future: COX-2 inhibitors for chemoprevention and cancer therapy. Mini Rev Med Chem 7(6):599–608

    Article  PubMed  CAS  Google Scholar 

  • Sato Y, Harada K, Itatsu K, Ikeda H, Kakuda Y, Shimomura S, Shan Ren X, Yoneda NM, Sasaki M, Nakanuma Y (2010) Epithelial-mesenchymal transition induced by transforming growth factor-{beta}1/Snail activation aggravates invasive growth of cholangiocarcinoma. Am J Pathol 177(1):141–52

    Article  PubMed  CAS  Google Scholar 

  • Sato-Cerrato V, Montaner BM, Martaner B, Martinell M, Vilaseca M, Giiralt E, Perez-Tomas (2005) Cell cycle and proapoptotic effects of the anticancer cyclodepsipeptide serratamolide (AT514) are independent of p53 status in breast cancer cells. Biochem Pharmacol 7(1–2):32–41

    Article  Google Scholar 

  • Schwartz GK, Farsi K, Masalak P, Kelsen DP, Spriggs D (1997) Potentiation of apoptosis by flavopiridol in mitomycin-C-treated gastric and breast cancer cells. Clin Cancer Res 3(9): 1467–72

    PubMed  CAS  Google Scholar 

  • Shirure VS, Henson KA, Schnaar RL, Nimrichter L, Burdick MH (2011) Gangliosides expressed on breast cancer cells are E-selectin ligands. Biochem Biophys Res Commun 406(3):423–429

    Article  PubMed  CAS  Google Scholar 

  • Shishido T, Mieda H, Hwang SY, Nishimura Y, Tanaka T, Ogino C, Fukuda H, Kondo A (2010) Affibody-displaying bionanocapsules for specific drug delivery to HER2-expressing cancer cells. Bioorg Med Chem Lett 20(19):5726–31

    Article  PubMed  CAS  Google Scholar 

  • Simon BM, Malisan F, Testi R, Nicotera P, Leist M (2002) Disialoganglioside GD3 is released by microglia and induces oligodendrocyte apoptosis. Cell Death Differ 9:758–67

    Article  PubMed  CAS  Google Scholar 

  • Singh S (2010) Nanomedicine-nanoscale drugs and delivery systems. J Nanosci Nanotechnol 10(12):7906–18

    Article  PubMed  CAS  Google Scholar 

  • Singh N, Nigam M, Ranjan V, Sharma R, Balapure AK, Rath SK (2009) Caspase mediated enhanced apoptotic action of cyclophosphamide- and resveratol-treated MCF-7 cells. J Pharmacol Sci 109(4):473–485

    Article  PubMed  CAS  Google Scholar 

  • Singh G, Singh SK, Konig A, Reutlinger K, Nye MD, Adhikary T, Eilers M, Gress TM, Fernandez-Zapico ME, Ellenrieder V (2010) Sequential activation of NFAT and c-Myc transcription factors mediates the TGF-beta switch from a suppressor to a promoter of cancer cell proliferation. J Biol Chem 285(35):27241–27250

    Article  PubMed  CAS  Google Scholar 

  • Smith B, Lyaskhov I, Loomis K, Needle D, Baxa U, Yavlovich A, Capala J, Blumenthal R, Puri A (2011) Hyperthermia- triggerd intercellular delivery of anticancer agent to HER2(+) cells by HER2-specific antibody (ZHER2-GS-Cvs)-conjugated thermosensitive liposomes (HER2(+)affisomes). J Control Release 153(2):187–94

    Article  PubMed  CAS  Google Scholar 

  • Somers-Edgar TJ, Rosegren RJ (2009) Coenzyme Q0 induces apoptosis and modulates the cell cycle in estrogen receptor negative breast cancer cells. Anticancer Drugs 20:33–40

    Article  PubMed  CAS  Google Scholar 

  • Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen, Hastie HT, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Eystein P, Lonnin, Borresen-Dale AL (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98(19):10869–10874

    Google Scholar 

  • Takahashi E, Nagano O, Ishimoto T, Yae T, Suzuki Y, Shinoda T, Nakamura S. Niwa S, Ikeda S, Koga H, Tanihara H, Saya H (2010) Tumor necrosis factor-alpha regulates transforming growth factor-beta-dependent epithelial-mesenchymal transition by promoting hyaluronan-CD44-moesin interaction. J Biol Chem 285(6):4060–4073

    Google Scholar 

  • Takahashi S, Kato K, Nakamura K, Nakano R, Kuboto K, Hamada H (2011) Neuronal cell adhesion molecule 2 as a target molecule for prostate and breast cancer gene therapy. Cancer Sci 10(4):808–814

    Google Scholar 

  • Taner M, Kapanen AL, Junttila T, Raheem O, Grenman S, Elo J, Elinus K, Isola J (2004) Characterization of a novel cell line established from a patient with Herceptin breast cancer. Mol Cancer Sci 12:1285–1292

    Google Scholar 

  • Thakare VS, Das M, Jain AK, Patil S, Jain S (2010) Carbon nanotubes in cancer theragnosis. Nanomedicine (Lond) 5(8):1277–1301

    Google Scholar 

  • Thomas CP, Buronfosse A, Fertil B, Portoulalian J (1995) Surface expression of GD3 disialogangliosides in human melanoma cells is correlated to both metastatic potential in vivo and radiosensitivity in vitro. Cr Acad Sci III 318(12):1233–8

    CAS  Google Scholar 

  • Ugorski M, Laskowska A (2002) Sialyl Lewis(a): a tumor-associated carbohydrate antigen involved in adhesion and metastatic potential of cancer cells. Acta Biochim Pol 49(2):303–311

    PubMed  CAS  Google Scholar 

  • Ullah MF, Ahmad A, Zubair H, Khan HY, Wang Z, Sarkar FH, Hadi SM (2011) Soy isoflavone genisten induces cell death in breast cancer cells through mobilization of endogenous copper ions and generation of reactive oxygen species. Mol Nutr Food Res 55(4):553–559

    Article  PubMed  CAS  Google Scholar 

  • Urbinati G, Marsoud V, Plassat V, Fattal E, Lesieur S, Renoir JM (2010) Lopisomes loaded with histone deacetylase inhibitors for breast cancer therapy. Int J Pharm Biopharm 397(1–2):184–193

    CAS  Google Scholar 

  • Vincent T, Neve EP, Johnson JR, Kukalev A, Rojo F, Albanel J, Pietras IK, Virtanen I, Philipson L, Leopold PL, Crystal RG, de Herreros AG, Moustakas A, Pettersson RF, Fuxe J (2010) A SNAIL1-SMAD3/4 transcriptional repressor complex promotes TGF-beta mediated epithelial-mesenchymal transition. Nat Cell Biol 11(8):943–50

    Article  Google Scholar 

  • Walsh LA, Damianovski S (2011) IGF-1 increases invasive potential of MCF-7 breast cancer cells and induces activation of latent TGF-beta-1 resulting in epithelial mesenchymal transition. Cell Commun Signal 9(1):10

    Article  PubMed  CAS  Google Scholar 

  • Weedon D, Searle J, Kerr JF (1979) Apoptosis. Its nature and implications for dermatopathology. Am J Dermatopathol 1(2):133–144

    Google Scholar 

  • Wesierska J, Hacki S, Zulehner N, Maurer M, Komina O (2011) Reconstitution of human MCF-7 breast cancer cells with Caspase-3 does not sensitize them to action of CDK inhibitor. J Cell Biochem 112(1):273–288

    Article  Google Scholar 

  • Wikstrand CJ, Fredman P, McLendon RR, Svennerholm L, Bigner DD (1994) Altered expression of ganglioside phenotypes of human gliomas in vivo and in vitro. Mol Chem Neuropathol 21:129–38

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Lamouille S, Derynck R (2009) TGF-beta-induced epithelial to mesenchymal transition. Cell Res 19(2):156–72

    Article  PubMed  CAS  Google Scholar 

  • Yeh ES, Yan TW, Jung JJ, Gardner HP, Cardiff RD, Chodosh LA (2011) Hunk is required for HER2/Neu-induced mammary tumorigenesis. J Clin Invest 121(3):866–79

    Article  PubMed  CAS  Google Scholar 

  • Yuan J, He Z, Wu J, Lin Y, Zhu X (2011) A novel adriamycin analogue derived from marine microbes induces apoptosis by blocking Akt activation in human breast cancer cells. Mol Med Rep 4(2):261–265

    CAS  Google Scholar 

  • Zhang GH, Yang WT, Zhou XY, Zeng Y, Lu HF, Shi DR (2007) Study of correlation between HER-2 gene and Lymphangiogenesis and their prognostic significance in hunan breast cancer. Zhonghua Yi Xue Za Zhi 87(3):155–60

    PubMed  CAS  Google Scholar 

  • Zhang N, Kong X, Yan S, Yuan C, Yang Q (2010) Huair aqueous extract inhibits proliferation of breast cancer cells by inducing apoptosis. Cancer Sci 101(11):2375–2383

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank Mrs. Doris Ann Nielsen and Mr. Eric Kuehner for their help during preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhash Basu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Basu, S., Ma, R., Moskal, J.R., Basu, M., Banerjee, S. (2012). Apoptosis of Breast Cancer Cells: Modulation of Genes for Glycoconjugate Biosynthesis and Targeted Drug Delivery. In: Sudhakaran, P., Surolia, A. (eds) Biochemical Roles of Eukaryotic Cell Surface Macromolecules. Advances in Experimental Medicine and Biology, vol 749. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3381-1_16

Download citation

Publish with us

Policies and ethics