Skip to main content

How Intact Is the Basement Membrane? Role of MMPs

  • Conference paper
  • First Online:
Biochemical Roles of Eukaryotic Cell Surface Macromolecules

Abstract

Progression, invasion, and metastasis of tumor cells involve the degradation of the basement membrane (BM), caused by a class of proteases, the matrix metalloproteinases (MMPs). Aberrant MMP activity is the hallmark of many epithelial cancers such as the cervical, breast, and oral. Conventional cytological and histological techniques are insufficient to predict the course of the disease. Therefore, it is necessary to understand and evaluate the various factors contributing to tumor progression in these cancers. Overexpression of MMPs in cervical, oral, and breast cancers has been linked to enhanced tumor invasion and metastases in vitro and in vivo model systems. The expression of MMP-2 and MMP-9 proteins in premalignant lesions of the uterine cervix and infiltrating duct carcinomas of breast and invasive squamous cell carcinomas (SCCs) suggest a gradually increasing invasive potential. The vast literature on MMPs that initiate BM destruction and degradation of extracellular matrix components, suggest that these MMPs may play a role during tumor progression in epithelial tumors. It therefore appears that the measurement of MMPs would be a useful prognostic marker to assess the aggressiveness of the tumor and determine if they may metastasize. Also, these MMPs are crucial molecular targets that could be used for anticancer therapy. Metalloproteinase inhibitors (MMPI) are a new class of drugs which are in phase III clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ala-aho R, Kahari VM (2005) Collagenases in cancer. Biochimie 87:273–286

    Article  PubMed  CAS  Google Scholar 

  • Baker EA, Leaper DJ (2003) The plasminogen activator and matrix metalloproteinase systems in colorectal cancer: relationship to tumour pathology. Eur J Cancer 39:981–988

    Article  PubMed  CAS  Google Scholar 

  • Belotti D, Paganoni P, Manenti L et al (2003) Matrix metalloproteinases (MMP9 and MMP2) induce the release of vascular endothelial growth factor (VEGF) by ovarian carcinoma cells: implications for ascites formation. Cancer Res 63:5224–9

    PubMed  CAS  Google Scholar 

  • Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3:401–410

    Article  PubMed  CAS  Google Scholar 

  • Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, Tanzawa K, Thorpe P, Itohara S, Werb Z, Hanahan D (2000) Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2:737–744

    Article  PubMed  CAS  Google Scholar 

  • Bindhu OS, Ramadas K, Sebastian P, Pillai MR (2006) High expression levels of nuclear factor kappa B and gelatinases in the tumorigenesis of oral squamous cell carcinoma. Head Neck 28:916–925

    Article  PubMed  CAS  Google Scholar 

  • Birkedal-Hansen H, Moore WGI, Bodden MK, Windsor LJ, Birkedal-Hansen B, de Carlo A, Engler JA (1993a) Matrix metalloproteinases. Crit Rev Oral Biol Med 4:197–250

    PubMed  CAS  Google Scholar 

  • Birkedal-Hansen H, Moore WGI, Bodden MK, Windsor LJ, Birkedal-Hansen B, DeCarlo A, Engler JA (1993b) Matrix metalloproteinase: a review. Crit Rev Oral Biol Med 4:197–250

    PubMed  CAS  Google Scholar 

  • Bjorklund M, Koivunen E (2005) Gelatinase-mediated migration and invasion of cancer cells. Biochim Biophys Acta 1755:37–69

    PubMed  Google Scholar 

  • Black RA, Rauch CT, Kozlosky CJ, Peschon JJ, Slack JL, Wolfson MF, Castner BJ, Stocking KL, Reddy P, Srinivasan S, Nelson N, Boiani N, Schooley KA, Gerhart M, Davis R, Fitzner JN, Johnson RS, Paxton RJ, March CJ, Cerretti DP (1997) A metalloproteinase disintegrin that releases tumour necrosis factor-alpha from cells. Nature 385:729–733

    Article  PubMed  CAS  Google Scholar 

  • Brew K, Dinakarpandian D, Nagase H (2000) Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim Biophys Acta 1477:267–283

    Article  PubMed  CAS  Google Scholar 

  • Brooks PC, Stromblad S, Sanders LC, von Schalscha TL, Aimes RT, Stetler-Stevenson WG, Quigley JP, Cheresh DA (1996) Localization of matrix metallo-proteinase MMP-2 to surface of invasive cells by interaction with integrin αvβ3. Cell 85:683–693

    Article  PubMed  CAS  Google Scholar 

  • Brummer O, Athar S, Riethdorf L, Loning T, Herbst H (1999) Matrix metalloproteinases 1, 2, and 3 and their tissue inhibitors 1 and 2 in benign and malignant breast lesions: an in situ hybridization study. Virchows Arch 435:566–73

    Article  PubMed  CAS  Google Scholar 

  • Chakraborti S, Mandal M, Das S, Mandal A, Chakraborti T (2003) Regulation of matrix metalloproteinases: an overview. Mol Cell Biochem 253:269–285

    Article  PubMed  CAS  Google Scholar 

  • Chandler S, Cossins J, Lury J, Wells G (1996) Macrophage metalloelastase degrades matrix and myelin proteins and processes a tumour necrosis factor alpha fusion protein. Biochem Biophys Res Commun 228:421–429

    Article  PubMed  CAS  Google Scholar 

  • Chantrain CF, Henriet P, Jodele S, Emonard H, Feron O, Courtoy PJ, DeClerck YA, Marbaix E (2006) Mechanisms of pericyte recruitment in tumour angiogenesis: a new role for metalloproteinases. Eur J Cancer 42:310–318

    Article  PubMed  CAS  Google Scholar 

  • Cho YB, Lee WY, Song SY, Shin HJ, Yun SH, Chun HK (2007) Matrix metalloproteinase-9 activity is associated with poor prognosis in T3-T4 node-negative colorectal cancer. Hum Pathol 38:1603–1610

    Article  PubMed  CAS  Google Scholar 

  • Christofori G (2006) New signals from the invasive front. Nature 441:444–450

    Article  PubMed  CAS  Google Scholar 

  • Coussens LM, Fingleton B, Matrisian LM (2002) Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295:2387–2392

    Article  PubMed  CAS  Google Scholar 

  • Curran JA, Laverty FS, Campbell D, Macdiarmid J, Wilson JB (2001) Epstein-Barr virus encoded latent membrane protein-1 induces epithelial proliferation and sensitizes mice to chemical carcinogenesis. Cancer Res 61:6730–6738

    PubMed  CAS  Google Scholar 

  • Davies B, Miles DW, Happerfield LC et al (1993) Activity of type IV collagenases in benign and malignant breast disease. Br J Cancer 67:1126–31

    Article  PubMed  CAS  Google Scholar 

  • de Vicente JC, Fresno MF, Villalain L, Vega JA, Vallejo GH (2005) Expression and clinical significance of matrix metalloproteinase-2 and matrix metalloproteinase-9 in oral squamous cell carcinoma. Oral Oncol 41(3):283–93

    Article  PubMed  CAS  Google Scholar 

  • Deryugina EI, Soroceanu L, Strongin AY (2002) Up-regulation of vascular endothelial growth factor by membrane-type 1 matrix metalloproteinase stimulates human glioma xenograft growth and angiogenesis. Cancer Res 62:580–588

    PubMed  CAS  Google Scholar 

  • Egeblad M, Werb Z (2002a) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174

    Article  PubMed  CAS  Google Scholar 

  • Egeblad M, Werb Z (2002b) New functions for matrix metalloproteinases in cancer progression. Nat Rev 2:161–174

    Article  CAS  Google Scholar 

  • Fang J, Shing Y, Wiederschain D, Yan L, Butterfield C, Jackson G, Harper J, Tamvakopoulos G, Moses MA (2000) Matrix metalloproteinase-2 is required for the switch to the angiogenicphenotype in a tumor model. Proc Natl Acad Sci USA 97:3884–3889

    Article  PubMed  CAS  Google Scholar 

  • Fernandes T, De Angelo-Andrade LA, Morais SS, Pinto GA, Chagas CA, Maria-Engler SS, Zeferino LC (2008) Stromal cells play a role in cervical cancer progression mediated by MMP-2 protein. Eur J Gynaecol Oncol 29:341–344

    PubMed  CAS  Google Scholar 

  • Fingleton B (2006) Matrix metalloproteinases: roles in cancer and metastasis. Front Biosci 11:479–491

    Article  PubMed  CAS  Google Scholar 

  • Fowlkes JL, Enghild JJ, Suzuki K, Nagase H (1994) Matrix metalloproteinases degrade insulin-like growth factor binding protein-3 in dermal fibroblast cultures. J Biol Chem 269:25742–25746

    PubMed  CAS  Google Scholar 

  • Garbett EA, Reed MW, Brown NJ (1999) Proteolysis in human breast and colorectal cancer. Br J Cancer 81:287–93

    Article  PubMed  CAS  Google Scholar 

  • Giannelli G, Falk-Marzillier J, Schiraldi O, Stetler-Stevenson WG, Quaranta V (1997) Induct­ion of cell migration by matrix metalloproteinase-2 cleavage of laminin-5. Science 277: 225–228

    Article  PubMed  CAS  Google Scholar 

  • Giraudo E, Inoue M, Hanahan D (2004) An amino-bisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis. J Clin Invest 114:623–633

    PubMed  CAS  Google Scholar 

  • Gu Z, Kaul M, Yan B et al (2002) S-nitrosylation of matrixmetalloproteinases: signaling pathway to neuronal cell death. Science 297:1186–90

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  PubMed  CAS  Google Scholar 

  • Handsley MM, Edwards DR (2005) Metalloproteinases and their inhibitors in tumor angiogenesis. Int J Cancer 115:849–860

    Article  PubMed  CAS  Google Scholar 

  • Haro H, Crawford HC, Fingleton B, Shinomiya K, Spengler DM, Matrisian LM (2000) Matrix metalloproteinase-7-dependent release of tumor necrosis factor-alpha in a model of herniated disc resorption. J Clin Invest 105:143–150

    Article  PubMed  CAS  Google Scholar 

  • Hofmann UB, Eggert AA, Blass K, Brocker EB, Becker JC (2003) Expression of matrix metalloproteinases in the microenvironment of spontaneous and experimental melanoma metastases reflects the requirements for tumor formation. Cancer Res 63:8221–8225

    PubMed  CAS  Google Scholar 

  • Hojilla CV, Mohammed FF, Khokha R (2003) Matrix metalloproteinases and their tissue inhibitors direct cell fate during cancer development. Br J Cancer 89:1817–1821

    Article  PubMed  CAS  Google Scholar 

  • Houck KA, Leung DW, Rowland AM, Winer J, Ferrara N (1992) Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms. J Biol Chem 267:26031–26037

    PubMed  CAS  Google Scholar 

  • Hua H, Li M, Luo T, Yin Y, Jiang Y (2011) Matrix metalloproteinases in tumorigenesis: an evolving paradigm. Cell Mol Life Sci 68(23):3853–68

    Article  PubMed  CAS  Google Scholar 

  • Huang S, Van Arsdall M, Tedjarati S et al (2002) Contributions of stromal metalloproteinase-9 to angiogenesis and growth of human ovarian carcinoma in mice. J Natl Cancer Inst (Bethesda) 94:1134–42

    Article  CAS  Google Scholar 

  • Illman SA, Lehti K, Keski-Oja J, Lohi J (2006) Epilysin (MMP-28) induces TGF-beta mediated epithelial to mesenchymal transition in lung carcinoma cells. J Cell Sci 119:3856–3865

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y, Goldberg ID, Shi YE (2002) Complex roles of tissue inhibitors of metalloproteinases in cancer. Oncogene 21:2245–2252

    Article  PubMed  CAS  Google Scholar 

  • Jones JL, Glynn P, Walker RA (1999) Expression of MMP-2 and MMP-9, their inhibitors, and the activator MT1-MMP in primary breast carcinomas. J Pathol 189:161–8

    Article  PubMed  CAS  Google Scholar 

  • Joyce JA (2005) Therapeutic targeting of the tumor microenvironment. Cancer Cell 7:513–520

    Article  PubMed  CAS  Google Scholar 

  • Kalluri R (2003) Basement membranes: Structure, assembly and role in tumour angiogenesis. Nat Rev Cancer 3:422–43

    Article  PubMed  CAS  Google Scholar 

  • Kato Y, Yamashita T, Ishikawa M (2002) Relationship between expression of matrix metalloproteinase-2 and matrix metalloproteinase-9 and invasion ability of cervical cancer cells. Oncol Rep 9:565–569

    PubMed  CAS  Google Scholar 

  • Kleiner DE Jr, Tuuttila A, Tryggvason K, Stetler-Stevenson WG (1993) Stability analysis of latent and active 72-kDa type IV collagenase: the role of tissue inhibitor of metalloproteinases-2 (TIMP-2). Biochemistry 32:1583–1592

    Article  PubMed  CAS  Google Scholar 

  • Langenskiold M, Holmdahl L, Falk P, Ivarsson ML (2005) Increased plasma MMP-2 protein expression in lymph node-positive patients with colorectal cancer. Int J Colorectal Dis 20:245–252

    Article  PubMed  Google Scholar 

  • Leeman MF, McKay JA, Murray GI (2002) Matrix metalloproteinase 13 activity is associated with poor prognosis in colorectal cancer. J Clin Pathol 55:758–762

    Article  PubMed  CAS  Google Scholar 

  • Liotta LA (1986) Tumor invasion and metastases-role of the extracellular matrix: Rhoads memorial award lecture. Cancer Res 46:1–7

    Article  PubMed  CAS  Google Scholar 

  • Liotta LA, Tryggvason K, Garbisa S, Hart I, Foltz CM, Shafie S (1980) Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature 284:67–68

    Article  PubMed  CAS  Google Scholar 

  • Liotta LA, Steeg PS, Stetler-Stevenson WO (1991) Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 64:327–336

    Article  PubMed  CAS  Google Scholar 

  • Lizarraga F, Espinosa M, Maldonado V, Melendez-Zajgla J (2005) Tissue inhibitor of metalloproteinases-4 is expressed in cervical cancer patients. Anticancer Res 25:623–627

    PubMed  CAS  Google Scholar 

  • Lochter A, Galosy S, Muschler J, Freedman N, Werb Z, Bissell MJ (1997) Matrix metalloproteinase stromelysin-1 triggers a cascade of molecular alterations that leads to stable epithelial-to-mesenchymal conversion and a premalignant phenotype in mammary epithelial cells. J Cell Biol 139:1861–1872

    Article  PubMed  CAS  Google Scholar 

  • Lochter A, Sternlicht MD, Werb Z, Bissell MJ (1998) The significance of matrix metalloproteinases during early stages of tumor progression. Ann NY Acad Sci 857:180–193

    Article  PubMed  CAS  Google Scholar 

  • Loechel F, Wewer UM (2001) Activation of ADAM 12 protease by copper. FEBS Lett 506:65–68

    Article  PubMed  CAS  Google Scholar 

  • Lubbe WJ, Zhou Z, Fu W (2006) Tumor epithelial cell matrix metalloproteinase 9 is a target for antimetastatic therapy in colorectal cancer. Clin Cancer Res 12:1876–1882

    Article  PubMed  CAS  Google Scholar 

  • Lynch CC, Matrisian LM (2002) Matrix metalloproteinases in tumor host cell communication. Differentiation 70:561–573

    Article  PubMed  CAS  Google Scholar 

  • MacDougall JR, Matrisian LM (1995) Contributions of tumor and stromal matrix metallo-proteinases to tumor progression, invasion and metastasis. Cancer Metastasis Rev 14:351–362

    Article  PubMed  CAS  Google Scholar 

  • Manes S, Mira E, Barbacid MM, Ciprés A, Fernández-Resa P, Buesa JM, Mérida I, Aracil M, Márquez G, Martínez-A C (1997) Identification of insulin-like growth factor-binding protein-1 as a potential physiological substrate for human stromelysin-3. J Biol Chem 272:25706–25712

    Article  PubMed  CAS  Google Scholar 

  • Maretzky T, Reiss K, Ludwig A, Buchholz J, Scholz F, Proksch E, de Strooper B, Hartmann D, Saftig P (2005) ADAM10 mediates E-cadherin shedding and regulates epithelial cell-cell adhesion, migration, and beta-catenin translocation. Proc Natl Acad Sci USA 102:9182–9187

    Article  PubMed  CAS  Google Scholar 

  • Matrisian LM (1992) The matrix-degrading metalloproteinases. Bioessays 14:455–463

    Article  PubMed  CAS  Google Scholar 

  • Mira E, Lacalle RA, Buesa JM et al (2004) Secreted MMP9 promotes angiogenesis more efficiently than constitutive active MMP9 bound to the tumor cell surface. J Cell Sci 117:1847–57

    Article  PubMed  CAS  Google Scholar 

  • Mizumoto H, Saito T, Ashihara K et al (2002) Acceleration of invasive activity via matrix metalloproteinases by transfection of the estrogen receptor-alpha gene in endometrial carcinoma cells. Int J Cancer 100:401–6

    Article  PubMed  CAS  Google Scholar 

  • Nair AS, Karunagaran D, Nair MB, Sudhakaran PR (2003a) Changes in the matrix metalloproteinase and their endogenous inhibitors during tumor progression in the uterine cervix. J Cancer Res Clin Oncol 129:123–131

    PubMed  Google Scholar 

  • Nair A, Venkatraman M, Maliekal TT, Nair B, Karunagaran D (2003b) NF-κB is constitutively activated in high-grade squamous intraepithelial lesions and squamous cell carcinomas of the human uterine cervix. Oncogene 22:50–58

    Article  PubMed  CAS  Google Scholar 

  • Nakopoulou L, Tsirmpa I, Alexandrou P et al (2003) MMP-2 protein in invasive breast cancer and the impact of MMP-2/TIMP-2 phenotype on overall survival. Breast Cancer Res Treat 77:145–55

    Article  PubMed  CAS  Google Scholar 

  • Noe V, Fingleton B, Jacobs K, Crawford HC, Vermeulen S, Steelant W, Bruyneel E, Matrisian LM, Mareel M (2001) Release of an invasion promoter E-cadherin fragment by matrilysin and stromelysin-1. J Cell Sci 114:111–118

    PubMed  CAS  Google Scholar 

  • Nuovo GJ, MacConnell PB, Simsir A, Valea F, French DL (1995) Correlation of the in situ detection of polymerase chain reaction amplified metalloproteinase complementary DNAs and their inhibitors with prognosis in cervical carcinoma. Cancer Res 55:267–275

    PubMed  CAS  Google Scholar 

  • Poincloux R, Lizárraga F, Chavrier P (2009) Matrix invasion by tumour cells: a focus on MT1-MMP trafficking to invadopodia. J Cell Sci 122:3015–3024

    Google Scholar 

  • Polette M, Gilbert N, Stas I et al (1994) Gelatinase A expression and localization in human breast cancers. An in situ hybridization study and immunohistochemical detection using confocal microscopy. Virchows Arch 424:641–5

    Article  PubMed  CAS  Google Scholar 

  • Poola I, DeWitty RL, Marshalleck JJ, Bhatnagar R, Abraham J, Leffall LD (2005) Identification of MMP-1 as a putative breast cancer predictive marker by global gene expression analysis. Nat Med 11:481–483

    Article  PubMed  CAS  Google Scholar 

  • Radisky DC, Levy DD, Littlepage LE, Liu H, Nelson CM, Fata JE, Leake D, Godden EL, Albertson DG, Nieto MA, Werb Z, Bissell MJ (2005) Rac1b and reactive oxygen species mediate MMP- 3-induced EMT and genomic instability. Nature 436:123–127

    Article  PubMed  CAS  Google Scholar 

  • Ramer R, Hinz B (2008) Inhibition of cancer cell invasion by cannabinoids via increased expression of tissue inhibitor of matrix metalloproteinases-1. J Natl Cancer Inst 100:59–69

    Article  PubMed  CAS  Google Scholar 

  • Ranuncolo SM, Armanasco E, Cresta C, Bal De Kier Joffe E, Puricelli L (2003) Plasma MMP-9 (92 kDa-MMP) activity is useful in the follow-up and in the assessment of prognosis in breast cancer patients. Int J Cancer 106:745–751

    Article  PubMed  CAS  Google Scholar 

  • Reich R, Thompson E, Iwamoto Y, Martin OR, Deason JR, Fuller OC, Miskin R (1988) Effects of inhibitors of plasminogen activator, serine proteinases, and collagenase IV on the invasion of basement membrane by metastatic cells. Cancer Res 48:3307–33121

    PubMed  CAS  Google Scholar 

  • Remacle AG, Noel A, Duggan C et al (1998) Assay of matrix metalloproteinases types 1, 2, 3 and 9 in breast cancer. Br J Cancer 77:926–31

    Article  PubMed  CAS  Google Scholar 

  • Rundhaug JE (2005) Matrix metalloproteinases and angiogenesis. J Cell Mol Med 9:267–285

    Article  PubMed  CAS  Google Scholar 

  • Samnegard A, Silveira A, Lundman P (2005) Serum matrix metalloproteinase-3 concentration is influenced by MMP-3 1612 5A/6A promoter genotype and associated with myocardial infarction. J Intern Med 258:41–419

    Article  CAS  Google Scholar 

  • Scorilas A, Karameris A, Arnogiannaki N et al (2001) Overexpression of matrix-metalloproteinase-9 in human breast cancer: a potential favourable indicator in node-negative patients. Br J Cancer 84:1488–96

    Article  PubMed  CAS  Google Scholar 

  • Sherwood DR (2006) Cell invasion through basement membranes: an anchor of understanding. Trends Cell Biol 16:250–256

    Article  PubMed  CAS  Google Scholar 

  • Sheu BC, Lien HC, Ho HN, Lin HH, Chow SN, Huang SC, Hsu SM (2003) Increased expression and activation of gelatinolytic matrix metalloproteinases is associated with the progression and recurrence of human cervical cancer. Cancer Res 63:6537–6542

    PubMed  CAS  Google Scholar 

  • Sotturp-Jensen L (1989) α-Macroglobulins: structure, shape and mechanism of proteinase complex formation. J Biol Chem 264:11539–11542

    Google Scholar 

  • Stamenkovic I (2000) Matrix metalloproteinases in tumor invasion and metastasis. Semin Cancer Biol 10:415–433

    Article  PubMed  CAS  Google Scholar 

  • Stetler-Stevenson WG (1999) Matrix metalloproteinases in angiogenesis: a moving target for therapeutic intervention. J Clin Invest 103:1237–1241

    Article  PubMed  CAS  Google Scholar 

  • Talvensaari-Mattila A, Turpeenniemi-Hujanen T (2006) Matrix metalloproteinase 9 in the uterine cervix during tumor progression. Int J Gynaecol Obstet 92:83–84

    Article  PubMed  CAS  Google Scholar 

  • Talvensaari-Mattila A, Pääkkö P, Höyhtyä M, Blanco-Sequeiros G, Turppnniemi Hujanen T (1998) Matrix metalloproteinase-2 immunoreactive protein: a marker of aggressiveness in breast carcinoma. Cancer 83:1153–62

    Article  PubMed  CAS  Google Scholar 

  • Talvensaari-Mattila A, Paakko P, Blanco-Sequeiros G, Turpeenniemi-Hujanen T (2001) Matrix metalloproteinase-2 (MMP-2) is associated with the risk for a relapse in postmenopausal patients with node-positive breast carcinoma treated with antiestrogen adjuvant therapy. Breast Cancer Res Treat 65:55–61

    Article  PubMed  CAS  Google Scholar 

  • Talvensaari-Mattila A, Paakko P, Turpeenniemi-Hujanen T (2003) Matrix metalloproteinase-2 (MMP-2) is associated with survival in breast carcinoma. Br J Cancer 89:1270–5

    Article  PubMed  CAS  Google Scholar 

  • Tetu B, Brisson J, Lapointe H, Bernard P (1998) Prognostic significance of stromelysin 3, gelatinase A, and urokinase expression in breast cancer. Hum Pathol 29:979–85

    Article  PubMed  CAS  Google Scholar 

  • Thiery JP (2002) Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2:442–454

    Article  PubMed  CAS  Google Scholar 

  • Thomas GT, Lewis MO, Speight PM (1999) Matrix metalloproteinases and oral cancer. Oral Oncol 35:227–233

    Article  PubMed  CAS  Google Scholar 

  • Thrailkill KM, Quarles LD, Nagase H, Suzuki K, Serra DM, Fowlkes JL (1995) Characterization of insulin-like growth factor-binding protein 5-degrading proteases produced throughout murine osteoblast differentiation. Endocrinology 136:3527–3533

    Article  PubMed  CAS  Google Scholar 

  • Tutton MG, George ML, Eccles SA, Burton S, Swift RI, Abulafi AM (2003) Use of plasma MMP-2 and MMP-9 levels as a surrogate for tumour expression in colorectal cancer patients. Int J Cancer 107:541–550

    Article  PubMed  CAS  Google Scholar 

  • van Kempen LC, Ruiter DJ, Van Muijen GN, Coussens LM (2003) The tumor microenvironment: a critical determinant of neoplastic evolution. Eur J Cell Biol 82:539–548

    Article  PubMed  Google Scholar 

  • Wang PH, Ko JL, Tsai HT, Yang SF, Han CP, Lin LY, Chen GD (2008) Clinical significance of matrix metalloproteinase-2 in cancer of uterine cervix: a semiquantitative study of immunoreactivities using tissue array. Gynecol Oncol 108:533–542

    Article  PubMed  CAS  Google Scholar 

  • Whitelock JM, Murdoch AD, Iozzo RV, Underwood PA (1996) The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases. J Biol Chem 271:10079–10086

    Article  PubMed  CAS  Google Scholar 

  • Willenbrock F, Crabbe T, Slocombe PM, Sutton CW, Docherty AJ, Cockett MI, O’Shea M, Brocklehurst K, Phillips IR, Murphy G (1993) The activity of the tissue inhibitors of the metalloproteinases is regulated by C-terminal domain interactions: a kinetic analysis of the inhibition of gelatinase A. Biochemistry 32:4330–4337

    Article  PubMed  CAS  Google Scholar 

  • Wu ZS, Wu Q, Yang JH, Wang HQ, Ding XD, Yang F, Xu XC (2008) Prognostic significance of MMP-9 and TIMP-1 serum and tissue expression in breast cancer. Int J Cancer 122:2050–2056

    Article  PubMed  CAS  Google Scholar 

  • Yorioka CW, Coletta RD, Alves F, Nishimoto IN, Kowalski LP, Graner E (2002) Matrix metalloproteinase-2 and -9 activities correlate with the disease-free survival of oral squamous cell carcinoma patients. Int J Oncol 20:189–194

    PubMed  CAS  Google Scholar 

  • Zhang Y, Qian H, Lin C, Lang J, Xiang Y, Fu M, Zhang X, Liang X (2008) Adenovirus carrying TIMP-3: a potential tool for cervical cancer treatment. Gynecol Oncol 108:234–240

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Asha Nair .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Nair, S.A., Jagadeeshan, S., Indu, R., Sudhakaran, P.R., Pillai, M.R. (2012). How Intact Is the Basement Membrane? Role of MMPs. In: Sudhakaran, P., Surolia, A. (eds) Biochemical Roles of Eukaryotic Cell Surface Macromolecules. Advances in Experimental Medicine and Biology, vol 749. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3381-1_15

Download citation

Publish with us

Policies and ethics