Skip to main content

Advanced FRET Methodologies: Protein–Lipid Selectivity Detection and Quantification

  • Conference paper
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((volume 749))

Abstract

Membrane proteins exhibit different affinities for different lipid species, and protein–lipid selectivity regulates the membrane composition in close proximity to the protein, playing an important role in the formation of nanoscale membrane heterogeneities. Quantification of lipid selectivity by membrane proteins has been previously addressed mainly from Electron Spin Resonance studies (ESR). We present here a methodology for quantification of protein–lipid selectivity based on Förster Resonance Energy Transfer (FRET). Several FRET-based methods applied to the quantification of protein–lipid selectivity are presented, and different formalisms applied to the analysis of FRET data for particular geometries of donor–acceptor distribution are critically assessed. The FRET methodology has three interesting features: (1) by choosing donor–acceptor pairs with different Förster radii, it is possible to specifically study mainly the first-shell of lipids or also the outside shells; (2) the greater sensitivity of fluorescence requires much smaller amounts of material than ESR, (3) although this model leads to somewhat complex decay laws, it is actually not necessary to analyze the decay curves to recover the relevant parameters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abrams FS, London E (1993) Extension of the parallax analysis of membrane penetration depth to the polar region of model membranes: use of fluorescence quenching by a spin-label attached to the phospholipid polar headgroup. Biochemistry 32:10826–10831

    Article  PubMed  CAS  Google Scholar 

  • Bogdanov M, Dowhan W (1995) Phosphatidylethanolamine is required for in vivo function of the membrane-associated lactose permease of Escherichia coli. J Biol Chem 270:732–739

    Article  PubMed  CAS  Google Scholar 

  • Bogdanov M, Dowhan W (1998) Phospholipid-assisted protein folding: phosphatidylethanolamine is required at a late step of the conformational maturation of the polytopic membrane protein lactose permease. EMBO J 17:5255–5264

    Article  PubMed  CAS  Google Scholar 

  • Bogdanov M, Heacock PN, Dowhan W (2002) A polytopic membrane protein displays a reversible topology dependent on membrane lipid composition. EMBO J 21:2107–2116

    Article  PubMed  CAS  Google Scholar 

  • Bogdanov M, Xie J, Heacock P, Dowhan W (2008) To flip or not to flip: lipid-protein charge interactions are a determinant of final membrane protein topology. J Cell Biol 182:925–935

    Article  PubMed  CAS  Google Scholar 

  • Chattopadhyay A (1990) Chemistry and biology of N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-labeled lipids: fluorescent probes of biological and model membranes. Chem Phys Lipids 53:1–15

    Article  PubMed  CAS  Google Scholar 

  • Chen CC, Wilson TH (1984) The phospholipid requirement for activity of the lactose carrier of Escherichia coli. J Biol Chem 259:10150–10158

    PubMed  CAS  Google Scholar 

  • Czech MP (2000) PIP2 and PIP3: complex roles at the cell surface. Cell 100:603–606

    Article  PubMed  CAS  Google Scholar 

  • Everett J, Zlotnick A, Tennyson J, Holloway PW (1986) Fluorescence quenching of cytochrome b5 in vesicles with an asymmetric transbilayer distribution of brominated phosphatidylcholine. J Biol Chem 261:6725–6729

    PubMed  CAS  Google Scholar 

  • Fernandes F, Loura LM, Koehorst R, Spruijt RB, Hemminga MA, Fedorov A, Prieto M (2004) Quantification of protein-lipid selectivity using FRET: application to the M13 major coat protein. Biophys J 87:344–352

    Article  PubMed  CAS  Google Scholar 

  • Fernandes F, Loura LM, Prieto M, Koehorst R, Spruijt RB, Hemminga MA (2003) Dependence of M13 major coat protein oligomerization and lateral segregation on bilayer composition. Biophys J 85:2430–2441

    Article  PubMed  CAS  Google Scholar 

  • Förster T (1949) Experimentelle und theoretische Untersuchung des Zwischenmolekularen übergangs von Elektrinenanregungsenergie. Z Naturforsch 4a:321–327

    Google Scholar 

  • Fung BK, Stryer L (1978) Surface density determination in membranes by fluorescence energy transfer. Biochemistry 17:5241–5248

    Article  PubMed  CAS  Google Scholar 

  • Guan L, Smirnova IN, Verner G, Nagamori S, Kaback HR (2006) Manipulating phospholipids for crystallization of a membrane transport protein. Proc Natl Acad Sci USA 103:1723–1726

    Article  PubMed  CAS  Google Scholar 

  • Gutberlet T, Dietrich U, Bradaczek H, Pohlentz G, Leopold K, Fischer W (2000) Cardiolipin, alpha-D-glucopyranosyl, and L-lysylcardiolipin from gram-positive bacteria: FAB MS, monofilm and X-ray powder diffraction studies. Biochim Biophys Acta 1463:307–322

    Article  PubMed  CAS  Google Scholar 

  • Hemminga MA, Sanders JC, Spruijt RB (1992) Spectroscopy of lipid-protein interactions: structural aspects of two different forms of the coat protein of bacteriophage M13 incorporated in model membranes. Prog Lipid Res 31:301–333

    Article  PubMed  CAS  Google Scholar 

  • Koehorst RB, Spruijt RB, Vergeldt FJ, Hemminga MA (2004) Lipid bilayer topology of the transmembrane alpha-helix of M13 Major coat protein and bilayer polarity profile by site-directed fluorescence spectroscopy. Biophys J 87:1445–1455

    Article  PubMed  CAS  Google Scholar 

  • Lakowicz JR (2006) Principles of fluorescence spectroscopy. Kluwer Academic/Plenum, New York

    Book  Google Scholar 

  • Lee AG (2003) Lipid-protein interactions in biological membranes: a structural perspective. Biochim Biophys Acta 1612:1–40

    Article  PubMed  CAS  Google Scholar 

  • Loura LMS, Fedorov A, Prieto M (1996) Resonance energy transfer in a model system of membranes. Application to gel and liquid crystalline phases. Biophys J 71:1823–1836

    Article  PubMed  CAS  Google Scholar 

  • Loura LMS, Fedorov A, Prieto M (2000) Membrane probe distribution heterogeneity: a resonance energy transfer study. J Phys Chem B 104:6920–6931

    Article  CAS  Google Scholar 

  • Loura LM, Ramalho JP (2007) Location and dynamics of acyl chain NBD-labeled phosphatidylcholine (NBD-PC) in DPPC bilayers. A molecular dynamics and time-resolved fluorescence anisotropy study. Biochim Biophys Acta 1768:467–478

    Article  PubMed  CAS  Google Scholar 

  • Loura LMS, Prieto M, Fernandes F (2010) Quantification of protein-lipid selectivity using FRET. Eur Biophys J 39:565–578

    Article  PubMed  CAS  Google Scholar 

  • Marsh D, Horváth LI (1998) Structure, dynamics and composition of the lipid-protein interface. Perspectives from spin-labelling. Biochim Biophys Acta 1376:267–296

    Article  PubMed  CAS  Google Scholar 

  • Mazères S, Schram V, Tocanne JF, Lopez A (1996) 7-Nitrobenz-2-oxa-1,3-diazole-4-yl-labeled phospholipids in lipid membranes: differences in fluorescence behavior. Biophys J 71:327–335

    Article  PubMed  Google Scholar 

  • O’Keefe AH, East JM, Lee AG (2000) Selectivity in lipid binding to the bacterial outer membrane protein OmpF. Biophys J 79:2066–2074

    Article  Google Scholar 

  • Peelen SJ, Sanders JC, Hemminga MA, Marsh D (1992) Stoichiometry, selectivity, and exchange dynamics of lipid-protein interaction with bacteriophage M13 coat protein studied by spin label electron spin resonance. Effects of protein secondary structure. Biochemistry 31:2670–2677

    Article  PubMed  CAS  Google Scholar 

  • Picas L, Suárez-Germà C, Montero MT, Vázquez-Ibar JL, Hernández-Borrell J, Prieto M, Loura LM (2010) Lactose permease lipid selectivity using Förster resonance energy transfer. Biochim Biophys Acta 1798:1707–1713

    Article  PubMed  CAS  Google Scholar 

  • Pluschke G, Hirota Y, Overath P (1978) Function of phospholipids in Escherichia coli. Characterization of a mutant deficient in cardiolipin synthesis. J Biol Chem 253:5048–5055

    PubMed  CAS  Google Scholar 

  • Powl AM, East JM, Lee AG (2003) Lipid-protein interactions studied by introduction of a tryptophan residue: the mechanosensitive channel MscL. Biochemistry 42:14306–14317

    Article  PubMed  CAS  Google Scholar 

  • Rand RP, Parsegian VA (1989) Hydration Forces between Phospholipid-Bilayers. Biochim Biophys Acta 988:351–376

    Article  CAS  Google Scholar 

  • Sanders JC, Ottaviani MF, van Hoek A, Visser AJ, Hemminga MA (1992) A small protein in model membranes: a time-resolved fluorescence and ESR study on the interaction of M13 coat protein with lipid bilayers. Eur Biophys J 21:305–311

    Article  PubMed  CAS  Google Scholar 

  • Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731

    Article  PubMed  CAS  Google Scholar 

  • Spruijt RB, Wolfs CJ, Verver JW, Hemminga MA (1996) Accessibility and environment probing using cysteine residues introduced along the putative transmembrane domain of the major coat protein of bacteriophage M13. Biochemistry 35:10383–10391

    Article  PubMed  CAS  Google Scholar 

  • Stopar D, Jansen KA, Páli T, Marsh D, Hemminga MA (1997) Membrane location of spin-labeled M13 major coat protein mutants determined by paramagnetic relaxation agents. Biochemistry 36:8261–8268

    Article  PubMed  CAS  Google Scholar 

  • Stopar D, Spruijt RB, Wolfs CJ, Hemminga MA (2003). Protein-lipid interactions of bacteriophage M13 major coat protein. Biochim Biophys Acta 1611:5–15

    Google Scholar 

  • Stryer L (1978) Fluorescence energy transfer as a spectroscopic ruler. Annu Rev Biochem 47:819–846

    Article  PubMed  CAS  Google Scholar 

  • Tahara Y, Murata M, Ohnishi S, Fujiyoshi Y, Kikuchi M, Yamamoto Y (1992) Functional signal peptide reduces bilayer thickness of phosphatidylcholine liposomes. Biochemistry 31:8747–8754

    Article  PubMed  CAS  Google Scholar 

  • Van Der Meer B, Coker V III, Chen S-YS (1994) Resonance energy transfer: theory and data. VCH, New York

    Google Scholar 

  • Williamson IM, Alvis SJ, East JM, Lee AG (2002) Interactions of phospholipids with the potassium channel KcsA. Biophys J 83:2026–2038

    Article  PubMed  CAS  Google Scholar 

  • Wolber PK, Hudson BS (1979) An analytical solution to the Förster energy transfer problem in two dimensions. Biophys J 28:197–210

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

F.F. acknowledges a research grant (SFRH/BPD/64320/2009) from Fundacão para a Ciência e Tecnologia (FCT). F.F., M.P., and L.M.S.L. acknowledge funding by FEDER (COMPETE program), and by FCT (Fundação para a Ciência e a Tecnologia), projects references PTDC/QUI-BIQ/112067/2009, PTDC/QUI-BIQ/099947/2008, and FCOMP-01-0124-FEDER-010787 (FCT PTDC/QUI-QUI/098198/2008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fábio Fernandes or Luís M. S. Loura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Fernandes, F., Prieto, M., Loura, L.M.S. (2012). Advanced FRET Methodologies: Protein–Lipid Selectivity Detection and Quantification. In: Sudhakaran, P., Surolia, A. (eds) Biochemical Roles of Eukaryotic Cell Surface Macromolecules. Advances in Experimental Medicine and Biology, vol 749. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3381-1_12

Download citation

Publish with us

Policies and ethics