Skip to main content

Compulsive Drug Use and Brain Reward Systems

  • Chapter
  • First Online:
Drug Abuse and Addiction in Medical Illness

Abstract

Compulsive drug intake is a hallmark of addiction, yet the neurobiological mechanisms that contribute to the loss of control over drug consumption remain unclear. A better understanding of the mechanisms that drive compulsive drug taking may reveal targets for the development of novel therapeutics to alleviate this maladaptive behavioral state. Drug use is initiated primarily to obtain the stimulatory effects of addictive drugs on brain reward systems, an action that can be measured as drug-induced lowering of intracranial self-­stimulation (ICSS) thresholds in rats and mice. Paradoxically, excessive drug intake can result in decreased activity of reward systems, reflected in elevated ICSS. Such drug-induced deficits in brain reward function likely reflect the engagement of compensatory mechanisms to counter drug effects. Recent evidence suggests that compulsive drug intake may develop in response to such adaptive decreases in brain reward systems. Further, environmental stimuli repeated paired with the actions of addictive drugs can attain “hedonic” salience to negatively regulate brain reward systems, and may thereby serve as a novel source of drug craving. The aim of this chapter is to review the impact of excessive drug consumption and drug-paired environmental stimuli on brain reward function, discuss the role for reward pathways in driving compulsive drug taking, and present potential neurobiological mechanisms that may underlie these processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Association AP. Diagnostic and statistical manual of mental disorders. 4th ed. Washington: American Psychiatric Press; 1994.

    Google Scholar 

  2. Nesse RM, Berridge KC. Psychoactive drug use in evolutionary perspective. Science. 1997;278(5335):63–6.

    Article  PubMed  CAS  Google Scholar 

  3. Kenny PJ, Chen SA, Kitamura O, Markou A, Koob GF. Conditioned withdrawal drives heroin consumption and decreases reward sensitivity. J Neurosci. 2006;26(22):5894–900.

    Article  PubMed  CAS  Google Scholar 

  4. Markou A, Koob GF. Postcocaine anhedonia. An animal model of cocaine withdrawal. Neuropsychopharmacology. 1991;4(1):17–26.

    PubMed  CAS  Google Scholar 

  5. Schulteis G, Markou A, Cole M, Koob GF. Decreased brain reward produced by ethanol withdrawal. Proc Natl Acad Sci USA. 1995;92(13):5880–4.

    Article  PubMed  CAS  Google Scholar 

  6. Koob GF, Le Moal M. Plasticity of reward neurocircuitry and the ‘dark side’ of drug addiction. Nat Neurosci. 2005;8(11):1442–4.

    Article  PubMed  CAS  Google Scholar 

  7. Kenny PJ, Markou A. Conditioned nicotine withdrawal profoundly decreases the activity of brain reward systems. J Neurosci. 2005;25(26):6208–12.

    Article  PubMed  CAS  Google Scholar 

  8. Wikler A. A psychodynamic study of a patient during experimental self-regulated re-addiction to morphine. Psychiatr Q. 1952;26(2):270–93.

    Article  PubMed  CAS  Google Scholar 

  9. Ahmed SH, Koob GF. Transition to drug addiction: a negative reinforcement model based on an allostatic decrease in reward function. Psychopharmacology (Berl). 2005;180(3):473–90.

    Article  CAS  Google Scholar 

  10. Ahmed SH. Imbalance between drug and non-drug reward availability: a major risk factor for addiction. Eur J Pharmacol. 2005;526(1–3):9–20.

    Article  PubMed  CAS  Google Scholar 

  11. Ahmed SH, Koob GF. Transition from moderate to excessive drug intake: change in hedonic set point. Science. 1998;282(5387):298–300.

    Article  PubMed  CAS  Google Scholar 

  12. Kenny PJ. Brain reward systems and compulsive drug use. Trends Pharmacol Sci. 2007;28(3):135–41.

    Article  PubMed  CAS  Google Scholar 

  13. Gawin FH, Ellinwood Jr EH. Cocaine dependence. Annu Rev Med. 1989;40:149–61.

    Article  PubMed  CAS  Google Scholar 

  14. Kramer JC, Fischman VS, Littlefield DC. Amphetamine abuse. Pattern and effects of high doses taken intravenously. JAMA. 1967;201(5):305–9.

    Article  PubMed  CAS  Google Scholar 

  15. Ahmed SH, Kenny PJ, Koob GF, Markou A. Neurobiological evidence for hedonic allostasis associated with escalating cocaine use. Nat Neurosci. 2002;5(7):625–6.

    PubMed  CAS  Google Scholar 

  16. Siegel RK. Changing patterns of cocaine use: longitudinal observations, consequences, and treatment. NIDA Res Monogr. 1984;50:92–110.

    PubMed  CAS  Google Scholar 

  17. Ferri CP, Gossop M, Laranjeira RR. High dose cocaine use in Sao Paulo: a comparison of treatment and community samples. Subst Use Misuse. 2001;36(3):237–55.

    Article  PubMed  CAS  Google Scholar 

  18. Griffiths RR, Balster RL. Opioids: similarity between evaluations of subjective effects and animal self-administration results. Clin Pharmacol Ther. 1979;25(5 Pt 1):611–7.

    PubMed  CAS  Google Scholar 

  19. Griffiths RR, Brady JV, Bigelow GE. Predicting the dependence liability of stimulant drugs. NIDA Res Monogr. 1981;37:182–96.

    PubMed  CAS  Google Scholar 

  20. Weeks J. Experimental morphine addiction: methods for automated intravenous injections in unrestrained rats. Science. 1962;138:143–4.

    Article  PubMed  CAS  Google Scholar 

  21. Criswell HE, Ridings A. Intravenous self-administration of ­morphine by naive mice. Pharmacol Biochem Behav. 1983;18(3):467–70.

    Article  PubMed  CAS  Google Scholar 

  22. Risner ME, Jones BE. Self-administration of CNS stimulants by dog. Psychopharmacologia. 1975;43(3):207–13.

    Article  PubMed  CAS  Google Scholar 

  23. Wilson MC, Schuster CR. The effects of chlorpromazine on ­psychomotor stimulant self-administration in the rhesus monkey. Psychopharmacologia. 1972;26(2):115–26.

    Article  PubMed  CAS  Google Scholar 

  24. Donny EC, Caggiula AR, Knopf S, Brown C. Nicotine self-administration in rats. Psychopharmacology (Berl). 1995;122(4):390–94.

    Article  CAS  Google Scholar 

  25. Deroche-Gamonet V, Belin D, Piazza PV. Evidence for addiction-like behavior in the rat. Science. 2004;305(5686):1014–7.

    Article  PubMed  CAS  Google Scholar 

  26. Markou A, Weiss F, Gold LH, Caine SB, Schulteis G, Koob GF. Animal models of drug craving. Psychopharmacology (Berl). 1993;112(2–3):163–82.

    Article  CAS  Google Scholar 

  27. Richardson NR, Roberts DC. Progressive ratio schedules in drug self-administration studies in rats: a method to evaluate reinforcing efficacy. J Neurosci Methods. 1996;66(1):1–11.

    Article  PubMed  CAS  Google Scholar 

  28. Pickering C, Avesson L, Lindblom J, Liljequist S, Schioth HB. To press or not to press? Differential receptor expression and response to novelty in rats learning an operant response for reward. Neurobiol Learn Mem. 2007;87(2):181–91.

    Article  PubMed  Google Scholar 

  29. Vanderschuren LJ, Everitt BJ. Drug seeking becomes compulsive after prolonged cocaine self-administration. Science. 2004;305(5686):1017–9.

    Article  PubMed  CAS  Google Scholar 

  30. Ahmed SH, Walker JR, Koob GF. Persistent increase in the motivation to take heroin in rats with a history of drug escalation. Neuropsychopharmacology. 2000;22(4):413–21.

    Article  PubMed  CAS  Google Scholar 

  31. George O, Ghozland S, Azar MR, Cottone P, Zorrilla EP, Parsons LH, O’Dell LE, Richardson HN, Koob GF. CRF-CRF1 system activation mediates withdrawal-induced increases in nicotine self-administration in nicotine-dependent rats. Proc Natl Acad Sci USA. 2007;104(43):17198–203.

    Article  PubMed  CAS  Google Scholar 

  32. Kitamura O, Wee S, Specio SE, Koob GF, Pulvirenti L. Escalation of methamphetamine self-administration in rats: a dose-effect function. Psychopharmacology (Berl). 2006;186(1):48–53.

    Article  CAS  Google Scholar 

  33. Koob GF, Ahmed SH, Boutrel B, Chen SA, Kenny PJ, Markou A, O’Dell LE, Parsons LH, Sanna PP. Neurobiological mechanisms in the transition from drug use to drug dependence. Neurosci Biobehav Rev. 2004;27(8):739–49.

    Article  PubMed  CAS  Google Scholar 

  34. Wee S, Mandyam CD, Lekic DM, Koob GF. Alpha 1-noradrenergic system role in increased motivation for cocaine intake in rats with prolonged access. Eur Neuropsychopharmacol. 2008;18(4):303–11.

    Article  PubMed  CAS  Google Scholar 

  35. Koob GF. Neuroadaptive mechanisms of addiction: studies on the extended amygdala. Eur Neuropsychopharmacol. 2003;13(6):442–52.

    Article  PubMed  CAS  Google Scholar 

  36. Aujla H, Martin-Fardon R, Weiss F. Rats with extended access to cocaine exhibit increased stress reactivity and sensitivity to the anxiolytic-like effects of the mGluR 2/3 agonist LY379268 during abstinence. Neuropsychopharmacology. 2008;33(8):1818–26.

    Article  PubMed  CAS  Google Scholar 

  37. Specio SE, Wee S, O’Dell LE, Boutrel B, Zorrilla EP, Koob GF. CRF(1) receptor antagonists attenuate escalated cocaine self-administration in rats. Psychopharmacology (Berl). 2008;196(3):473–82.

    Article  CAS  Google Scholar 

  38. Bishop MP, Elder ST, Heath RG. Intracranial self-stimulation in man. Science. 1963;140:394–6.

    Article  PubMed  CAS  Google Scholar 

  39. Olds J. Self-stimulation of the brain. Science. 1958;127:315–24.

    Article  PubMed  CAS  Google Scholar 

  40. Kornetsky C, Esposito RU. Euphorigenic drugs: effects on the reward pathways of the brain. Fed Proc. 1979;38(11):2473–6.

    PubMed  CAS  Google Scholar 

  41. Kenny PJ, Polis I, Koob GF, Markou A. Low dose cocaine self-administration transiently increases but high dose cocaine persistently decreases brain reward function in rats. Eur J Neurosci. 2003;17(1):191–5.

    Article  PubMed  Google Scholar 

  42. Kenny PJ, Markou A. Nicotine self-administration acutely activates brain reward systems and induces a long-lasting increase in reward sensitivity. Neuropsychopharmacology. 2006;31(6):1203–11.

    PubMed  CAS  Google Scholar 

  43. Koob GF, Le Moal M. Drug abuse: hedonic homeostatic dysregulation. Science. 1997;278(5335):52–8.

    Article  PubMed  CAS  Google Scholar 

  44. Koob GF, Le Moal M. Addiction and the brain antireward system. Annu Rev Psychol. 2008;59:29–53.

    Article  PubMed  Google Scholar 

  45. Epping-Jordan MP, Watkins SS, Koob GF, Markou A. Dramatic decreases in brain reward function during nicotine withdrawal. Nature. 1998;393(6680):76–9.

    Article  PubMed  CAS  Google Scholar 

  46. Hutcheson DM, Everitt BJ, Robbins TW, Dickinson A. The role of withdrawal in heroin addiction: enhances reward or promotes avoidance? Nat Neurosci. 2001;4(9):943–7.

    Article  PubMed  CAS  Google Scholar 

  47. Wardle J. Compulsive eating and dietary restraint. Br J Clin Psychol. 1987;26(Pt 1):47–55.

    Article  PubMed  Google Scholar 

  48. Colantuoni C, Schwenker J, McCarthy J, Rada P, Ladenheim B, Cadet JL, Schwartz GJ, Moran TH, Hoebel BG. Excessive sugar intake alters binding to dopamine and mu-opioid receptors in the brain. Neuroreport. 2001;12(16):3549–52.

    Article  PubMed  CAS  Google Scholar 

  49. Avena NM, Hoebel BG. A diet promoting sugar dependency causes behavioral cross-sensitization to a low dose of amphetamine. Neuroscience. 2003;122(1):17–20.

    Article  PubMed  CAS  Google Scholar 

  50. Everitt BJ, Robbins TW. Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci. 2005;8(11):1481–9.

    Article  PubMed  CAS  Google Scholar 

  51. Nelson A, Killcross S. Amphetamine exposure enhances habit ­formation. J Neurosci. 2006;26(14):3805–12.

    Article  PubMed  CAS  Google Scholar 

  52. Ahmed SH, Lutjens R, van der Stap LD, Lekic D, Romano-Spica V, Morales M, Koob GF, Repunte-Canonigo V, Sanna PP. Gene expression evidence for remodeling of lateral hypothalamic ­circuitry in cocaine addiction. Proc Natl Acad Sci USA. 2005;102(32):11533–8.

    Article  PubMed  CAS  Google Scholar 

  53. Ahmed SH, Koob GF. Changes in response to a dopamine receptor antagonist in rats with escalating cocaine intake. Psychopharmacology (Berl). 2004;172(4):450–4.

    Article  CAS  Google Scholar 

  54. Mantsch JR, Yuferov V, Mathieu-Kia AM, Ho A, Kreek MJ. Effects of extended access to high versus low cocaine doses on self-administration, cocaine-induced reinstatement and brain mRNA levels in rats. Psychopharmacology (Berl). 2004;175(1):26–36.

    Article  CAS  Google Scholar 

  55. Ferrario CR, Gorny G, Crombag HS, Li Y, Kolb B, Robinson TE. Neural and behavioral plasticity associated with the transition from controlled to escalated cocaine use. Biol Psychiatry. 2005;58(9):751–9.

    Article  PubMed  CAS  Google Scholar 

  56. Elmer GI, Pieper JO, Levy J, Rubinstein M, Low MJ, Grandy DK, Wise RA. Brain stimulation and morphine reward deficits in dopamine D2 receptor-deficient mice. Psychopharmacology (Berl). 2005;182(1):33–44.

    Article  CAS  Google Scholar 

  57. Redish AD. Addiction as a computational process gone awry. Science. 2004;306(5703):1944–7.

    Article  PubMed  CAS  Google Scholar 

  58. Wise RA. Drive, incentive, and reinforcement: the antecedents and consequences of motivation. Nebr Symp Motiv. 2004;50:159–95.

    PubMed  Google Scholar 

  59. Kelley AE. Memory and addiction: shared neural circuitry and molecular mechanisms. Neuron. 2004;44(1):161–79.

    Article  PubMed  CAS  Google Scholar 

  60. Schultz W. Neural coding of basic reward terms of animal learning theory, game theory, microeconomics and behavioural ecology. Curr Opin Neurobiol. 2004;14(2):139–47.

    Article  PubMed  CAS  Google Scholar 

  61. Montague PR, Hyman SE, Cohen JD. Computational roles for dopamine in behavioural control. Nature. 2004;431(7010):760–7.

    Article  PubMed  CAS  Google Scholar 

  62. Hyman SE, Malenka RC, Nestler EJ. Neural mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci. 2006;29:565–98.

    Article  PubMed  CAS  Google Scholar 

  63. Hyman SE. Addiction: a disease of learning and memory. Am J Psychiatry. 2005;162(8):1414–22.

    Article  PubMed  Google Scholar 

  64. Berke JD, Hyman SE. Addiction, dopamine, and the molecular mechanisms of memory. Neuron. 2000;25(3):515–32.

    Article  PubMed  CAS  Google Scholar 

  65. Childress A, Ehrman R, McLellan AT, O’Brien C. Conditioned craving and arousal in cocaine addiction: a preliminary report. NIDA Res Monogr. 1988;81:74–80.

    PubMed  CAS  Google Scholar 

  66. Monti PM, Rohsenow DJ, Rubonis AV, Niaura RS, Sirota AD, Colby SM, Abrams DB. Alcohol cue reactivity: effects of detoxification and extended exposure. J Stud Alcohol. 1993;54(2):235–45.

    PubMed  CAS  Google Scholar 

  67. Wikler A. Dynamics of drug dependence. Implications of a conditioning theory for research and treatment. Arch Gen Psychiatry. 1973;28(5):611–6.

    Article  PubMed  CAS  Google Scholar 

  68. O’Brien CP, Testa T, O’Brien TJ, Brady JP, Wells B. Conditioned narcotic withdrawal in humans. Science. 1977;195(4282):1000–2.

    Article  PubMed  Google Scholar 

  69. Hayes RJ, Gardner EL. The basolateral complex of the amygdala mediates the modulation of intracranial self-stimulation threshold by drug-associated cues. Eur J Neurosci. 2004;20(1):273–80.

    Article  PubMed  Google Scholar 

  70. Kenny PJ, Koob GF, Markou A. Conditioned facilitation of brain reward function after repeated cocaine administration. Behav Neurosci. 2003;117(5):1103–7.

    Article  PubMed  CAS  Google Scholar 

  71. Shaham Y, Rajabi H, Stewart J. Relapse to heroin-seeking in rats under opioid maintenance: the effects of stress, heroin priming, and withdrawal. J Neurosci. 1996;16(5):1957–63.

    PubMed  CAS  Google Scholar 

  72. Shaham Y, Shalev U, Lu L, De Wit H, Stewart J. The reinstatement model of drug relapse: history, methodology and major findings. Psychopharmacology (Berl). 2003;168(1–2):3–20.

    Article  CAS  Google Scholar 

  73. Stewart J, Wise RA. Reinstatement of heroin self-administration habits: morphine prompts and naltrexone discourages renewed responding after extinction. Psychopharmacology (Berl). 1992;108(1–2):79–84.

    Article  CAS  Google Scholar 

  74. Childress AR, McLellan AT, O’Brien CP. Assessment and extinction of conditioned withdrawal-like responses in an integrated treatment for opiate dependence. NIDA Res Monogr. 1984;55:202–10.

    PubMed  CAS  Google Scholar 

  75. Childress AR, McLellan AT, Ehrman R, O’Brien CP. Classically conditioned responses in opioid and cocaine dependence: a role in relapse? NIDA Res Monogr. 1988;84:25–43.

    PubMed  CAS  Google Scholar 

  76. Hellemans KG, Dickinson A, Everitt BJ. Motivational control of heroin seeking by conditioned stimuli associated with withdrawal and heroin taking by rats. Behav Neurosci. 2006;120(1):103–14.

    Article  PubMed  CAS  Google Scholar 

  77. Lee JL, Di Ciano P, Thomas KL, Everitt BJ. Disrupting reconsolidation of drug memories reduces cocaine-seeking behavior. Neuron. 2005;47(6):795–801.

    Article  PubMed  CAS  Google Scholar 

  78. Lee JL, Milton AL, Everitt BJ. Cue-induced cocaine seeking and relapse are reduced by disruption of drug memory reconsolidation. J Neurosci. 2006;26(22):5881–7.

    Article  PubMed  CAS  Google Scholar 

  79. Nader K, Schafe GE, Le Doux JE. Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature. 2000;406(6797):722–6.

    Article  PubMed  CAS  Google Scholar 

  80. Schulteis G, Ahmed SH, Morse AC, Koob GF, Everitt BJ. Conditioning and opiate withdrawal. Nature. 2000;405(6790):1013–4.

    Article  PubMed  CAS  Google Scholar 

  81. Belin D, Mar AC, Dalley JW, Robbins TW, Everitt BJ. High impulsivity predicts the switch to compulsive cocaine-taking. Science. 2008;320(5881):1352–5.

    Article  PubMed  CAS  Google Scholar 

  82. Robbins TW, Everitt BJ. Drug addiction: bad habits add up. Nature. 1999;398(6728):567–70.

    Article  PubMed  CAS  Google Scholar 

  83. Dalley JW, Fryer TD, Brichard L, Robinson ES, Theobald DE, Laane K, Pena Y, Murphy ER, Shah Y, Probst K, Abakumova I, Aigbirhio FI, Richards HK, Hong Y, Baron JC, Everitt BJ, Robbins TW. Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement. Science. 2007;315(5816):1267–70.

    Article  PubMed  CAS  Google Scholar 

  84. Volkow ND, Fowler JS, Wang GJ, Swanson JM, Telang F. Dopamine in drug abuse and addiction: results of imaging studies and treatment implications. Arch Neurol. 2007;64(11):1575–9.

    Article  PubMed  Google Scholar 

  85. Melis M, Spiga S, Diana M. The dopamine hypothesis of drug addiction: hypodopaminergic state. Int Rev Neurobiol. 2005;63:101–54.

    Article  PubMed  CAS  Google Scholar 

  86. Volkow ND, Fowler JS, Wang GJ, Hitzemann R, Logan J, Schlyer DJ, Dewey SL, Wolf AP. Decreased dopamine D2 receptor availability is associated with reduced frontal metabolism in cocaine abusers. Synapse. 1993;14(2):169–77.

    Article  PubMed  CAS  Google Scholar 

  87. Hietala J, West C, Syvalahti E, Nagren K, Lehikoinen P, Sonninen P, Ruotsalainen U. Striatal D2 dopamine receptor binding characteristics in vivo in patients with alcohol dependence. Psychopharmacology (Berl). 1994;116(3):285–90.

    Article  CAS  Google Scholar 

  88. Noble EP. Addiction and its reward process through polymorphisms of the D2 dopamine receptor gene: a review. Eur Psychiatry. 2000;15(2):79–89.

    Article  PubMed  CAS  Google Scholar 

  89. Noble EP, Zhang X, Ritchie TL, Sparkes RS. Haplotypes at the DRD2 locus and severe alcoholism. Am J Med Genet. 2000;96(5):622–31.

    Article  PubMed  CAS  Google Scholar 

  90. Noble EP, Blum K, Khalsa ME, Ritchie T, Montgomery A, Wood RC, Fitch RJ, Ozkaragoz T, Sheridan PJ, Anglin MD, et al. Allelic association of the D2 dopamine receptor gene with cocaine dependence. Drug Alcohol Depend. 1993;33(3):271–85.

    Article  PubMed  CAS  Google Scholar 

  91. Lawford BR, Young RM, Noble EP, Sargent J, Rowell J, Shadforth S, Zhang X, Ritchie T. The D(2) dopamine receptor A(1) allele and opioid dependence: association with heroin use and response to methadone treatment. Am J Med Genet. 2000;96(5):592–8.

    Article  PubMed  CAS  Google Scholar 

  92. Stice E, Spoor S, Bohon C, Small DM. Relation between obesity and blunted striatal response to food is moderated by TaqIA A1 allele. Science. 2008;322(5900):449–52.

    Article  PubMed  CAS  Google Scholar 

  93. Nakajima S, O’Regan NB. The effects of dopaminergic agonists and antagonists on the frequency-response function for hypothalamic self-stimulation in the rat. Pharmacol Biochem Behav. 1991;39(2):465–8.

    Article  PubMed  CAS  Google Scholar 

  94. Ranaldi R, Beninger RJ. The effects of systemic and intracerebral injections of D1 and D2 agonists on brain stimulation reward. Brain Res. 1994;651(1–2):283–92.

    Article  PubMed  CAS  Google Scholar 

  95. Knapp CM, Kornetsky C. Bromocriptine, a D2 receptor agonist, lowers the threshold for rewarding brain stimulation. Pharmacol Biochem Behav. 1994;49(4):901–4.

    Article  PubMed  CAS  Google Scholar 

  96. Durieux PF, Bearzatto B, Guiducci S, Buch T, Waisman A, Zoli M, Schiffmann SN, de Kerchove d’Exaerde A. D(2)R striatopallidal neurons inhibit both locomotor and drug reward processes.Nat Neurosci. 2009;12(4):393–5.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

J.A.H. was supported by a postdoctoral fellowship from the National Institute on Drug Abuse (NIDA) (DA 024932). P.J.K. was supported by grants from NIDA (DA020686; DA023915; DA025983).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan A. Hollander .

Editor information

Editors and Affiliations

Glossary

Reinforcer

Reinforcer is an object or event that is obtained or that occurs in response to a particular behavior, is contiguous with that behavioral response in a temporal and spatial manner, and is associated with an increased probability that the behavior response will occur again. Put simply, a reinforcer is anything that increases the likelihood that a given response will be repeated.

Classical conditioning

Classical conditioning was originally characterized by the Russian physiologist Ivan ­Pavlov, and involves the learning process in which a previously neutral environmental cue (conditioned stimulus; CS) can attain motivational salience and elicit a conditioned response (CR) after being repeatedly associated with an intrinsically salient stimulus (unconditioned stimulus; US) that induces an automatic response (unconditioned response; UR). In our experiments, a CS (previously neutral flashing light and tone) is repeatedly paired with a US, usually a drug of abuse or a receptor antagonist that precipitates withdrawal in drug-dependent animals (see below), during daily conditioning sessions. The CS can eventually elicit responses similar to those induced by the US.

Intracranial self-stimulation (ICSS)

Intracranial self-­stimulation (ICSS) is a behavioral procedure that ­provides a sensitive measure of the effects of addictive drugs on brain reward systems. Rats turn a response wheel to receive electrical pulses directly into their brain via indwelling stimulating electrodes located within components of the brain’s reward system. In our experiments, the stimulating electrode is located within the posterior lateral hypothalamus, targeting the medial forebrain bundle. The intensity of the electrical pulse is varied (according to the method of limits) such that the minimal electrical intensity (termed the “reward threshold”) for which the animal is prepared to respond can be identified for each rat. Acute administration of major drugs of abuse lowers the reward threshold, whereas withdrawal from addictive drugs after chronic administration usually elevates the reward threshold.

Action-outcome (goal-directed) responding

Action-outcome (goal-directed) responding is behavior directed toward achieving a goal, and is under voluntary control (i.e., sensitive to the relative value of the goal). Action-outcome responding is dependent upon the animal learning the causal relationship between its actions and the likelihood of achieving the goal.

Stimulus–response (habit) responding

Stimulus–response (habit) responding usually emerges after goal-directed ­responding has been repeated on many occasions until such responding becomes more habitual and sensitive to goal-associated conditioned stimuli, and less under voluntary control (i.e., insensitive to the relative value of the goal).

Precipitated withdrawal

Precipitated withdrawal is the process by which withdrawal may be transiently “precipitated” in drug-dependent animals (or humans) by ­administration of a compound that antagonizes the actions of that particular drug. For example, withdrawal may be precipitated in opiate dependent rats by administration of the opioid receptor antagonist naloxone.

Escalation of drug intake

Escalation of drug intake in rats is the process by which extended daily access to a drug results in the gradual increase of drug intake over time, a process reminiscent of the loss of control over intake usually observed in human drug addicts.

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hollander, J.A., Kenny, P.J. (2012). Compulsive Drug Use and Brain Reward Systems. In: Verster, J., Brady, K., Galanter, M., Conrod, P. (eds) Drug Abuse and Addiction in Medical Illness. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3375-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3375-0_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3374-3

  • Online ISBN: 978-1-4614-3375-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics