Skip to main content

Gm-C Filters for CMOS Direct-Conversion Receivers

  • Chapter
  • First Online:
Continuous-Time Low-Pass Filters for Integrated Wideband Radio Receivers

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

  • 1192 Accesses

Abstract

The purpose of this chapter is to give a detailed description of circuit techniques that were used in this work in the three gm-C filter implementations, of which the experimental results are presented in Chap. 7. Consequently, the focus is on circuit techniques that are suitable for use when designing and implementing low-voltage wideband analog low-pass filters with programmable voltage gain in standard ultra-deep-submicron (<0.2-μm) or nanoscale (sub-100-nm) CMOS technologies. The low supply voltage (≈1.2 V) of the modern CMOS technologies limits the voltage swing and, thus, the dynamic range in analog integrated circuits. The voltage headroom can be increased by reducing the number of stacked transistors. Therefore, in this work, the functionality of the main signal processing circuits was improved by employing parallel-connected control circuits instead of using, for example, cascode transistors or other conventional circuit solutions previously utilized with higher supply voltages. Some of the circuit techniques that are presented in this chapter have been developed in this work. Parts of them are improved or modified versions of circuits previously proposed by others that were tailored in this work to fulfill the needs determined by the low-voltage wideband receiver applications adopted in this work. This chapter is mainly based on the contents of publications [1] and [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Portions of this chapter are taken from [1] (Copyright © 2009 IEEE. All rights reserved. Reprinted with permission.) and [2] (Copyright © 2007 IEEE. All rights reserved. Reprinted with permission.).

  2. 2.

    This section is based on [22] (Copyright © 2007 IEEE. All rights reserved. Reprinted with permission).

References

  1. Saari V, Kaltiokallio M, Lindfors S, Ryynänen J, Halonen KAI (2009) A 240-MHz low-pass filter with variable gain in 65-nm CMOS for a UWB radio receiver. IEEE Trans Circ Syst I Reg Pap 56(7):1488–1499

    Article  Google Scholar 

  2. Saari V, Kaltiokallio M, Lindfors S, Ryynänen J, Halonen K (2007) A 1.2-V 240-MHz CMOS continuous-time low-pass filter for a UWB radio receiver. In: IEEE international solid-state circuits conference (ISSCC) digest of technical papers, San Francisco, Feb 2007, pp 122–123

    Google Scholar 

  3. Sánchez-Sinencio E, Silva-Martinez J (2000) CMOS transconductance amplifiers, architectures and active filters: a tutorial. IEE Proc Circ Devices Syst 147(1):3–12

    Article  Google Scholar 

  4. Baschirotto A, Rezzi F, Castello R (1994) Low-voltage balanced transconductor with high input common-mode rejection. Electron Lett 30(20):1669–1671

    Article  Google Scholar 

  5. Rezzi F, Baschirotto A, Castello R (1995) A 3 V 12–55 MHz BiCMOS pseudo-differential continuous-time filter. IEEE Trans Circ Syst I Fundam Theory Appl 42(11):896–903

    Article  Google Scholar 

  6. Kallam P, Sanchez-Sinencio E, Karsilayan AI (2003) An enhanced adaptive Q-tuning scheme for a 100-MHz fully symmetric OTA-based bandpass filter. IEEE J Solid-State Circ 38(4):585–593

    Article  Google Scholar 

  7. Mohieldin AN, Sanchez-Sinencio E, Silva-Martinez J (2003) Nonlinear effects in pseudo differential OTAs with CMFB. IEEE Trans Circ Syst II Analog Digit Signal Process 50(10):762–770

    Article  Google Scholar 

  8. Yang F, Enz CC (1996) A low-distortion BiCMOS seventh-order bessel filter operating at 2.5 V supply. IEEE J Solid-State Circ 31(3):321–330

    Article  Google Scholar 

  9. Silva-Martinez J, Adut J, Rocha-Perez JM, Robinson M, Rokhsaz S (2003) A 60-mW 200-MHz continuous-time seventh-order linear phase filter with on-chip automatic tuning system. IEEE J Solid-State Circ 38(2):216–225

    Article  Google Scholar 

  10. De Veirman GA, Yamasaki RG (1991) 2–10 MHz programmable continuous-time.05° equiripple linear phase filter. In: Proceedings of the IEEE custom integrated circuits conference (CICC), San Diego, May 1991, pp 9.5.1–9.5.4

    Google Scholar 

  11. Nauta B (1992) A CMOS transconductance-C filter technique for very high frequencies. IEEE J Solid-State Circ 27(2):142–153

    Article  Google Scholar 

  12. Szczepanski S, Jakusz J, Schaumann R (1997) A linear fully balanced CMOS OTA for VHF filtering applications. IEEE Trans Circ Syst II Analog Digit Signal Process 44(3):174–187

    Article  Google Scholar 

  13. Viitala O, Lindfors S, Halonen K (2006) A 5-bit 1-GS/s Flash-ADC in 0.13-μm CMOS using active interpolation. In: Proceedings of the IEEE European solid-state circuits conference (ESSCIRC), Montreux, Sept 2006, pp 412–415

    Google Scholar 

  14. Razavi B (1997) Design considerations for direct-conversion receivers. IEEE Trans Circ Syst II Analog Digit Signal Process 44(6):428–435

    Article  Google Scholar 

  15. Jussila J, Ryynänen J, Kivekäs K, Sumanen L, Pärssinen A, Halonen KAI (2001) A 22-mA 3.0-dB NF direct conversion receiver for 3 G WCDMA. IEEE J Solid-State Circ 36(12):2025–2029

    Article  Google Scholar 

  16. Jussila J (2003) Analog baseband circuits for WCDMA direct-conversion Receivers. Doctoral thesis, Helsinki University of Technology, Espoo, p 247

    Google Scholar 

  17. Järvinen J (2008) Analog baseband circuits for sensor systems. Doctoral thesis, Helsinki University of Technology, Espoo, p 97

    Google Scholar 

  18. Lim K, Lee S-H, Min S, Ock S, Hwang M-M, Lee C-H, Kim K-L, Han S (2006) A fully integrated direct-conversion receiver for CDMA and GPS applications. IEEE J Solid-State Circ 41(11):2408–2416

    Article  Google Scholar 

  19. Ryynänen J, Kivekäs K, Jussila J, Sumanen L, Pärssinen A, Halonen KAI (2003) A single-chip multimode receiver for GSM900, DCS1800, PCS1900, and WCDMA. IEEE J Solid-State Circ 38(4):594–602

    Article  Google Scholar 

  20. Oh S-M, Park K-S, Yoo H-H, Na Y-S, Kim T-S (2007) A design of DC offset canceller using parallel compensation. In: Proceedings of the IEEE international symposium on circuits and systems (ISCAS), New Orleans, May 2007, pp 1685–1688

    Google Scholar 

  21. Crols J, Steyaert MSJ (1998) Low-IF topologies for high-performance analog front ends of fully integrated receivers. IEEE Trans Circ Syst II Analog Digit Signal Process 45(3):269–282

    Article  Google Scholar 

  22. Saari V, Lindfors S (2007) Analysis of common-mode induced even-order distortion in a pseudo-differential gm-C filter. In: Proceedings of the IEEE international symposium on circuits and systems (ISCAS), New Orleans, May 2007, pp 3546–3549

    Google Scholar 

  23. Kivekäs K, Pärssinen A, Halonen KAI (2001) Characterization of IIP2 and DC-offsets in transconductance mixers. IEEE Trans Circ Syst II Analog Digit Signal Process 48(11):1028–1038

    Article  Google Scholar 

  24. Chen M, Silva-Martinez J, Rokhsaz S, Robinson M (2003) A 2-Vpp 80–200-MHz fourth-order continuous-time linear phase filter with automatic frequency tuning. IEEE J Solid-State Circ 38(10):1745–1749

    Article  Google Scholar 

  25. Palaskas Y, Tsividis Y (2003) Dynamic range optimization of weakly nonlinear, fully balanced, gm-C filters with power dissipation constraints. IEEE Trans Circ Syst II Analog Digit Signal Process 50(10):714–727

    Article  Google Scholar 

  26. Koziel S, Ramachandran A, Szczepanski S, Sanchez-Sinencio E (2004) Dynamic range, noise and linearity optimization of continuous-time OTA-C filters. In: Proceedings of the IEEE international conference on electronics, circuits and systems (ICECS), Tel-Aviv, Dec 2004, pp 41–44

    Google Scholar 

  27. Iversen CR, Kolding TE (2001) Noise and intercept point calculation for modern radio receiver planning. IEE Proc Commun 148(4):255–259

    Article  Google Scholar 

  28. Pelgrom MJ, Duinmaijer ACJ, Welbers APG (1989) Matching properties of MOS transistors. IEEE J Solid-State Circ 24(5):1433–1440

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Saari, V., Ryynänen, J., Lindfors, S. (2012). Gm-C Filters for CMOS Direct-Conversion Receivers. In: Continuous-Time Low-Pass Filters for Integrated Wideband Radio Receivers. Analog Circuits and Signal Processing. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-3366-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3366-8_6

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-3365-1

  • Online ISBN: 978-1-4614-3366-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics