Advertisement

Functional Magnetic Resonance Imaging in Basic Acupuncture Research

  • Florian Beissner
Chapter

Abstract

Functional magnetic resonance imaging (fMRI) has been used to study the underlying mechanisms of acupuncture for more than a decade. Until the present day, over 80 studies and a dozen review articles have been published on this topic. Emphasizing the methodological and statistical quality of the studies, this critical review evaluates the results obtained so far. After dividing the studies by their analysis strategies into hypothesis-driven and data-driven approaches, inclusion criteria were defined for a meta-analysis on the cortical activations reported by the hypothesis-driven studies. Due to the inhomogeneity of the methods the results from the data-driven studies were only evaluated qualitatively. Seventy-one out of 82 studies applied hypothesis-driven methods. However, only 14 of them met the inclusion criteria. The majority of these studies reported activations in cortical areas relevant to the processing of somatosensory, motor or pain signals, as well as areas related to the special senses. In contrast, data-driven approaches identified some cortical networks that were influenced strongly by acupuncture sometimes leading to sustained changes in cortical connectivity. So far it is impossible to say if cortical activations under acupuncture are part of an underlying mechanism or if they simply reflect the brain’s processing of the acupuncture stimulus. Recent results from data-driven analyses, however, have started to shed light on the role that the brain may play in mediating acupuncture-related effects.

Keywords

Acupuncture Meta-analysis Cerebral cortex Brainstem Functional magnetic resonance imaging fMRI statistics 

Notes

Acknowledgements

This work was supported by the Horst Görtz Foundation.

References

  1. Alimi D, A G, Gardeur D (2002) Auricular acupuncture stimulation measured on functional magnetic resonance imaging. Medical Acupuncture 13(2):18–21Google Scholar
  2. Amaro E, Barker GJ (2006) Study design in fMRI: Basic principles. Brain and Cognition 60:220–232PubMedCrossRefGoogle Scholar
  3. Apkarian AV, Bushnell MC, Treede R, Zubieta J (2005) Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain 9:463–484PubMedCrossRefGoogle Scholar
  4. Asghar AU, Green G, Lythgoe MF, Lewith G, MacPherson H (2010) Acupuncture needling sensation: the neural correlates of deqi using fMRI. Brain Res 1315:111–118PubMedCrossRefGoogle Scholar
  5. Attwell D, Iadecola C (2002) The neural basis of functional brain imaging signals. Trends Neurosci 25:621–625PubMedCrossRefGoogle Scholar
  6. Bai L, Qin W, Tian J, Dai J, Yang W (2009) Detection of dynamic brain networks modulated by acupuncture using a graph theory model. Prog Na. Sci 19:827–835CrossRefGoogle Scholar
  7. Bai L, Qin W, Tian J, Dong M, Pan X, Chen P, Dai J, Yang W, Liu Y (2009) Acupuncture modulates spontaneous activities in the anticorrelated resting brain networks. Brain Res 1279:37–49PubMedCrossRefGoogle Scholar
  8. Bai L, Qin W, Tian J, Liu P, Li L, Chen P, Dai J, Craggs JG, von Deneen KM, Liu Y (2009) Time-varied characteristics of acupuncture effects in fMRI studies. Hum Brain Mapp 30:3445–3460PubMedCrossRefGoogle Scholar
  9. Bai L, Tian J, Qin W, Pan X, Yang L, Chen P, Chen H, Dai J, Ai L, Zhao B (2007) Exploratory analysis of functional connectivity network in acupuncture study by a graph theory mode. Conf Proc IEEE Eng Med Biol Soc 2007:2023–2026PubMedGoogle Scholar
  10. Bai L, Yan H, Li L, Qin W, Chen P, Liu P, Gong Q, Liu Y, Tian J (2010) Neural specificity of acupuncture stimulation at pericardium 6: evidence from an FMRI study. J Magn Reson Imaging 31:71–77PubMedCrossRefGoogle Scholar
  11. Beckmann CF, Smith SM (2004) Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans Med Imaging 23:137–152PubMedCrossRefGoogle Scholar
  12. Beissner F, Henke C (2008) Investigation of Acupuncture Effects on Vegetative Brain Centres Using Functional Magnetic Resonance Imaging. J Acupunct Tuina Sci 6:264–265CrossRefGoogle Scholar
  13. Beissner F, Henke C (2009) Methodological problems in fMRI studies on acupuncture: A critical review with special emphasis on visual and auditory cortex activations. Evid Based Complement Alternat MedGoogle Scholar
  14. Belliveau J, Rosen B, Kantor H, Rzedzian R, Kennedy D, McKinstry R, Vevea J, Cohen M, Pykett I, Brady T (1990) Functional cerebral imaging by susceptibility-contrast NMR. Magn Reson Med 14:538–546PubMedCrossRefGoogle Scholar
  15. Biswal B, Yetkin F, Haughton V, Hyde J (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541PubMedCrossRefGoogle Scholar
  16. Chae Y, Lee H, Kim H, Sohn H, Park J, Park H (2009) The neural substrates of verum acupuncture compared to non-penetrating placebo needle: an fMRI study. Neurosci Lett 450:80–4PubMedCrossRefGoogle Scholar
  17. Chen YX, Kong KM, Wang WD, Xie CH, Wu RH (2007) Functional MR imaging of the spinal cord in cervical spinal cord injury patients by acupuncture at LI 4 (Hegu) and LI 11(Quchi). Conf Proc IEEE Eng Med Biol Soc 2007:3388–3391PubMedGoogle Scholar
  18. Chiang CY, Chang CT, Chu HL, Yang LF (1973) Peripheral afferent pathway for acupuncture analgesia. Sci Sin 16:210–217Google Scholar
  19. Cho S, Jahng G, Park S, Jung W, Moon S, Park J (2010) fMRI Study of Effect on Brain Activity According to Stimulation Method at LI11, ST36: Painful Pressure and Acupuncture Stimulation of Same Acupoints. J Altern Complement Med 16:489PubMedCrossRefGoogle Scholar
  20. Cho ZH, Chung SC, Jones JP, Park JB, Park HJ, Lee HJ, Wong EK, Min BI (1998) New findings of the correlation between acupoints and corresponding brain cortices using functional MRI. Proc Natl Acad Sci U S A 95:2670–3PubMedCrossRefGoogle Scholar
  21. Cho ZH, Chung SC, Lee HJ, Wong EK, Min BI (2006) Retraction. New findings of the correlation between acupoints and corresponding brain cortices using functional MRI. Proc Natl Acad Sci U S A 103:10527Google Scholar
  22. Cho ZH, Son YD, Han JY, Wong EK, Kang CK, Kim KY, Kim HK, Lee BY, Yim YK, KH K (2002) fMRI Neurophysiological Evidence Of Acupuncture Mechanisms. Medical Acupuncture 14(1):16–22Google Scholar
  23. Cole DM, Smith SM, Beckmann CF (2010) Advances and pitfalls in the analysis and interpretation of resting-state FMRI data. Frontiers in systems neuroscience 4:8PubMedGoogle Scholar
  24. Deadman P, Baker K, Al-Khafaji M (1998) A Manual of Acupuncture. Journal of Chinese Medicine.Google Scholar
  25. Deng G, Hou BL, Holodny AI, Cassileth BR (2008) Functional magnetic resonance imaging (fMRI) changes and saliva production associated with acupuncture at LI-2 acupuncture point: a randomized controlled study. BMC Complement Altern Med 8:37PubMedCrossRefGoogle Scholar
  26. Dhond RP, Yeh C, Park K, Kettner N, Napadow V (2008) Acupuncture modulates resting state connectivity in default and sensorimotor brain networks. Pain 136:407–418PubMedCrossRefGoogle Scholar
  27. Eippert F, Finsterbusch J, Bingel U, Buchel C (2009) Direct evidence for spinal cord involvement in placebo analgesia. Science 326:404PubMedCrossRefGoogle Scholar
  28. Fang J, Jin Z, Wang Y, Li K, Kong J, Nixon E, Zeng Y, Ren Y, Tong H, others (2008) The salient characteristics of the central effects of acupuncture needling: Limbic-paralimbic-neocortical network modulation. Hum Brain Mapp 6:1Google Scholar
  29. Fang J, Krings T, Weidemann J, Meister I, Thron A (2004) Functional MRI in healthy subjects during acupuncture: different effects of needle rotation in real and false acupoints. Neuroradiology 46:359–362PubMedCrossRefGoogle Scholar
  30. Friston K, Holmes A, Worsley K, Poline J, CD (1995) Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 2:189–210Google Scholar
  31. Friston KJ, Holmes AP, Worsley KJ (1999) How Many Subjects Constitute a Study? Neuroimage 5:1–5CrossRefGoogle Scholar
  32. Gareus IK, Lacour M, Schulte A, Hennig J (2002) Is there a BOLD response of the visual cortex on stimulation of the vision-related acupoint GB 37? J Magn Reson Imaging 15:227–232PubMedCrossRefGoogle Scholar
  33. Glover GH (1999) Deconvolution of impulse response in event-related BOLD fMRI. Neuroimage 9:416–429PubMedCrossRefGoogle Scholar
  34. Ho T, Duann J, Chen C, Chen J, Shen W, Lu T, Liao J, Lin J (2008) Carryover effects alter FMRI statistical analysis in an acupuncture study. Am J Chin Med 36:55–70PubMedCrossRefGoogle Scholar
  35. Ho T, Duann J, Chen C, Chen J, Shen W, Lu T, Liao J, Lin Z, Shaw K, Lin J (2009) Temporally shifted hemodynamic response model helps to extract acupuncture-induced functional magnetic resonance imaging blood oxygenation-level dependent activities. Chin Med J 122:823–829PubMedGoogle Scholar
  36. Hui K, Liu J, Makris N, Gollub R, Chen A, Moore C, Kennedy D, Rosen B, Kwong K (2000) Acupuncture modulates the limbic system and subcortical gray structures of the human brain: evidence from fMRI studies in normal subjects. Hum Brain Mapp 9:13–25PubMedCrossRefGoogle Scholar
  37. Hui K, Liu J, Marina O, Napadow V, Haselgrove C, Kwong K, Kennedy D, Makris N (2005) The integrated response of the human cerebro-cerebellar and limbic systems to acupuncture stimulation at ST 36 as evidenced by fMRI. Neuroimage 27:479–496PubMedCrossRefGoogle Scholar
  38. Hui K, Marina O, Claunch J, Nixon E, Fang J, Liu J, Li M, Napadow V, Vangel M, Makris N, others (2009) Acupuncture mobilizes the brain’s default mode and its anti-correlated network in healthy subjects. Brain Res 1287:84–103Google Scholar
  39. Hui KK, Liu J, Kwong KK (1997) Functional mapping of the human brain during acupuncture with magnetic resonance imaging somatosensory cortex activation. World J Acupunct Moxi 7(3):44–49Google Scholar
  40. Hui KK, Marina O, Liu J, Rosen BR, Kwong KK (2010) Acupuncture, the limbic system, and the anticorrelated networks of the brain. Autonomic neuroscience : basic & clinicalGoogle Scholar
  41. Hui KK, Nixon EE, Vangel MG, Liu J, Marina O, Napadow V, Hodge SM, Rosen BR, Makris N, Kennedy DN (2007) Characterization of the “deqi” response in acupuncture. BMC Complement Altern Med 7:33PubMedCrossRefGoogle Scholar
  42. Jeun S, Kim J, Kim B, Park S, Lim E, Choi G, Choe B (2005) Acupuncture stimulation for motor cortex activities: a 3T fMRI study. Am J Chin Med 33:573–578PubMedCrossRefGoogle Scholar
  43. Jones AK, Kulkarni B, Derbyshire SW (2003) Pain mechanisms and their disorders. Br Med Bull 65:83–93PubMedCrossRefGoogle Scholar
  44. Kong J, Gollub R, Huang T, Polich G, Napadow V, Hui K, Vangel M, Rosen B, Kaptchuk TJ (2007) Acupuncture de qi, from qualitative history to quantitative measurement. J Altern Complement Med 13:1059–1070PubMedCrossRefGoogle Scholar
  45. Kong J, Gollub RL, Webb JM, Kong J, Vangel MG, Kwong K (2007) Test-retest study of fMRI signal change evoked by electroacupuncture stimulation. Neuroimage 34:1171–1181PubMedCrossRefGoogle Scholar
  46. Kong J, Kaptchuk TJ, Polich G, Kirsch I, Vangel M, Zyloney C, Rosen B, Gollub R (2009) Expectancy and treatment interactions: A dissociation between acupuncture analgesia and expectancy evoked placebo analgesia. Neuroimage 45(3):940–949PubMedCrossRefGoogle Scholar
  47. Kong J, Kaptchuk TJ, Polich G, Kirsch I, Vangel M, Zyloney C, Rosen B, Gollub RL (2009) An fMRI study on the interaction and dissociation between expectation of pain relief and acupuncture treatment. Neuroimage 47:1066–1076PubMedCrossRefGoogle Scholar
  48. Kong J, Kaptchuk TJ, Webb JM, Kong J, Sasaki Y, Polich GR, Vangel MG, Kwong K, Rosen B, Gollub RL (2009) Functional neuroanatomical investigation of vision-related acupuncture point specificity--a multisession fMRI study. Hum Brain Mapp 30:38–46PubMedCrossRefGoogle Scholar
  49. Kong J, Ma L, Gollub RL, Wei J, Yang X, Li D, Weng X, Jia F, Wang C, Li F, Li R, Zhuang D (2002) A pilot study of functional magnetic resonance imaging of the brain during manual and electroacupuncture stimulation of acupuncture point (LI-4 Hegu) in normal subjects reveals differential brain activation between methods. J Altern Complement Med 8:411–419PubMedCrossRefGoogle Scholar
  50. Kwong KK, Belliveau JW, Chesler Da, Goldberg IE, Weisskoff RM, Poncelet BP, Kennedy DN, Hoppel BE, Cohen MS, Turner R (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A 89:5675–9PubMedCrossRefGoogle Scholar
  51. Lewis CM, Baldassarre A, Committeri G, Romani GL, Corbetta M (2009) Learning sculpts the spontaneous activity of the resting human brain. Proc Natl Acad Sci U S A 106:17558–63PubMedCrossRefGoogle Scholar
  52. Li G, Cheung RT, Ma Q, Yang ES (2003) Visual cortical activations on fMRI upon stimulation of the vision-implicated acupoints. Neuroreport 14:669–673PubMedCrossRefGoogle Scholar
  53. Li G, Huang L, Cheung RT, Liu S, Ma Q, Yang ES (2004) Cortical activations upon stimulation of the sensorimotor-implicated acupoints. Magn Reson Imaging 22:639–644PubMedCrossRefGoogle Scholar
  54. Li G, Jack CR, Yang ES (2006) An fMRI study of somatosensory-implicated acupuncture points in stable somatosensory stroke patients. J Magn Reson Imaging 24:1018–1024PubMedCrossRefGoogle Scholar
  55. Li G, Liu H, Cheung RT, Hung Y, Wong KK, Shen GG, Ma Q, Yang ES (2003) An fMRI study comparing brain activation between word generation and electrical stimulation of language-implicated acupoints. Hum Brain Mapp 18:233–238PubMedCrossRefGoogle Scholar
  56. Li G, Ng MC, Wong KK, Luk KD, Yang ES (2005) Spinal effects of acupuncture stimulation assessed by proton density-weighted functional magnetic resonance imaging at 0.2 T. Magn Reson Imaging 23:995–999PubMedCrossRefGoogle Scholar
  57. Li K, Shan B, Xu J, Liu H, Wang W, Zhi L, Li K, Yan B, Tang X (2006) Changes in FMRI in the human brain related to different durations of manual acupuncture needling. J Altern Complement Med 12:615–623PubMedCrossRefGoogle Scholar
  58. Li L, Liu H, Li Y, Xu J, Shan B, Gong D, Li K, Tang X (2008) The human brain response to acupuncture on same-meridian acupoints: evidence from an fMRI study. J Altern Complement Med 14:673–678PubMedCrossRefGoogle Scholar
  59. Li L, Qin W, Bai L, Tian J (2010) Exploring vision-related acupuncture point specificity with multivoxel pattern analysis. Magn Reson Imaging 28:380–387PubMedCrossRefGoogle Scholar
  60. Litscher G, Rachbauer D, Ropele S, Wang L, Schikora D, Fazekas F, Ebner F (2004) Acupuncture using laser needles modulates brain function: first evidence from functional transcranial Doppler sonography and functional magnetic resonance imaging. Lasers Med Sci 19:6–11PubMedCrossRefGoogle Scholar
  61. Liu J, Qin W, Guo Q, Sun J, Yuan K, Liu P, Zhang Y, von Deneen KM, Liu Y, Tian J (2010) Distinct brain networks for time-varied characteristics of acupuncture. Neurosci Lett 468:353–358PubMedCrossRefGoogle Scholar
  62. Liu P, Qin W, Zhang Y, Tian J, Bai L, Zhou G, Liu J, Chen P, Dai J, von Deneen K, others (2009) Combining spatial and temporal information to explore function-guide action of acupuncture using fMRI. J Magn Reson Imaging 30:41–46Google Scholar
  63. Liu P, Zhang Y, Zhou G, Yuan K, Qin W, Zhuo L, Liang J, Chen P, Dai J, Liu Y, Tian J (2009) Partial correlation investigation on the default mode network involved in acupuncture: an fMRI study. Neurosci Lett 462:183–187PubMedCrossRefGoogle Scholar
  64. Liu S, Zhou W, Ruan X, Li R, Lee T, Weng X, Hu J, Yang G (2007) Activation of the hypothalamus characterizes the response to acupuncture stimulation in heroin addicts. Neurosci Lett 421:203–208PubMedCrossRefGoogle Scholar
  65. Liu W, Feldman SC, Cook DB, Hung D, Xu T, Kalnin AJ, Komisaruk BR (2004) fMRI study of acupuncture-induced periaqueductal gray activity in humans. Neuroreport 15:1937–1940PubMedCrossRefGoogle Scholar
  66. Logothetis NK, Wandell BA (2004) Interpreting The BOLD Signal. Annu Rev Physiol 66:735–769PubMedCrossRefGoogle Scholar
  67. Lu N, Shan B, Xu J, Wang W, Li K (2007) Improved temporal clustering analysis method applied to whole-brain data in acupuncture fMRI study. Magn Reson Imaging 25:1190–1195PubMedCrossRefGoogle Scholar
  68. MacPherson H, Green G, Nevado A, Lythgoe MF, Lewith G, Devlin R, Haselfoot R, Asghar AU (2008) Brain imaging of acupuncture: comparing superficial with deep needling. Neurosci Lett 434:144–9PubMedCrossRefGoogle Scholar
  69. May A (2007) Neuroimaging: visualising the brain in pain. Neurol Sci 28 Suppl 2:S101–7PubMedCrossRefGoogle Scholar
  70. McKeown MJ, Makeig S, Brown GG, Jung TP, Kindermann SS, Bell AJ, Sejnowski TJ (1998) Analysis of fMRI data by blind separation into independent spatial components. Hum Brain Mapp 6:160–188PubMedCrossRefGoogle Scholar
  71. Melzack R (1990) Phantom limbs and the concept of a neuromatrix. Trends Neurosci 13:88–92PubMedCrossRefGoogle Scholar
  72. Na B, Jahng G, Park S, Jung W, Moon S, Park J, Bae H (2009) An fMRI study of neuronal specificity of an acupoint: electroacupuncture stimulation of Yanglingquan (GB34) and its sham point. Neurosci Lett 464:1–5PubMedCrossRefGoogle Scholar
  73. Nakagoshi A, Fukunaga M, Umeda M, Mori Y, Higuchi T, Tanaka C (2005) Somatotopic representation of acupoints in human primary somatosensory cortex: an FMRI study. Magn Reson Med Sci 4:187–9PubMedCrossRefGoogle Scholar
  74. Nance DM, Sanders VM (2007) Autonomic innervation and regulation of the immune system (1987–2007). Brain Behav Immun 21:736–745PubMedCrossRefGoogle Scholar
  75. Napadow V, Dhond R, Kim J, LaCount L, Vangel M, Harris R, Kettner N, Park K (2009) Brain encoding of acupuncture sensation–Coupling on-line rating with fMRI. NeuroImage 47:1055–1065PubMedCrossRefGoogle Scholar
  76. Napadow V, Dhond R, Park K, Kim J, Makris N, Kwong K, Harris R, Purdon P, Kettner N, Hui K (2009) Time-variant fMRI activity in the brainstem and higher structures in response to acupuncture. Neuroimage 47:289–301PubMedCrossRefGoogle Scholar
  77. Napadow V, Dhond R, Purdon P, Kettner N, Makris N, Kwong K, Hui K (2005) Correlating acupuncture FMRI in the human brainstem with heart rate variability. Conf Proc IEEE Eng Med Biol Soc 5:4496–4499PubMedGoogle Scholar
  78. Napadow V, Kettner N, Liu J, Li M, Kwong K, Vangel M, Makris N, Audette J, Hui K (2007) Hypothalamus and amygdala response to acupuncture stimuli in carpal tunnel syndrome. Pain 130:254–266PubMedCrossRefGoogle Scholar
  79. Napadow V, Liu J, Li M, Kettner N, Ryan A, Kwong K, Hui K, Audette J (2007) Somatosensory cortical plasticity in carpal tunnel syndrome treated by acupuncture. Hum Brain Mapp 28:159–171PubMedCrossRefGoogle Scholar
  80. Napadow V, Makris N, Liu J, Kettner N, Kwong K, Hui K (2005) Effects of electroacupuncture versus manual acupuncture on the human brain as measured by fMRI. Hum Brain Mapp 24:193–205PubMedCrossRefGoogle Scholar
  81. Ogawa S, Lee T, Nayak A, Glynn P (1990) Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magnetic Resonance in Medicine 14:68–78PubMedCrossRefGoogle Scholar
  82. Park S, Shin A, Jahng G, Moon S, Park J (2009) Effects of scalp acupuncture versus upper and lower limb acupuncture on signal activation of blood oxygen level dependent (BOLD) fMRI of the brain and somatosensory cortex. J Altern Complement Med 15:1193–1200PubMedCrossRefGoogle Scholar
  83. Parrish TB, Schaeffer A, Catanese M, Rogel MJ (2005) Functional magnetic resonance imaging of real and sham acupuncture. Noninvasively measuring cortical activation from acupuncture. IEEE Eng Med Biol Mag 24:35–40CrossRefGoogle Scholar
  84. Pauling L, Coryell CD (1936) The Magnetic Properties and Structure of Hemoglobin, Oxyhemoglobin and Carbonmonoxyhemoglobin. Proc Natl Acad Sci U S A 22:210–216PubMedCrossRefGoogle Scholar
  85. Poldrack R, Fletcher P, Henson R, Worsley K, Brett M, Nichols T (2008) Guidelines for reporting an fMRI study. Neuroimage 40:409–414PubMedCrossRefGoogle Scholar
  86. Qin W, Tian J, Bai L, Pan X, Yang L, Chen P, Dai J, Ai L, Zhao B, Gong Q, Wang W, von Deneen KM, Liu Y (2008) FMRI connectivity analysis of acupuncture effects on an amygdala-associated brain network. Mol Pain 4:55PubMedCrossRefGoogle Scholar
  87. Qin W, Tian J, Pan X, Yang L, Zhen Z (2006) The correlated network of acupuncture effect: a functional connectivity study. Conf Proc IEEE Eng Med Biol Soc 1:480–483PubMedGoogle Scholar
  88. Roy C, Sherrington C (1890) On the regulation of the blood-supply of the brain. J Physiol 11:85PubMedGoogle Scholar
  89. Samuels MA (2007) The brain-heart connection. Circulation 116:77–84PubMedCrossRefGoogle Scholar
  90. Schaechter JD, Connell BD, Stason WB, Kaptchuk TJ, Krebs DE, Macklin EA, Schnyer RN, Stein J, Scarborough DM, Parker SW, McGibbon CA, Wayne PM (2007) Correlated change in upper limb function and motor cortex activation after verum and sham acupuncture in patients with chronic stroke. J Altern Complement Med 13(5):527–532PubMedCrossRefGoogle Scholar
  91. Siedentopf CM, Golaszewski SM, Mottaghy FM, Ruff CC, Felber S, Schlager A (2002) Functional magnetic resonance imaging detects activation of the visual association cortex during laser acupuncture of the foot in humans. Neurosci Lett 327:53–56PubMedCrossRefGoogle Scholar
  92. Siedentopf CM, Koppelstaetter F, Haala IA, Haid V, Rhomberg P, Ischebeck A, Buchberger W, Felber S, Schlager A, Golaszewski SM (2005) Laser acupuncture induced specific cerebral cortical and subcortical activations in humans. Lasers Med Sci 20(2):68–73PubMedCrossRefGoogle Scholar
  93. Tracey KJ (2007) Physiology and immunology of the cholinergic antiinflammatory pathway. J Clin Invest 117(2):289–296PubMedCrossRefGoogle Scholar
  94. Travagli R, Hermann G, Browning K, Rogers R (2006) Brainstem circuits regulating gastric function. Annu Rev Physiol 68:279–305PubMedCrossRefGoogle Scholar
  95. Ueda Y, Hayashi K, Kuriowa K (2005) The application of fMRI to basic experiments in acupuncture. The effects of stimulus points and content on cerebral activities and responses. IEEE Eng Med Biol Mag 24:47–51PubMedCrossRefGoogle Scholar
  96. Wang S, Constable RT, Tokoglu FS, Weiss DA, Freyle D, Kain ZN (2007) Acupuncture-induced blood oxygenation level-dependent signals in awake and anesthetized volunteers: a pilot study. Anesth Analg 105:499–506PubMedCrossRefGoogle Scholar
  97. Wang W, Liu L, Zhi X, Huang J, Liu D, Wang H, Kong X, Xu H (2007) Study on the regulatory effect of electro-acupuncture on hegu point (LI4) in cerebral response with functional magnetic resonance imaging. Chin J Integr Med 13:10–16PubMedCrossRefGoogle Scholar
  98. Wang WD, Kong KM, Xiao YY, Wang XJ, Liang B, Qi WL, Wu RH (2006) Functional MR imaging of the cervical spinal cord by use of electrical stimulation at LI4 (Hegu). Conf Proc IEEE Eng Med Biol Soc 1:1029–31PubMedGoogle Scholar
  99. Weiss T, Straube T, Boettcher J, Hecht H, Spohn D, Miltner WH (2008) Brain activation upon selective stimulation of cutaneous C- and Aδ-fibers. Neuroimage 41:1372–1381PubMedCrossRefGoogle Scholar
  100. Wesolowski T, Lotze M, Domin M, Langner S, Lehmann C, Wendt M, Usichenko TI (2009) Acupuncture reveals no specific effect on primary auditory cortex: a functional magnetic resonance imaging study. Neuroreport 20:116–120PubMedCrossRefGoogle Scholar
  101. Wilder R (1995) Neuroendocrine-immune system interactions and autoimmunity. Annu Rev Immunol 13:307–338PubMedCrossRefGoogle Scholar
  102. Wu M, Hsieh J, Xiong J, Yang C, Pan H, Chen Y, Tsai G, Rosen B, Kwong K (1999) Central Nervous Pathway for Acupuncture Stimulation: Localization of Processing with Functional MR Imaging of the Brain—Preliminary Experience. Radiology 212:133PubMedGoogle Scholar
  103. Wu M, Sheen J, Chuang K, Yang P, Chin S, Tsai C, Chen C, Liao J, Lai P, Chu K, Pan H, Yang C (2002) Neuronal specificity of acupuncture response: a fMRI study with electroacupuncture. Neuroimage 16:1028–1037PubMedCrossRefGoogle Scholar
  104. Wu Y, Jin Z, Li K, Lu Z, Wong V, Han T, Zheng H, Caspi O, Liu G, Zeng Y, Zou L (2008) Effect of acupuncture on the brain in children with spastic cerebral palsy using functional neuroimaging (FMRI). J Child Neurol 23:1267–74PubMedCrossRefGoogle Scholar
  105. Xiao YY, Chen XK, Du L, Pei RQ, Chen FY, Liu GR, Wu RH (2006) The brain mapping on reinforcement acupuncture stimulation at ST36 (zusanli) evidenced by fMRI. Conf Proc IEEE Eng Med Biol Soc 1:1036–1039PubMedGoogle Scholar
  106. Yan B, Li K, Xu J, Wang W, Li K, Liu H, Shan B, Tang X (2005) Acupoint-specific fMRI patterns in human brain. Neurosci Lett 383:236–240PubMedCrossRefGoogle Scholar
  107. Yeo S, Choe I, van den Noort M, Bosch P, Lim S (2010) Consecutive acupuncture stimulations lead to significantly decreased neural responses. J Altern Complement Med 16:481–7PubMedCrossRefGoogle Scholar
  108. Yoo S, Kerr CE, Park M, Im D, Blinder RA, Park H, Kaptchuk TJ (2007) Neural activities in human somatosensory cortical areas evoked by acupuncture stimulation. Complement Ther Med 15:247–54PubMedCrossRefGoogle Scholar
  109. Yoo S, Teh E, Blinder RA, Jolesz FA (2004) Modulation of cerebellar activities by acupuncture stimulation: evidence from fMRI study. Neuroimage 22:932–940PubMedCrossRefGoogle Scholar
  110. Yoshida T, Tanaka C, Umeda M, Higuchi T, Fukunaga M, Naruse S (1995) Non-invasive measurement of brain activity using functional MRI: toward the study of brain response to acupuncture stimulation. Am J Chin Med 23:319–325PubMedCrossRefGoogle Scholar
  111. Zhang J, Cao X, Lie J, Tang W, Liu H, Fenga X (2007) Neuronal specificity of needling acupoints at same meridian: a control functional magnetic resonance imaging study with electroacupuncture. Acupunct Electrother Res 32:179–193PubMedGoogle Scholar
  112. Zhang J, Li J, Cao X, Feng X (2009) Can electroacupuncture affect the sympathetic activity, estimated by skin temperature measurement? A functional MRI study on the effect of needling at GB 34 and GB 39 on patients with pain in the lower extremity. Acupunct Electrother Res 34:151–164PubMedGoogle Scholar
  113. Zhang W, Jin Z, Cui G, Zhang K, Zhang L, Zeng Y, Luo F, Chen AC, Han J (2003) Relations between brain network activation and analgesic effect induced by low vs. high frequency electrical acupoint stimulation in different subjects: a functional magnetic resonance imaging study. Brain Res 982:168–78PubMedCrossRefGoogle Scholar
  114. Zhang W, Jin Z, Huang J, Zhang L, Zeng Y, Luo F, Chen AC, Han J (2003) Modulation of cold pain in human brain by electric acupoint stimulation: evidence from fMRI. Neuroreport 14:1591–1596PubMedCrossRefGoogle Scholar
  115. Zhang W, Jin Z, Luo F, Zhang L, Zeng Y, Han J (2004) Evidence from brain imaging with fMRI supporting functional specificity of acupoints in humans. Neurosci Lett 354:50–53PubMedCrossRefGoogle Scholar
  116. Zhang Y, Liang J, Qin W, Liu P, von Deneen KM, Chen P, Bai L, Tian J, Liu Y (2009) Comparison of visual cortical activations induced by electro-acupuncture at vision and nonvision-related acupoints. Neurosci Lett 458:6–10PubMedCrossRefGoogle Scholar
  117. Zhang Y, Qin W, Liu P, Tian J, Liang J, von Deneen KM, Liu Y (2009) An fMRI study of acupuncture using independent component analysis. Neurosci Lett 449:6–9PubMedCrossRefGoogle Scholar
  118. Zhou Y, Jin J (2008) Effect of acupuncture given at the HT 7, ST 36, ST 40 and KI 3 acupoints on various parts of the brains of Alzheimer’ s disease patients. Acupunct Electrother Res 33:9–17PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Pain and Autonomics–Integrative Research (PAIR), Clinic of Psychiatry and PsychotherapyUniversity Clinic JenaJenaGermany

Personalised recommendations