Skip to main content

Closed Bioreactors as Tools for Microalgae Production

  • Chapter
  • First Online:
Advanced Biofuels and Bioproducts

Abstract

A variety of high value products have so far been produced with algae and the transition to algae mass cultures for the energy market currently arouses the interest of research and industry. The key to efficient cultivation of microalgae is the optimization of photobioreactors that does not only allow for efficient light capture but also takes account of the specific physiological requirements of microalgae. Three fundamental reactor designs (bubble columns, flat plate reactors, and tubular reactors) are common and are discussed together with some elaborate derivatives in the following. Every concept excels with specific advantages in terms of light distribution, fluid dynamics, avoidance of gradients, and utilization of the intermittent light effect. However, the integration of all beneficial characteristics and simultaneously the compliance with energetic and economic constraints still imposes demanding challenges on engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acién FG, Fernández JM, Magán JJ, Molina E (2012) Production cost of a real microalgae production plant and strategies to reduce it, Biotechnology Advances, ISSN 0734–9750, 10.1016/j.biotechadv.2012.02.055. http://www.sciencedirect.com/science/article/pii/S0734975012000420. Accessed 14 Feb 2012

    Article  CAS  Google Scholar 

  2. Aro E-M, Virgin I, Andersson B (1993) Photoinhibition of Photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta 1143(2):113–134

    Article  CAS  Google Scholar 

  3. Babcock RW, Malda J, Radway JC (2002) Hydrodynamics and mass transfer in a tubular airlift photobioreactor. J Appl Phycol 14(3):169–184

    Article  CAS  Google Scholar 

  4. Ben-Gurion University of the Negev—Microalgal Biotechnology Laboratory—facilities. http://bidr.bgu.ac.il/BIDR/research/algal/slide12.htm. Accessed 15 Aug 2010

  5. Borowitzka M (1997) Microalgae for aquaculture: opportunities and constraints. J Appl Phycol 9(5):393–401

    Article  Google Scholar 

  6. Boyer JS (1982) Plant productivity and environment. Science 218(4571):443–448

    Article  CAS  Google Scholar 

  7. Buehner M, Young P, Willson B et al (2009) Microalgae growth modeling and control for a vertical flat panel photobioreactor. In: American control conference, vol 1–9. IEEE Press, Piscataway, NJ

    Google Scholar 

  8. Camacho Rubio F et al (2004) Mixing in bubble columns: a new approach for characterizing dispersion coefficients. Chem Eng Sci 59(20):4369–4376

    Article  CAS  Google Scholar 

  9. Chini Zittelli G et al (2006) Productivity and photosynthetic efficiency of outdoor cultures of Tetraselmis suecica in annular columns. Aquaculture 261(3):932–943

    Article  Google Scholar 

  10. Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26(3):126–131

    Article  CAS  Google Scholar 

  11. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306

    Article  CAS  Google Scholar 

  12. Chiu S et al (2009) The air-lift photobioreactors with flow patterning for high-density cultures of microalgae and carbon dioxide removal. Eng Life Sci 9(3):254–260

    Article  CAS  Google Scholar 

  13. Cogne G, Cornet JF, Gros JB (2005) Design, operation, and modeling of a membrane photobioreactor to study the growth of the cyanobacterium Arthrospira platensis in space conditions. Biotechnol Prog 21(3):741–750

    Article  CAS  Google Scholar 

  14. Degen J et al (2001) A novel airlift photobioreactor with baffles for improved light utilization through the flashing light effect. J Biotechnol 92(2):89–94

    Article  CAS  Google Scholar 

  15. Doucha J, Straka F, Livansky K (2005) Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. J Appl Phycol 17(5):403–412

    Article  Google Scholar 

  16. Eriksen N, Poulsen B, Lønsmann Iversen J (1998) Dual sparging laboratory-scale photobioreactor for continuous production of microalgae. J Appl Phycol 10(4):377–382

    Article  Google Scholar 

  17. Fan L-H et al (2008) Evaluation of a membrane-sparged helical tubular photobioreactor for carbon dioxide biofixation by Chlorella vulgaris. J Membr Sci 325(1):336–345

    Article  CAS  Google Scholar 

  18. Hall DO et al (2003) Outdoor helical tubular photobioreactors for microalgal production: modeling of fluid-dynamics and mass transfer and assessment of biomass productivity. Biotechnol Bioeng 82(1):62–73

    Article  CAS  Google Scholar 

  19. Holland L, Siddall G (1958) Heat-reflecting windows using gold and bismuth oxide films. Br J Appl Phys 9(9):359

    Article  CAS  Google Scholar 

  20. Janssen M et al (2003) Enclosed outdoor photobioreactors: light regime, photosynthetic efficiency, scale-up, and future prospects. Biotechnol Bioeng 81(2):193–210

    Article  CAS  Google Scholar 

  21. Janssen M et al (2001) Photosynthetic efficiency of Dunaliella tertiolecta under short light/dark cycles. Enzyme Microb Technol 29(4–5):298–305

    Article  CAS  Google Scholar 

  22. Kok B (1956) Photosynthesis in flashing light. Biochim Biophys Acta 21(2):245–258

    Article  CAS  Google Scholar 

  23. Kunjapur AM, Eldridge RB (2010) Photobioreactor design for commercial biofuel production from microalgae. Ind Eng Chem Res 49(8):3516–3526

    Article  CAS  Google Scholar 

  24. Molina E et al (2000) Scale-up of tubular photobioreactors. J Appl Phycol 12(3):355–368

    Article  Google Scholar 

  25. Molina E et al (2001) Tubular photobioreactor design for algal cultures. J Biotechnol 92(2):113–131

    Article  CAS  Google Scholar 

  26. Morweiser M et al (2010) Developments and perspectives of photobioreactors for biofuel production. Appl Microbiol Biotechnol 87(4):1291–1301

    Article  CAS  Google Scholar 

  27. Perner-Nochta I, Posten C (2007) Simulations of light intensity variation in photobioreactors. J Biotechnol 131(3):276–285

    Article  CAS  Google Scholar 

  28. Perner-Nochta I, Lucumi A, Posten C (2007) Photoautotrophic cell and tissue culture in a tubular photobioreactor. Eng Life Sci 7(2):127–135

    Article  CAS  Google Scholar 

  29. Posten C, Schaub G (2009) Microalgae and terrestrial biomass as source for fuels–a process view. J Biotechnol 142(1):64–69

    Article  CAS  Google Scholar 

  30. Posten C (2009) Design principles of photo-bioreactors for cultivation of microalgae. Eng Life Sci 9(3):165–177

    Article  CAS  Google Scholar 

  31. Proviron (2009) http://www.proviron.com/algae/GB/. Accessed 20 July 2010

  32. Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65(6):635–648

    Article  CAS  Google Scholar 

  33. Pulz O (2001) Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol 57(3):287–293

    Article  CAS  Google Scholar 

  34. Richmond A (2004) Principles for attaining maximal microalgal productivity in photobioreactors: an overview. Hydrobiologia 512(1):33–37

    Article  Google Scholar 

  35. Ripplinger P (2009) Industrial production of microalgal biomass with a Flat-Panel-Airlift-Bioreactor. Biotechnology Colloquium, Köthen

    Google Scholar 

  36. Rodolfi L et al (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102(1):100–112

    Article  CAS  Google Scholar 

  37. Rosello Sastre R et al (2007) Scale-down of microalgae cultivations in tubular photo-bioreactors–a conceptual approach. J Biotechnol 132(2):127–133

    Article  CAS  Google Scholar 

  38. Rosenberger S, Olbers G, Heinz D (2008) Infrared-reflective material comprising interference pigments having higher transmission in the visible region than in the NIR region. United States Patent 7410685

    Google Scholar 

  39. Rubio FC et al (1999) Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactors for microalgal culture. Biotechnol Bioeng 62(1):71–86

    Article  CAS  Google Scholar 

  40. Sánchez Mirón A et al (1999) Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae. J Biotechnol 70(1–3):249–270

    Article  Google Scholar 

  41. Sánchez Mirón A et al (2002) Growth and biochemical characterization of microalgal biomass produced in bubble column and airlift photobioreactors: studies in fed-batch culture. Enzyme Microb Technol 31(7):1015–1023

    Article  Google Scholar 

  42. Sierra E et al (2008) Characterization of a flat plate photobioreactor for the production of microalgae. Chem Eng J 138(1–3):136–147

    Article  CAS  Google Scholar 

  43. Solix Biofuels (2010) http://www.solixbiofuels.com/. Accessed 20 July 2010

  44. Sukenik A et al (1991) Optimizing algal biomass production in an outdoor pond: a simulation model. J Appl Phycol 3(3):191–201

    Article  Google Scholar 

  45. Tredici MR, Rodolfi L (2004) Reactor for industrial culture of photosynthetic micro-organisms. Patent WO 2004/074423 A2 (to Universita `degli Studi di Firenze)

    Google Scholar 

  46. Tredici MR (2010) Photobiology of microalgae mass cultures: understanding the tools for the next green revolution. Biofuels 1:143–162

    Article  CAS  Google Scholar 

  47. Willson B (2009) Low-cost photobioreactors for production of algae-biofuels. In: GTOBiofuels: science and innovation for sustainable development conference, San Francisco, CA

    Google Scholar 

  48. Willson B (2010) Got impact? Cross-disciplinary partnerships for large-scale global change. In: EWB-USA international conference

    Google Scholar 

  49. Yang Y, Gao K (2003) Effects of CO2 concentrations on the freshwater microalgae, Chlamydomonas reinhardtii, Chlorella pyrenoidosa and Scenedesmus obliquus (Chlorophyta). J Appl Phycol 15(5):379–389

    Article  CAS  Google Scholar 

  50. Yatabe T, Nishihara T, Suzuki N (1987) Optical laminar structure. United States Patent 4639069

    Google Scholar 

  51. Zhu X-G, Long SP, Ort DR (2008) What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr Opin Biotechnol 19(2):153–159

    Article  CAS  Google Scholar 

  52. Zijffers J-W et al (2008) Design process of an area-efficient photobioreactor. Marine Biotechnol 10(4):404–415

    Article  CAS  Google Scholar 

  53. Zittelli GC, Rodolfi L, Tredici MR (2003) Mass cultivation of Nannochloropsis sp. in annular reactors. J Appl Phycol 15(2):107–114

    Article  CAS  Google Scholar 

  54. Jacobi A, Ivanova D, Posten C (2010) Photobioreactors: Hydrodynamics and mass transfer in Computer Applications in Biotechnology (CAB). Leuven: IFAC. 162–167

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clemens Posten .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dillschneider, R., Posten, C. (2013). Closed Bioreactors as Tools for Microalgae Production. In: Lee, J. (eds) Advanced Biofuels and Bioproducts. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3348-4_26

Download citation

Publish with us

Policies and ethics