Advertisement

Cognitive Enhancers in Exposure Therapy for Anxiety and Related Disorders

  • Stefan G. Hofmann
  • Cassidy A. Gutner
  • Anu Asnaani
Chapter

Abstract

Although exposure-based therapies have demonstrated effectiveness in the treatment of anxiety and related disorders, there remain a significant number of individuals who do not respond or only show partial response even after an adequate course of the treatment. Recent research suggests that augmentation agents can enhance the core learning processes of exposure-based therapy, thus potentially improving treatment response and maintenance of gains in the long-term. This chapter provides an overview of the current state of cognitive enhancers for the treatment of psychological disorders, particularly in the realm of anxiety.

Keywords

Methylene Blue Anxiety Disorder Social Anxiety Social Anxiety Disorder Panic Disorder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abercrombie, H. C., Speck, N. S., & Monticelli, R. M. (2006). Endogenous cortisol elevations are related to memory facilitation only in individuals who are emotionally aroused. Psychoneuroendocrinology, 31, 187–196.PubMedCrossRefGoogle Scholar
  2. Airaksinen, E., Larsson, M., & Forsell, Y. (2005). Neuropsychologcial functions in anxiety disorders in population-based samples; Evidence of episodic memory dysfunction. Journal of Psychiatric Research, 39, 207–214.PubMedCrossRefGoogle Scholar
  3. Aouizerate, B., Martin-Guehl, C., & Tignol, J. (2004). Neurobiology and pharmacotherapy of social phobia. Encephale, 30, 301–313.PubMedCrossRefGoogle Scholar
  4. Arenos, J. D., Musty, R. E., & Bucci, D. J. (2006). Blockade of cannabinoid CB1 receptors alters contextual learning and memory. European Journal of Pharmacology, 539, 177–183.PubMedCrossRefGoogle Scholar
  5. Arnsten, A. F. (2004). Adrenergic targets for the treatment of cognitive deficits in schizophrenia. Psychopharmacology, 174, 25–31.PubMedCrossRefGoogle Scholar
  6. Arnsten, A. F., & Goldman-Rakic, P. S. (1985). Alpha 2-adrenergic mechanisms in prefrontal cortex associated with cognitive decline in aged nonhuman primates. Science, 230, 1273–1276.PubMedCrossRefGoogle Scholar
  7. Asmundson, G. J., Stein, M. B., Larsen, D. K., & Walker, J. R. (1994). Neurocognitive function in panic disorder and social phobia patients. Anxiety, 1, 201–207.PubMedGoogle Scholar
  8. Baldwin, D. S., Anderson, I. M., Nutt, D. J., Bandelow, B., Bon, A., Davidson, J. R., et al. (2005). British Association for Psychopharmacology: Evidence-based guidelines for the pharmacological treatment of anxiety disorders: Recommendations from the British Association for Psychopharmacology. Journal of Psychopharmacology, 19, 567–596.PubMedCrossRefGoogle Scholar
  9. Barlow, D. H., Gorman, J. M., Shear, M. K., & Woods, S. W. (2000). Cognitive-behavioral therapy, imipramine or their combination for panic disorder: A randomized controlled trial. Journal of the American Medical Association, 283, 2529–2536.PubMedCrossRefGoogle Scholar
  10. Barreto, R. E., Volpato, G. L., & Pottinger, T. G. (2006). The effect of elevated blood cortisol levels on the extinction of a conditioned stress response in rainbow trout. Hormones and Behavior, 50, 484–488.PubMedCrossRefGoogle Scholar
  11. Barrett, D., Shumake, J., Jones, D., & Gonzalez-Lima, F. (2003). Metabolic mapping of mouse brain activity after extinction of a conditioned emotional response. Journal of Neuroscience, 23, 5740–5749.PubMedGoogle Scholar
  12. Beckner, V. E., Tucker, D. M., Delville, Y., & Mohr, D. C. (2006). Stress facilitates consolidation of verbal memory for a film but does not affect retrieval. Behavioral Neuroscience, 120, 518–527.PubMedCrossRefGoogle Scholar
  13. Berchtold, N. C., Castello, N., & Cotman, C. W. (2010). Exercise and time-dependent benefits to learning and memory. Neuroscience, 167, 588–597.PubMedCrossRefGoogle Scholar
  14. Boulenger, J. P., Uhde, T. W., Wolff, E. A., IIIrd, & Post, R. M. (1984). Increased sensitivity to caffeine in patients with panic disorders: Preliminary evidence. Archives of General Psychiatry, 41, 1067–1071.PubMedCrossRefGoogle Scholar
  15. Bouton, M. E., Vurbic, D., & Woods, A. M. (2008). d-cycloserine facilitates context-specific fear extinction learning. Neurobiology of Learning & Memory, 90, 504–510.CrossRefGoogle Scholar
  16. Breslau, N., & Klein, D. F. (1999). Smoking and panic attacks: An epidemiologic investigation. Archives of General Psychiatry, 56, 1141–1147.PubMedCrossRefGoogle Scholar
  17. Brioni, J. D., O’Neill, A. B., Kim, D. J., & Decker, M. W. (1993). Nicotinic receptor agonists exhibit anxiolytic like effects on the elevated plus-maze test. European Journal of Pharmacology, 238, 1–8.PubMedCrossRefGoogle Scholar
  18. Buchanan, T. W., & Lovallo, W. R. (2001). Enhanced memory for emotional material following stress-level cortisol treatment in humans. Psychoneuroendocrinology, 26, 307–317.PubMedCrossRefGoogle Scholar
  19. Bueller, J. A., Aftab, M., Sen, S., Gomez-Hassan, D., Burmeister, M., & Zubieta, J. K. (2006). BDNF Val66Met allele is associated with reduced hippocampal volume in healthy subjects. Biological Psychiatry, 599, 812–815.CrossRefGoogle Scholar
  20. Cahill, L., Gorski, L., & Le, K. (2003). Enhanced human memory consolidation with post-learning stress: Interaction with the degree of arousal at encoding. Learning & Memory, 10, 270–274.CrossRefGoogle Scholar
  21. Cai, W. H., Blundell, J., Han, J., Greene, R. W., & Powell, C. M. (2006). Postreactivation glucocorticoids impair recall of established fear memory. Journal of Neuroscience, 26, 9560–9566.PubMedCrossRefGoogle Scholar
  22. Cain, C. K., Blouin, A. M., & Barad, M. (2004). Adrenergic transmission facilitates extinction of conditional fear in mice. Learning & Memory, 11, 1791–87.CrossRefGoogle Scholar
  23. Cape, J., Whittington, C., Buszewicz, M., Wallace, P., & Underwood, L. (2010). Brief psychological therapies for anxiety and depression in primary care: Meta-analysis and meta-regression. BMC Medical Ethics, 25, 38.Google Scholar
  24. Charney, D. S., Heninger, G. R., & Breier, A. (1984). Noradrenergic function in panic anxiety. Effects of yohimbine in healthy subjects and patients with agoraphobia and panic disorder. Archives of General Psychiatry, 41, 751–763.Google Scholar
  25. Charney, D. S., Heninger, G. R., & Jatlow, P. I. (1985). Increased anxiogenic effects of caffeine in panic disorders. Archives of General Psychiatry, 42, 233–243.PubMedCrossRefGoogle Scholar
  26. Charney, D. S., & Manji, H. K. (2004). Life stress, genes, and depression: Multiple pathways lead to increased risk and new opportunities for intervention. Science’s STKE Signal Transduction Knowledge Environment, 2004(225), r5.Google Scholar
  27. Charney, D. S., Woods, S. W., Goodman, W. K., & Heninger, G. R. (1987). Neurobiological mechanisms of panic anxiety: Biochemical and behavioral correlates of yohimbine-induced panic attacks. American Journal of Psychiatry, 144, 1030–1036.PubMedGoogle Scholar
  28. Chen, Y., & Parrish, T. B. (2009). Caffeine dose effect on activation-induced BOLD and CBF responses. Neuroimage, 46, 577–583.PubMedCrossRefGoogle Scholar
  29. Chhatwal, J. P., Davis, M., Maguschak, K. A., & Ressler, K. J. (2005). Enhancing cannabinoid neurotransmission augments the extinction of conditioned fear. Neuropsychopharmacology, 30, 516–524.PubMedCrossRefGoogle Scholar
  30. Chhatwal, J. P., Gutman, A. R., Maguschak, K. A., Bowser, M. E., Yang, Y., Davis, M., et al. (2009). Functional interactions between endocannabinoid and CCK neurotransmitter systems may be critical for extinction learning. Neuropsychopharmacology, 34, 509–521.PubMedCrossRefGoogle Scholar
  31. Cosci, F., Abrams, K., Schruers, K. R., Rickelt, J., & Griez, E. J. (2006). Effect of nicotine on 35% CO2-induced anxiety: A study in healthy volunteers. Nicotine & Tobacco Research, 8, 511–517.CrossRefGoogle Scholar
  32. Cotman, C. W., & Berchtold, N. C. (2002). Exercise: A behavioral intervention to enhance brain health and plasticity. Trends in Neuroscience, 25, 295–301.CrossRefGoogle Scholar
  33. Curtis, G. C., Abelson, J. L., & Gold, P. W. (1997). Adrenocorticotropic hormone and cortisol responses to corticotropin-releasing hormone: Changes in panic disorder and effects of alprazolam treatment. Biological Psychiatry, 41, 76–85.PubMedCrossRefGoogle Scholar
  34. Davis, M., Barad, M., Otto, M. W., & Southwick, S. (2006). Combining pharmacotherapy with cognitive behavior therapy: Traditional and new approaches. Journal of Traumatic Stress, 19, 571–581.PubMedCrossRefGoogle Scholar
  35. Davis, M., Ressler, K., Rothbaum, B. O., & Richardson, R. (2006). Effects of d-cycloserine on extinction: Translation from preclinical to clinical work. Biological Psychiatry, 60, 369–375.PubMedCrossRefGoogle Scholar
  36. de la Mora, M. P., Gallegos-Cari, A., Arizmendi-García, Y., Marcellino, D., & Fuxe, K. (2010). Role of dopamine receptor mechanisms in the amygdaloid modulation of fear and anxiety: Structural and functional analysis. Progress in Neurobiology, 90, 198–216.PubMedCrossRefGoogle Scholar
  37. DeMet, E., Stein, M. K., Tran, C., Chicz-DeMet, A., Sangdahl, C., & Nelsons, J. (1989). Caffeine taste test for panic disorder: Adenosine receptor supersensitivity. Psychiatric Research, 30, 231–242.CrossRefGoogle Scholar
  38. Durstewitz, D., & Seamans, J. K. (2002). The computational role of dopamine D1 receptors in working memory. Neural Network, 15, 561–572.CrossRefGoogle Scholar
  39. Egan, M. F., Kojima, M., Callicott, J. H., Goldberg, T. E., Kolachana, B. S., Bertolino, A., et al. (2003). The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell, 112, 257–269.PubMedCrossRefGoogle Scholar
  40. Falls, W. A., Miserendino, M. J., & Davis, M. (1992). Extinction of fear-potentiated startle: Blockade by infusion of an NMDA antagonist into the amygdala. Journal of Neuroscience, 12, 854–863.PubMedGoogle Scholar
  41. Fiedorowicz, J. G., Hale, N., Spector, A. A., & Coryell, W. H. (2010). Neuroticism but not omega-3 fatty acid levels correlate with early responsiveness to escitalopram. Annals of Clinical Psychiatry, 22, 157–163.PubMedGoogle Scholar
  42. File, S. E., Cheeta, S., & Kenny, P. J. (2000). Neurobiological mechanisms by which nicotine mediates different types of anxiety. European Journal of Pharmacology, 393(1–3), 231–236.PubMedCrossRefGoogle Scholar
  43. File, S. E., Kenny, P. J., & Ouagazzal, A. M. (1998). Bimodal modulation by nicotine of anxiety in the social interaction test: Role of the dorsal hippocampus. Behavioral Neuroscience, 112, 1423–1429.PubMedCrossRefGoogle Scholar
  44. Fries, E., Hellhammer, D. H., & Hellhammer, J. (2006). Attenuation of the hypothalamic–pituitary–adrenal axis responsivity to the Trier Social Stress Test by the benzodiazepine alprazolam. Psychoneuroendocrinology, 31, 1278–1288.PubMedCrossRefGoogle Scholar
  45. Furmark, T. (2009). Neurobiological aspects of social anxiety disorder. Journal of Psychiatry and Related Sciences, 46, 5–12.Google Scholar
  46. Goldman-Rakic, P. S., Castner, S. A., Svensson, T. H., Siever, L. J., & Williams, G. V. (2004). Targeting the dopamine D1 receptor in schizophrenia: Insights for cognitive dysfunction. Psychopharmacology, 174, 3–16.PubMedCrossRefGoogle Scholar
  47. Gonzalez-Lima, F., & Bruchey, A. K. (2004). Extinction memory improvement by the metabolic enhancer methylene blue. Learning & Memory, 11, 633–640.CrossRefGoogle Scholar
  48. Gould, R. A., Otto, M. W., & Pollack, M. H. (1995). A meta-analysis of treatment outcome for panic disorder. Clinical Psychology Review, 15, 819–844.CrossRefGoogle Scholar
  49. Guastella, A. J., Richardson, R., Lovibond, P. F., Rapee, R. M., Gaston, J. E., Mitchell, P., et al. (2008). A randomized controlled trial of d-cycloserine enhancement of exposure therapy for social anxiety disorder. Biological Psychiatry, 63, 544–549.PubMedCrossRefGoogle Scholar
  50. Haller, J., Bakos, N., Szirmay, M., Ledent, C., & Freund, T. F. (2002). The effects of genetic and pharmacological blockade of the CB1 cannabinoid receptor on anxiety. European Journal of Neuroscience, 16, 1395–1398.PubMedCrossRefGoogle Scholar
  51. Hariri, A. R., Goldberg, T. E., Mattay, V. S., Kolachana, B. S., Callicott, J. H., Egan, M. F., et al. (2003). Brain-derived neurotrophic factor val66met polymorphism affects human memory-related hippocampal activity and predicts memory performance. Journal of Neuroscience, 23, 6690–6694.PubMedGoogle Scholar
  52. Herry, C., & Garcia, R. (2002). Prefrontal cortex long-term potentiation, but not long-term depression, is associated with the maintenance of extinction of learned fear in mice. Journal of Neuroscience, 22, 577–583.PubMedGoogle Scholar
  53. Hofmann, S. G. (2007). Enhancing exposure-based therapy from a translational research perspective. Behaviour Research & Therapy, 45, 1987–2001.CrossRefGoogle Scholar
  54. Hofmann, S. G., Meuret, A. E., Smits, J. A. J., Simon, N. M., Pollack, M. H., Eisenmenger, K. C., et al. (2006). Augmentation of exposure therapy for social anxiety disorder with d-Cycloserine. Archives of General Psychiatry, 63, 298–304.PubMedCrossRefGoogle Scholar
  55. Hofmann, S. G., Pollack, M. H., & Otto, M. W. (2006). Augmentation treatment of psychotherapy for anxiety disorders with d-cycloserine. CNS Drug Review, 12, 208–217.CrossRefGoogle Scholar
  56. Hofmann, S. G., Sawyer, A. T., Korte, K. J., & Smits, J. A. J. (2009). Is it beneficial to add pharmacotherapy to cognitive-behavioral therapy when treating anxiety disorders? A meta-analytic review. International Journal of Cognitive Therapy, 2, 160–175.PubMedCrossRefGoogle Scholar
  57. Hofmann, S. G., & Smits, J. A. J. (2008). Cognitive-behavioral therapy for adult anxiety disorders: A meta-analysis of randomized placebo-controlled trials. Journal of Clinical Psychiatry, 69, 621–632.PubMedCrossRefGoogle Scholar
  58. Hofmann, S. G., Smits, J. A. J., Asnaani, A., Gutner, C. A., & Otto, M. W. (2011). Cognitive enhancers for anxiety disorders. Pharmacology Biochemistry and Behavior, 99, 275–284.CrossRefGoogle Scholar
  59. Holmes, A., & Quirk, G. J. (2010). Pharmacological facilitation of fear extinction and the search for adjunct treatments for anxiety disorders–the case of yohimbine. Trends in Pharmacological Science, 31, 2–7.CrossRefGoogle Scholar
  60. Johannsen, S., Duning, K., Pavenstädt, H., Kremerskothen, J., & Boeckers, T. M. (2008). Temporal-spatial expression and novel biochemical properties of the memory-related protein KIBRA. Neuroscience, 155, 1165–1173.PubMedCrossRefGoogle Scholar
  61. Junghanns, K., Tietz, U., Dibbelt, L., Kuether, M., Jurth, R., Ehrenthal, D., et al. (2005). Attenuated salivary cortisol secretion under cue exposure is associated with early relapse. Alcohol & Alcoholism, 40, 80–85.CrossRefGoogle Scholar
  62. Kaplan, G. B., Vasterling, J. J., & Vedak, P. C. (2010). Brain-derived neurotrophic factor in traumatic brain injury, post-traumatic stress disorder, and their comorbid conditions: Role in pathogenesis and treatment. Behavioral Pharmacology, 21, 427–437.CrossRefGoogle Scholar
  63. Klokk, M., Gotestam, K. G., & Mykletun, A. (2010). Factors accounting for the association between anxiety and depression, and eczema: The Hordaland health study (HUSK). BMC Dermatology, 10, 3.PubMedCrossRefGoogle Scholar
  64. Kobayashi, K., Shimizu, E., Hashimoto, K., Mitsumori, M., Koike, K., Okamura, N., et al. (2005). Serum brain-derived neurotrophic factor (BDNF) levels in patients with panic disorder: As a biological predictor of response to group cognitive behavioral therapy. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 29, 658–663.PubMedCrossRefGoogle Scholar
  65. Koo, M. S., Kim, E. J., Roh, D., & Kim, C. H. (2010). Role of dopamine in the pathophysiology and treatment of obsessive-compulsive disorder. Expert Review of Neurotherapeutics, 10, 275–290.PubMedCrossRefGoogle Scholar
  66. Kremerskothen, J., Plaas, C., Büther, K., Finger, I., Veltel, S., Matanis, T., et al. (2003). Characterization of KIBRA, a novel WW domain-containing protein. Biochemical and Biophysical Research Communications, 300, 862–867.PubMedCrossRefGoogle Scholar
  67. Kushner, M. G., Kim, S. W., Donahue, C., Thuras, P., Adson, D., Kotlyar, M., et al. (2007). d-cycloserine augmented exposure therapy for obsessive-compulsive disorder. Biological Psychiatry, 62, 835–838.PubMedCrossRefGoogle Scholar
  68. Lebrón, K., Milad, M. R., & Quirk, G. J. (2004). Delayed recall of fear extinction in rats with lesions of ventral medial prefrontal cortex. Learning & Memory, 11, 544–548.CrossRefGoogle Scholar
  69. Lissek, S., Powers, A. S., McClure, E. B., Phelps, E. A., Woldehawariat, G., Grillon, C., et al. (2005). Classical fear conditioning in the anxiety disorders: A meta-analysis. Behaviour Research & Therapy, 43, 1391–424.CrossRefGoogle Scholar
  70. Lupien, S. J., Friocco, A., Wan, N., Maheu, F., Lord, C., Schramek, T., et al. (2005). Stress hormones and human memory function across the lifespan. Psychoneuroendocrinology, 30, 225–242.PubMedCrossRefGoogle Scholar
  71. Marsicano, G., Moosmann, B., Hermann, H., Lutz, B., & Behl, C. (2002). Neuroprotective properties of cannabinoids against oxidative stress: role of the cannabinoid receptor CB1. Journal of Neurochemistry, 80(3), 448–456.PubMedCrossRefGoogle Scholar
  72. Masdrakis, V. G., Markianos, M., Vaidakis, N., Papakostas, Y. G., & Oulis, P. (2009). Caffeine challenge and breath-holding duration in patients with panic disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 33, 41–44.PubMedCrossRefGoogle Scholar
  73. McNamara, R. K., & Carlson, S. E. (2006). Role of omega-3 fatty acids in brain development and function: Potential implications for the pathogenesis and prevention of psychopathology. Prostaglandins, Leukotrienes and Essential Fatty Acids, 75, 329–349.CrossRefGoogle Scholar
  74. Milad, M. R., & Quirk, G. J. (2002). Neurons in medial prefrontal cortex signal memory for fear extinction. Nature, 420, 70–74.PubMedCrossRefGoogle Scholar
  75. Milad, M. R., Vidal-Gonzalez, I., & Quirk, G. J. (2004). Electrical stimulation of medial prefrontal cortex reduces conditioned fear in a temporally specific manner. Behavioral Neuroscience, 118, 389–394.PubMedCrossRefGoogle Scholar
  76. Momose, Y., Murata, M., Kobayashi, K., Tachikawa, M., Nakabayashi, Y., Kanazawa, I., et al. (2002). Association studies of multiple candidate genes for Parkinson’s disease using single nucleotide polymorphisms. Annals of Neurology, 51, 133–136.PubMedCrossRefGoogle Scholar
  77. Morgan, M. A., Romanski, L. M., & LeDoux, J. E. (1993). Extinction of emotional learning: Contribution of medial prefrontal cortex. Neuroscience Letters, 163, 109–113.PubMedCrossRefGoogle Scholar
  78. Morris, R. W., & Bouton, M. E. (2007). The effect of yohimbine on the extinction of conditioned fear: A role for context. Behavioral Neuroscience, 121, 501–14.PubMedCrossRefGoogle Scholar
  79. Mystkowski, J. L., Mineka, S., Vernon, L. L., & Zinbarg, R. E. (2003). Changes in caffeine states enhance return of fear in spider phobia. Journal of Consulting and Clinical Psychology, 71, 243–50.PubMedCrossRefGoogle Scholar
  80. Nardi, A. E., Valença, A. M., Nascimento, I., Freire, R. C., Veras, A. B., de-Melo-Neto, V. L., et al. (2008). A caffeine challenge test in panic disorder patients, their healthy first-degree relatives, and healthy controls. Depression and Anxiety, 25, 847–853.PubMedCrossRefGoogle Scholar
  81. Nestler, E. J., Barrot, M., DiLeone, R. J., Eisch, A. J., Gold, S. J., & Monteggia, L. M. (2002). Neurobiology of Depression. Neuron, 34, 13–25.PubMedCrossRefGoogle Scholar
  82. Nikolaus, S., Antke, C., Beu, M., & Müller, H. W. (2010). Cortical GABA, striatal dopamine and midbrain serotonin as the key players in compulsive and anxiety disorders–results from in vivo imaging studies. Reviews in the Neurosciences, 21, 119–139.PubMedCrossRefGoogle Scholar
  83. Norberg, M. M., Krystal, J. H., & Tolin, D. F. (2008). A meta-analysis of d-cycloserine and the facilitation of fear extinction and exposure therapy. Biological Psychiatry, 63, 1118–1126.PubMedCrossRefGoogle Scholar
  84. Olver, J. S., O’Keefe, G., Jones, G. R., Burrows, G. D., Tochon-Danguy, H. J., Ackermann, U., et al. (2009). Dopamine D1 receptor binding in the striatum of patients with obsessive-compulsive disorder. Journal of Affective Disorders, 114, 321–326.PubMedCrossRefGoogle Scholar
  85. Otto, M. W., Basden, S. L., McHugh, R. K., Kantak, K. M., Deckersbach, T., Cather, C., et al. (2009). Effects of d-cycloserine administration on weekly non-emotional memory tasks in healthy participants. Psychotherapy & Psychosomatics, 78, 49–54.CrossRefGoogle Scholar
  86. Otto, M. W., McHugh, R. K., & Kantak, K. M. (2010). Combined pharmacotherapy and cognitive-behavioral therapy for anxiety disorders: Medication effects, glucocorticoids, and attenuated outcomes. Clinical Psychology: Science and Practice, 37, 91–103.CrossRefGoogle Scholar
  87. Otto, M. W., Tolin, D. F., Simon, N. M., Pearlson, G. D., Basden, S., Meunier, S. A., et al. (2010). Efficacy of d-cycloserine for enhancing response to cognitive behavioral therapy for panic disorder. Biological Psychiatry, 67, 365–370.CrossRefGoogle Scholar
  88. Pacher, P., Bátkai, S., & Kunos, G. (2006). The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacology Review, 58, 389–462.CrossRefGoogle Scholar
  89. Pakdel, R., & Rashidy-Pour, A. (2007). Microinjections of the dopamine D2 receptor antagonist sulpiride into the medial prefrontal cortex attenuate glucocorticoid-induced impairment of long-term memory retrieval in rats. Neurobiology of Learning and Memory, 37, 385–390.CrossRefGoogle Scholar
  90. Papassotiropoulos, A., Stephan, D. A., Huentelman, M. J., Hoerndli, F. J., Craig, D. W., Pearson, J. V., et al. (2006). Common Kibra alleles are associated with human memory performance. Science, 314, 475–458.PubMedCrossRefGoogle Scholar
  91. Pollack, M. H., Otto, M. W., Roy-Byrne, P. P., Coplan, J. D., Rothbaum, B. O., Simon, N. M., et al. (2008). Novel treatment approaches for refractory anxiety disorders. Depression & Anxiety, 25, 467–476.CrossRefGoogle Scholar
  92. Pomara, N., Willoughby, L. M., Sidtis, J. J., Cooper, T. B., & Greenblatt, D. J. (2005). Cortisol response to diazepam: Its relationship to age, dose, duration of treatment, and presence of generalized anxiety disorder. Psychopharmacology, 178, 1–8.PubMedCrossRefGoogle Scholar
  93. Porter, A. C., & Felder, C. C. (2001). The endocannabinoid nervous system: Unique opportunities for therapeutic intervention. Pharmacology & Therapeutics, 901, 45–60.CrossRefGoogle Scholar
  94. Powers, M. B., Smits, J. A., Otto, M. W., Sanders, C., & Emmelkamp, P. M. (2009). Facilitation of fear extinction in phobic participants with a novel cognitive enhancer: A randomizedplacebo controlled trial of yohimbine augmentation. Journal of Anxiety Disorders, 23, 350–356.PubMedCrossRefGoogle Scholar
  95. Putman, P., Van Honk, J., Kessels, R. P., Mulder, M., & Koppeschaar, H. P. (2004). Salivary cortisol and short and long-term memory for emotional faces in healthy young women. Psychoneuroendocrinology, 29, 953–60.PubMedCrossRefGoogle Scholar
  96. Quirk, G. J., Garcia, R., & González-Lima, F. (2006). Prefrontal mechanisms in extinction of conditioned fear. Biological Psychiatry, 60, 337–343.PubMedCrossRefGoogle Scholar
  97. Quirk, G. J., Russo, G. K., Barron, J. L., & Lebron, K. (2000). The role of ventromedial prefrontal cortex in the recovery of extinguished fear. Journal of Neuroscience, 20, 6225–6231.PubMedGoogle Scholar
  98. Rauch, S. L., Shin, L. M., & Phelps, E. A. (2006). Neurocircuitry models of posttraumatic stress disorder and extinction: Human neuroimaging research—past, present, and future. Biological Psychiatry, 60, 376–382.PubMedCrossRefGoogle Scholar
  99. Ressler, K. J., Rothbaum, B. O., Tannenbaum, L., Anderson, P., Graap, K., Zimand, E., et al. (2004). Cognitive enhancers as adjuncts to psychotherapy: Use of d-cycloserine in phobic individuals to facilitate extinction of fear. Archives of General Psychiatry, 61, 1136–1144.PubMedCrossRefGoogle Scholar
  100. Richardson, R., Ledgerwood, L., & Cranney, J. (2004). Facilitation of fear extinction by d-cycloserine: Theoretical and clinical implications. Learning & Memory, 11, 510–516.CrossRefGoogle Scholar
  101. Rohrer, T., von Richthofen, V., Schulz, C., Beyer, J., & Lehnert, H. (1994). The stress-, but not corticotropin-releasing hormone-induced activation of the pituitary–adrenal axis in man is blocked by alprazolam. Hormone and Metabolic Research, 26, 200–206.PubMedCrossRefGoogle Scholar
  102. Roy-Byrne, P. P., & Cowley, D. S. (2002). Pharmacological treatments for panic disorder, generalized anxiety disorder, specific phobia, and social anxiety disorder. In P. E. Nathan & J. M. Gorman (Eds.), A Guide to Treatments That Work (2nd ed., pp. 337–365). New York, NY: Oxford University Press.Google Scholar
  103. Salín-Pascual, R. J., & Basañez-Villa, E. (2003). Changes in compulsion and anxiety symptoms with nicotine transdermal patches in non-smoking obsessive-compulsive disorder patients. Revista de Investigacion Clinica, 55, 650–654.PubMedGoogle Scholar
  104. Sareen, J., Campbell, D. W., Leslie, W. D., Malisza, K. L., Stein, M. B., Paulus, M. P., et al. (2007). Striatal function in generalized social phobia: A functional magnetic resonance imaging study. Biological Psychiatry, 61, 396–404.PubMedCrossRefGoogle Scholar
  105. Sawaguchi, T., & Goldman-Rakic, P. S. (1991). D1 dopamine receptors in prefrontal cortex: Involvement in working memory. Science, 251, 947–950.PubMedCrossRefGoogle Scholar
  106. Schneider, A., Huentelman, M. J., Kremerskothen, J., Duning, K., Spoelgen, R., & Nikolich, K. (2010). KIBRA: A New Gateway to Learning and Memory? Frontiers in Aging & Neuroscience, 2, 4.Google Scholar
  107. Seamans, J. K., & Yang, C. R. (2004). The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Progress in Neurobiology, 74, 1–58.PubMedCrossRefGoogle Scholar
  108. Sen, S., Nesse, R. M., Stoltenberg, S. F., Li, S., Gleiberman, L., Chakravarti, A., et al. (2003). BDNF coding variant is associated with the NEO personality inventory domain neuroticism, a risk factor for depression. Neuropsychopharmacology, 28, 397–401.PubMedCrossRefGoogle Scholar
  109. Siegmund, A., Köster, L., Meves, A. M., Plag, J., Stoy, M., & Ströhle, A. (2011). Stress hormones during flooding therapy and their relationship to therapy outcome in patients with panic disorder and agoraphobia. Journal of Psychiatric Research, 45, 339–346.PubMedCrossRefGoogle Scholar
  110. Sklar, P., Gabriel, S. B., McInnis, M. G., Bennett, P., Lim, Y. M., Tsan, G., et al. (2002). Family-based association study of 76 candidate genes in bipolar disorder: BDNF is a potential risk locus. Brain-derived neutrophic factor. Molecular Psychiatry, 76, 579–593.CrossRefGoogle Scholar
  111. Soliman, F., Glatt, C. E., Bath, K. G., Levita, L., Jones, R. M., Pattwell, S. S., et al. (2010). A genetic variant BDNF polymorphism alters extinction learning in both mouse and human. Science, 327, 863–866.PubMedCrossRefGoogle Scholar
  112. Soravia, L. M., Heinrichs, M., Aerni, A., Maroni, C., Schelling, G., Ehlert, U., et al. (2006). Glucocorticoids reduce phobic fear in humans. Proceedings of the National Academy of Sciences of the United States of America, 103, 5585–5590.PubMedCrossRefGoogle Scholar
  113. Stein, D. J., Ipser, J. C., & Seedat, S. (2006). Pharmacotherapy for post traumatic stress disorder (PTSD). Cochrane Database System Review, 25, CD002795.Google Scholar
  114. Stein, D. J., & Ludik, J. (2000). A neural network of obsessive-compulsive disorder: Modelling cognitive disinhibition and neurotransmitter dysfunction. Medical Hypotheses, 55, 168–176.PubMedCrossRefGoogle Scholar
  115. Stewart, R. E., & Chambless, D. L. (2009). Cognitive-behavioral therapy for adult anxiety disorders in clinical practice: A meta-analysis of effectiveness studies. Journal of Consulting & Clinical Psychology, 77, 595–606.CrossRefGoogle Scholar
  116. Storch, E. A., Murphy, T. K., Goodman, W. K., Geffken, G. R., Lewin, A. B., Henin, A., et al. (2010). A preliminary study of d-cycloserine augmentation of cognitive-behavioral therapy in pediatric obsessive-compulsive disorder. Biological Psychiatry, 68, 1073–1076.PubMedCrossRefGoogle Scholar
  117. Ströhle, A., Stoy, M., Graetz, B., Scheel, M., Wittmann, A., Gallinat, J., et al. (2010). Acute exercise ameliorates reduced brain-derived neurotrophic factor in patients with panic disorder. Psychoneuroendocrinology, 35, 364–368.PubMedCrossRefGoogle Scholar
  118. Timonen, M., Horrobin, D., Jokelainen, J., Laitinen, J., Herva, A., & Räsänen, P. (2004). Fish consumption and depression: The Northern Finland 1966 birth cohort study. Journal of Affective Disorders, 82, 447–452.PubMedGoogle Scholar
  119. van der Wee, N. J., van Veen, J. F., Stevens, H., van Vliet, I. M., van Rijk, P. P., & Westenberg, H. G. (2008). Increased serotonin and dopamine transporter binding in psychotropic medication-naive patients with generalized social anxiety disorder shown by 123I-beta-(4-iodophenyl)-tropane SPECT. Journal of Nuclear Medicine, 49, 757–763.PubMedCrossRefGoogle Scholar
  120. Ventriglia, M., Bocchio Chiavetto, L., Benussi, L., Binetti, G., Zanetti, O., Riva, M. A., et al. (2002). Association between the BDNF 196 A/G polymorphism and sporadic Alzheimer’s disease. Molecular Psychiatry, 7, 136–137.PubMedCrossRefGoogle Scholar
  121. Vinod, K. Y., & Hungund, B. L. (2006). Role of the endocannabinoid system in depression and suicide. Trends in Pharmacological Sciences, 27, 539–545.PubMedCrossRefGoogle Scholar
  122. Viveros, M. P., Llorente, R., Moreno, E., & Marco, E. M. (2005). Behavioural and neuroendocrine effects of cannabinoids in critical developmental periods. Behavioural Pharmacology, 16, 353–362.PubMedCrossRefGoogle Scholar
  123. Walker, D. L., Ressler, K. J., Lu, K. T., & Davis, M. (2002). Facilitation of conditioned fear extinction by systemic administration or intra-amygdala infusions of d-cycloserine as assessed with fear-potentiated startle in rats. Journal of Neuroscience, 22, 2343–2351.PubMedGoogle Scholar
  124. Wilhelm, S., Buhlmann, U., Tolin, D. F., Meunier, S. A., Pearlson, G. D., Reese, H. E., et al. (2008). Augmentation of behavior therapy with d-cycloserine for obsessive-compulsive disorder. American Journal of Psychiatry, 165, 335–341.PubMedCrossRefGoogle Scholar
  125. Yang, Y. L., Chao, P. K., Ro, L. S., Wo, Y. Y., & Lu, K. T. (2007). Glutamate NMDA receptors within the amygdala participate in the modulatory effect of glucocorticoids on extinction of conditioned fear in rats. Neuropsychopharmacology, 32, 1042–1051.PubMedCrossRefGoogle Scholar
  126. Yu, H., Wang, Y., Pattwell, S., Jing, D., Liu, T., Zhang, Y., et al. (2009). Variant BDNF Val66Met polymorphism affects extinction of conditioned aversive memory. Journal of Neuroscience, 29, 4056–4064.PubMedCrossRefGoogle Scholar
  127. Yun, A. J., Doux, J. D., & Daniel, S. M. (2007). Brewing controversies: Darwinian perspective on the adaptive and maladaptive effects of caffeine and ethanol as dietary autonomic modulators. Medical Hypotheses, 68, 31–36.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Stefan G. Hofmann
    • 1
  • Cassidy A. Gutner
    • 1
  • Anu Asnaani
    • 1
  1. 1.Psychotherapy and Emotion Research Laboratory, Department of PsychologyBoston UniversityBostonUSA

Personalised recommendations