Skip to main content

Natural Antioxidants

  • Chapter
  • First Online:
Male Infertility

Abstract

An excess of reactive oxygen species (ROS) and other oxidant radicals has been associated with male infertility. The total oxyradical scavenging capacity (TOSC) is a recently developed assay measuring the overall capability of biological fluids or cellular antioxidants to neutralize the toxicity of various oxyradicals. The TOSC assay can discriminate between different forms of ROS, allowing to identify the role of specific antioxidants, or their pathway of formation in the onset of toxicological or pathological processes. The previous application of TOSC assay in andrology led us to show a reduced antioxidant efficiency in seminal fluid of infertile men with a significant correlation between the scavenging capacity towards hydroxyl radicals and parameters of sperm cell motility. Despite the fact that oxidative stress is well recognized as a cause of male infertility, the use of antioxidants as a treatment is still debated, and it is considered as a “supplementation” therapy, rather than an etiological or physiopathological therapy, since no clear correlation has been investigated between a real deficiency of a specific antioxidant and the effect of oral supplementation. Various models have been introduced to explore the protective role of different antioxidants in vitro, and some differences can be discovered regarding the protective effects exerted by specific enzymatic or non-enzymatic molecules. We focus our attention on two main natural antioxidants, the efficacy of which has been supported by clinical trials: coenzyme Q10 and carnitine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alvarez JG, Storey B. Spontaneous lipid peroxidation in rabbit epididymal spermatozoa: its effect on sperm motility. Biol Reprod. 1982;27:1102–8.

    Article  PubMed  CAS  Google Scholar 

  2. Aitken RJ, Clarkson JS. Cellular basis of defective sperm function and its association with the genesis of reactive oxygen species by human spermatozoa. J Reprod Fertil. 1987;81:459–69.

    Article  PubMed  CAS  Google Scholar 

  3. Aitken RJ, Clarkson JS, Fishel S. Generation of reactive oxygen species, lipid peroxidation and human sperm function. Biol Reprod. 1989;40:183–97.

    Article  Google Scholar 

  4. Rao B, Soufir JC, Martin M, David G. Lipid peroxidation in human spermatozoa as related to midpiece abnormalities and motility. Gamete Res. 1989;24:127–34.

    Article  PubMed  CAS  Google Scholar 

  5. Suleiman SA, Ali ME, Zaki ZM, El-Malik EM, Nasr MA. Lipid peroxidation and human sperm motility: protective role of vitamin E. J Androl. 1996;17:530–7.

    PubMed  CAS  Google Scholar 

  6. Aitken RJ, Krausz C. Oxidative stress, DNA damage and the Y chromosome. Reproduction. 2001;122:497–506.

    Article  PubMed  CAS  Google Scholar 

  7. Aitken RJ, Baker MA. Reactive oxygen species generation by human spermatozoa: a continuing enigma. Int J Androl. 2002;25:191–4.

    Article  PubMed  Google Scholar 

  8. Balercia G, Moretti S, Vignini A, Magagnini M, Mantero F, Boscaro M, et al. Role of nitric oxide concentration on human sperm motility. J Androl. 2004;25:245–9.

    PubMed  CAS  Google Scholar 

  9. Winston GW, Regoli F, Dugas Jr AJ, Fong JH, Blanchard KA. A rapid chromatographic assay for determining oxyradical scavenging capacity of antioxidants and biological fluids. Free Radic Biol Med. 1998;24:480–93.

    Article  PubMed  CAS  Google Scholar 

  10. Regoli F, Winston GW. Quantification of total antioxidant scavenging capacity (TOSC) of antioxidants for peroxynitrite, peroxyl radicals and hydroxyl radicals. Toxicol Appl Pharmacol. 1999;156:96–105.

    Article  PubMed  CAS  Google Scholar 

  11. Balercia G, Mantero F, Armeni T, Principato G, Regoli F. Oxyradical scavenging capacity toward different reactive species in seminal plasma and sperm cells. A possible influence on kinetic parameters. Clin Chem Lab Med. 2003;41:13–9.

    Article  PubMed  CAS  Google Scholar 

  12. Mancini A, Meucci E, Bianchi A, Milardi D, De Marinis L, Littarru GP. Antioxidant systems in human seminal plasma: physiopathological meaning and new perspectives. In: Panglossi HV, editor. New perspective in antioxidant research. New York: Nova Science; 2006. p. 131–47.

    Google Scholar 

  13. Crane FL. Biochemical functions of coenzyme Q10. J Am Coll Nutr. 2001;20(6):591–8.

    PubMed  CAS  Google Scholar 

  14. Kaltschmidt B, Sparna T, Kaltschmidt C. Activation of NF-kB by reactive oxygen intermediates in the nervous system. Antioxid Redox Signal. 1999;1:129–44.

    Article  PubMed  CAS  Google Scholar 

  15. Crane FL, Navas P. The diversity of coenzyme Q function. Mol Aspects Med. 1997;18:S1–6.

    Article  PubMed  CAS  Google Scholar 

  16. Sun IL, Sun EE, Crane FL. Comparison of growth stimulation of HeLa cells, HL-60 cells and mouse fibroblasts by coenzyme Q. Protoplasma. 1995;184:214–9.

    Article  CAS  Google Scholar 

  17. Sun IL, Sun EE, Crane FL, Morrè DJ, Lindgren A, Low H. A requirement for coenzyme Q in plasma membrane electron transport. Proc Natl Acad Sci USA. 1990;89:11126–30.

    Article  Google Scholar 

  18. Thomas SR, Witting PK, Stocker R. A role for reduced coenzyme Q in atherosclerosis? Biofactors. 1999;9:207–24.

    Article  PubMed  CAS  Google Scholar 

  19. Stocker R, Bowry VW, Frei B. Ubiquinol-10 protects human low density lipoprotein more efficiently against lipid peroxidation than does alpha-tocopherol. Proc Natl Acad Sci USA. 1991;88(5):1646–50.

    Article  PubMed  CAS  Google Scholar 

  20. Mohr D, Bowry VW, Stocker R. Dietary supplementation with coenzyme Q10 results in increased levels of ubiquinol-10 within circulating lipoproteins and increased resistance of human low-density lipoprotein to the initiation of lipid peroxidation. Biochim Biophys Acta. 1992;1126(3):247–54.

    Article  PubMed  CAS  Google Scholar 

  21. Yalcin A, Kilinc E, Sagcan A, Kultursay H. Coenzyme Q10 concentrations in coronary artery disease. Clin Biochem. 2004;37:706–9.

    Article  PubMed  CAS  Google Scholar 

  22. Hughes K, Lee BL, Feng X, Lee J, Ong CN. Coenzyme Q10 and differences in coronary heart disease risk in Asian Indians and Chinese. Free Radic Biol Med. 2002;32(2):132–8.

    Article  PubMed  CAS  Google Scholar 

  23. Fawcett DW. The mammalian spermatozoon. Dev Biol. 1975;44:394–436.

    Article  PubMed  CAS  Google Scholar 

  24. Kalen A, Appelkvist EL, Chojnacki T, Dallner G. Nonaprenyl-4-hydroxybenzoate transferase, an enzyme involved in ubiquinone biosynthesis in endoplasmic reticulum-Golgi system of rat liver. J Biol Chem. 1990;265:1158–64.

    PubMed  CAS  Google Scholar 

  25. Mazzilli F, Cerasaro M, Bisanti A, Rossi T, Dondero F. Seminal parameters and the swelling test in patients with sperm before and after treatment with ubiquinone (CoQ10). 2nd International Symposium on Reproductive Medicine, Fiuggi, vol. 71. Rome: Acta Medica, Edizioni e Congressi; 1988.

    Google Scholar 

  26. Mazzilli F, Bisanti A, Rossi T, DeSantis L, Dondero F. Seminal and biological parameters in dysspermic patients with sperm hypomotility before and after treatment with ubiquinone (CoQ10). J Endocrinol Invest. 1990;13S(1):88.

    Google Scholar 

  27. Mancini A, De Marinis L, Oradei A, Hallgass ME, Conte G, Pozza D, Littarru GP. Coenzyme Q10 concentrations in normal and pathological human seminal fluid. J Androl. 1994;15:591–4.

    PubMed  CAS  Google Scholar 

  28. Mancini A, Milardi D, Conte G, Bianchi A, Balercia G, De Marinis L, Littarru GP. Coenzyme Q10: another biochemical alteration linked to infertility in varicocele patients? Metabolism. 2003;52:402–6.

    Article  PubMed  CAS  Google Scholar 

  29. Angelitti AG, Colacicco L, Callà C, Arizzi M, Lippa S. Coenzyme Q: potentially useful index of bioenergetic and oxidative status of spermatozoa. Clin Chem. 1995;41:217–9.

    PubMed  CAS  Google Scholar 

  30. Mancini A, Conte G, De Marinis L, Hallgass ME, Pozza D, Oradei A, Littarru GP. Coenzyme Q10 levels in human seminal fluid: diagnostic and clinical implications. Mol Aspects Med. 1994;15:s249–55.

    Article  PubMed  Google Scholar 

  31. Littarru GP, Lippa S, Oradei A, Fiorini RM, Mazzanti L. Metabolic and diagnostic implications of human blood CoQ10 levels. In: Folkers K, Littarru GP, Yamagami T, editors. Biomedical and clinical aspects of coenzyme Q, vol. 6. Amsterdam: Elsevier; 1991. p. 167–78.

    Google Scholar 

  32. Mancini A, Conte G, Milardi D, De Marinis L, Littarru GP. Relationship between sperm cell ubiquinone and seminal parameters in subjects with and without varicocele. Andrologia. 1998;30:1–4.

    Article  PubMed  CAS  Google Scholar 

  33. Mancini A, Milardi D, Conte G, Festa R, De Marinis L, Littarru GP. Seminal antioxidants in humans: preoperative and postoperative evaluation of coenzyme Q10 in varicocele patients. Horm Metab Res. 2005;37:428–32.

    Article  PubMed  CAS  Google Scholar 

  34. Mostafa T, Anis TH, El-Nashar A, Imam H, Othman IA. Varicocelectomy reduces reactive oxygen species levels and increases antioxidant attività of seminal plasma from infertile men with varicocele. Int J Androl. 2001;24:261–5.

    Article  PubMed  CAS  Google Scholar 

  35. Meucci E, Milardi D, Mordente A, Martorana GE, Giacchi E, De Marinis L, Mancini A. Total antioxidant capacity in patients with varicocele. Fertil Steril. 2003;79:1577–83.

    Article  PubMed  Google Scholar 

  36. Mancini A, Milardi D, Festa R, Balercia G, De Marinis L, Pontecorvi A, Principi F, Littarru GP. Seminal CoQ10 and male infertility: effects of medical or surgical treatment on endogenous seminal plasma concentrations. Abstracts of the 4th International Coenzyme Q10 association. Los Angeles, 14–17 Apr 2005. p. 64–65.

    Google Scholar 

  37. Mancini A, Festa R, Silvestrini A, Nicolotti N, Di Donna V, La Torre G, Pontecorvi A, Meucci E. Hormonal regulation of total antioxidant capacity in seminal plasma. J Androl. 2009;30(5):534–40. e-pub 19 Feb 2009.

    Article  PubMed  CAS  Google Scholar 

  38. Alleva R, Scaramucci A, Mantero F, Bompadre S, Leoni L, Littarru GP. The protective role of ubiquinol-10 against formation of lipid hydroperoxides in human seminal fluid. Mol Aspects Med. 1997;18:s221–8.

    Article  PubMed  CAS  Google Scholar 

  39. Balercia G, Arnaldi G, Fazioli F, Serresi M, Alleva R, Mancini A, Mosca F, Lamonica GR, Mantero F, Littarru GP. Coenzyme Q10 levels in idiopathic and varicocele-associated asthenozoospermia. Andrologia. 2002;34:107–11.

    Article  PubMed  CAS  Google Scholar 

  40. Littarru GP, Tiano L. Clinical aspects of coenzyme Q10: an update. Curr Opin Clin Nutr Metab Care. 2005;8:641–6.

    Article  PubMed  CAS  Google Scholar 

  41. Lewin A, Lavon H. The effect of coenzyme Q10 on sperm motility and function. Mol Aspects Med. 1997;18:s213–9.

    Article  PubMed  CAS  Google Scholar 

  42. Mancini A, Leone E, Festa R, Grande G, Silvestrini A, De Marinis L, Pontecorvi A, Maira G, Littarru GP, Meucci E. Effects of testosterone on antioxidant systems in male secondary hypogonadism. J Androl. 2008;29(6):622–9.

    Article  PubMed  CAS  Google Scholar 

  43. Mancini A, Leone E, Silvestrini A, Festa R, Di Donna V, De Marinis L, Pontecorvi A, Littarry GP, Meucci E. Evaluation of antioxidant systems in pituitary-adrenal axis diseases. Pituitary. Heidelberg: Springer; 2010;13:138–45.

    Google Scholar 

  44. Balercia G, Mosca F, Mantero F, Boscaro M, Mancini A, Ricciardo-Lamonica G, Littarru GP. Coenzyme Q(10) supplementation in infertile men with idiopathic asthenozoospermia: an open, uncontrolled pilot study. Fertil Steril. 2004;81:93–8.

    Article  PubMed  CAS  Google Scholar 

  45. World Health Organization (WHO). Laboratory manual for the examination of human semen and semen-cervical mucus interaction. 4th ed. Cambridge: Cambridge University; 1999.

    Google Scholar 

  46. Frei B, Kim MC, Ames BN. Ubiquinol-10 is an effective lipid-soluble antioxidant at physiological concentrations. Proc Natl Acad Sci USA. 1990;87(12):4879–83.

    Article  PubMed  CAS  Google Scholar 

  47. Langsjoen P, Langsjoen A, Willis R, Folkers K. Treatment of hypertrophic cardiomyopathy with coenzyme Q10. Mol Aspects Med. 1997;8:145–151s.

    Article  Google Scholar 

  48. Balercia G, Buldreghini E, Vignini A, Tiano L, Paggi F, Amoroso S, Ricciardo-Lamonica G, Boscaro M, Lenzi A, Littarru GP. Coenzyme Q10 treatment in infertile men with idiopathic asthenozoospermia: a placebo-controlled, double-blind randomized trial. Fertil Steril. 2009;91:1785–92.

    Article  PubMed  CAS  Google Scholar 

  49. Safarinejad MR. Efficacy of coenzyme Q10 on semen parameters, sperm function and reproductive hormones in infertile men. J Urol. 2009;182:237–48.

    Article  PubMed  CAS  Google Scholar 

  50. Bremer J. Carnitine-metabolism and functions. Physiol Rev. 1983;63:1420–80.

    PubMed  CAS  Google Scholar 

  51. Jeulin C, Dacheux JL, Soufir JC. Uptake and release of free l-carnitine by boar epididymal spermatozoa in vitro and subsequent acetylation rate. J Reprod Fertil. 1994;100:263–71.

    Article  PubMed  CAS  Google Scholar 

  52. DiLisa F, Barbato R, Manebo R, Siliprandi N. Carnitine and carnitine esters in mitochondrial metabolism and function. In: DeJong JW, Ferrari R, editors. The carnitine system. A new therapeutical approach to cardiovascular diseases. Dordrecht: Kluwer Academic; 1995. p. 21–38.

    Google Scholar 

  53. Enomoto A, Wempe MF, Tsuchida H, Shin HJ, Cha SH, Anzai N, et al. Molecular identification of a novel carnitine transporter specific to human testis. J Biol Chem. 2002;39:36262–71.

    Article  Google Scholar 

  54. Bohmer T, Johansen L. Carnitine-binding related suppressed oxygen uptake by spermatozoa. Arch Androl. 1978;1:321–4.

    Article  PubMed  Google Scholar 

  55. Jeulin C, Lewin LM. Role of free l-carnitine and acetyl-l-carnitine in post-gonadal maturation of mammalian spermatozoa. Hum Reprod Update. 1996;2:87–102.

    Article  PubMed  CAS  Google Scholar 

  56. Radigue C, Es-Slami S, Soufir JC. Relationship of carnitine transport across the epididymis to blood carnitine and androgens in rats. Arch Androl. 1996;37:27–31.

    Article  PubMed  CAS  Google Scholar 

  57. Balercia G, Regoli F, Armeni T, Koverech A, Mantero F, Boscaro M. Placebo-controlled double-blind randomized trial on the use of l-carnitine, l-acetylcarnitine, or combined l-carnitine and l-acetylcarnitine in men with idiopathic asthenozoospermia. Fertil Steril. 2005;84:662–71.

    Article  PubMed  CAS  Google Scholar 

  58. Costa M, Canale D, Filicori M, D’Iddio S, Lenzi A. l-Carnitine in idiopathic asthenozoospermia: a multicenter study. Andrologia. 1994;26:155–9.

    Article  PubMed  CAS  Google Scholar 

  59. Vicari E, Calogero AE. Effects of treatment with carnitines in infertile patients with prostato-vesiculo-epididymitis. Hum Reprod. 2001;16:2338–42.

    PubMed  CAS  Google Scholar 

  60. Vicari E, La Vignera S, Calogero AE. Antioxidant treatment with carnitine is effective in infertile patients with prostato-vesiculo-epididymitis and elevated seminal leukocyte concentration after treatment with nonsteroidal anti-inflammatory compounds. Fertil Steril. 2002;78:1203–8.

    Article  PubMed  Google Scholar 

  61. Lenzi A, Lombardo F, Sgro P, Salacone P, Caponecchia L, Dondero F, et al. Use of carnitine therapy in selected cases of male factor infertility: a double blind cross-over trial. Fertil Steril. 2003;79:292–300.

    Article  PubMed  Google Scholar 

  62. Lenzi A, Sgrò P, Salacone P, Paoli D, Gilio B, Lombardo F, et al. Placebo controlled double blind randomised trial on the use of l-carnitine and l-acetyl-carnitine combined treatment in asthenozoospermia. Fertil Steril. 2004;81:1578–84.

    Article  PubMed  CAS  Google Scholar 

  63. Kobayashi A, Fujisawa S. Effect of l-carnitine on mitochondrial acyl-carnitine, acyl-coenzyme A and high energy phosphate in ischemic dog heart. J Mol Cell Cardiol. 1994;26:499–508.

    Article  PubMed  CAS  Google Scholar 

  64. Fato R, Cavazzoni M, Castelluccio C, Parenti Castelli G, Lenaz G. Steady-state kinetics of ubiquinol-cytochrome c reductase in bovine heart submitochondrial particles: diffusional effects. Biochem J. 1993;290:225–36.

    PubMed  CAS  Google Scholar 

  65. Kelso KA, Redpath A, Noble RC, Speake BK. Lipid and antioxidant changes in spermatozoa and seminal plasma throughout the reproductive period of bulls. J Reprod Fertil. 1997;109:1–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giancarlo Balercia MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Balercia, G., Mancini, A., Littarru, G.P. (2012). Natural Antioxidants. In: Parekattil, S., Agarwal, A. (eds) Male Infertility. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3335-4_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3335-4_35

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3334-7

  • Online ISBN: 978-1-4614-3335-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics