Skip to main content

Specific Adhesion of Soft Elastic Materials

  • Chapter
  • First Online:
Structural Interfaces and Attachments in Biology
  • 1433 Accesses

Abstract

Cell adhesion plays a central role in many biological functions, such as cell migration, spreading, differentiation, and growth. This chapter reviews adhesion of soft materials, with a focus on cell adhesion mechanics. Modeling strategies are discussed, including the use of continuum and discrete multi-scale-system approaches. A key objective of this chapter is to link stochastic theories of ligand-receptor bonds and continuum mechanics descriptions of dissimilar soft elastic materials contacted via specific interactions of molecular bonds. We show in this chapter that such a model gives predictions that are consistent with relevant experimental observations on focal adhesion dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Crawford JM (2003) Cell adhesion molecules in inflammation and immunity: relevance to periodontal diseases. Crit Rev Oral Biol Med 5:91–123

    Google Scholar 

  2. Galbraith CG (2002) The relationship between force and focal complex development. J Cell Biol 159:695–705

    Article  Google Scholar 

  3. Nobes CD, Hall A (1995) Rho, Rac, and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81:53–62

    Article  Google Scholar 

  4. Balaban NQ, Schwarz US, Riveline D, Goichberg P et al (2001) Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat Cell Biol 3:466–472

    Article  Google Scholar 

  5. Burridge K, Chrzanowska-Wodnicka M (1996) Focal adhesions, contractility, and signalling. Annu Rev Cell Dev Biol 12:463–518

    Article  Google Scholar 

  6. Helfman DM, Levy ET, Berthier C, Shtutman M et al (1999) Caldesmon inhibits nonmuscle cell contractility and interferes with the formation of focal adhesions. Mol Biol Cell 10:3097–3112

    Google Scholar 

  7. Pelham RJ, Wang Y-L (1997) Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci 94:13661–13665

    Article  Google Scholar 

  8. Discher DE, Janmey P, Wang Y (2005) Tissue cells fell and response to the stiffness of their substrate. Science 310:1139–1143

    Article  Google Scholar 

  9. Bar-Ziv R, Tlusty T, Moses E, Safran SA, Bershadsky AD (1999) Pearling in cells: a clue to understanding cell shape. Proc Natl Acad Sci 96:10140–10145

    Article  Google Scholar 

  10. Harris AK, Wild P, Stopak D (1980) Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science 208:177–179

    Article  Google Scholar 

  11. Grosheva I, Vittitow JL, Goichberg P, Gabelt BT, Kaufman PL, Borras T, Geiger B, Bershadsky AD (2006) Caldesmon effects on the actin cytoskeleton and cell adhesion in cultured HTM cells. Exp Eye Res 82:945–958

    Article  Google Scholar 

  12. Totsukawa G, Wu Y, Sasaki Y, Hartshorne DJ, Yamakita Y, Yamashiro S, Matsumura F (2004) Distinct roles of MLCK and ROCK in the regulation of membrane protrusions and focal adhesion dynamics during cell migration of fibroblasts. J Cell Biol 164:427–439

    Article  Google Scholar 

  13. Chrzanowska-Wodnicka M, Burridge K (1996) Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J Cell Biol 133:1403–1415

    Article  Google Scholar 

  14. Volberg T, Geiger B, Citi B, Bershadsky AD (1994) Effect of protein kinase inhibitor H-7 on the contractility, integrity, and membrane anchorage of the microfilament system. Cell Motil Cytoskeleton 29:321–338

    Article  Google Scholar 

  15. Leopoldt D, Yee HF, Rozengurt E (2001) Calyculin-A induces focal adhesion assembly and tyrosine phosphorylation of p125(Fak), p130(Cas), and paxillin in Swiss 3T3 cells. J Cell Physiol 188:106–119

    Article  Google Scholar 

  16. Xia D, Stull JT, Kamm KE (2005) Myosin phosphatase targeting subunit 1 affects cell migration by regulating myosin phosphorylation and actin assembly. Exp Cell Res 304:506–517

    Article  Google Scholar 

  17. Bershadsky AD, Kozlov M, Geiger B (2006) Adhesion-mediated mechanosensitivity: a time to experiment, and a time to theorize. Curr Opin Cell Biol 18:472–481

    Article  Google Scholar 

  18. Riveline D, Zamir E, Balaban NQ, Schwarz US, Ishizaki T, Narumiya S, Kam Z, Geiger B, Bershadsky AD (2001) Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J Cell Biol 153:1175–1186

    Article  Google Scholar 

  19. Tan JL, Tien J, Pirone DM, Gray DS, Bhadriraju K, Chen CS (2003) Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc Natl Acad Sci USA 100:1484–1489

    Article  Google Scholar 

  20. Saez A, Buguin A, Silberzan P, Ladoux B (2005) Is the mechanical activity of epithelial cells controlled by deformations or forces? Biophys J 89:L52–L54

    Article  Google Scholar 

  21. Engler AJ, Bacakova L, Newman C, Hategan A, Griffin M, Discher DE (2004) Substrate compliance versus ligand density in cell on gel responses. Biophys J 86:617–628

    Article  Google Scholar 

  22. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689

    Article  Google Scholar 

  23. Bao G, Suresh S (2003) Cell and molecular mechanics of biological materials. Nat Mater 2:715–725

    Article  Google Scholar 

  24. Johnson KL, Kendall K, Roberts AD (1971) Surface energy and contact of elastic solids. Proc R Soc Lond A 324:301–313

    Article  Google Scholar 

  25. Derjaguin BV, Muller VM, Toporov YP (1975) Effect of contact deformations on the adhesion of particle. J Colloid Interf Sci 53:314–326

    Article  Google Scholar 

  26. Greenwood JA (1997) Adhesion of elastic spheres. Proc R Soc Lond A 453:1277–1297

    Article  MathSciNet  MATH  Google Scholar 

  27. Maugis D (1992) Adhesion of spheres: the JKR-DMT transition using dugdale model. J Colloid Interf Sci 150:243–269

    Article  Google Scholar 

  28. Gao H, Yao H (2004) Shape insensitive optimal adhesion of nanoscale fibrillar structures. Proc Natl Acad Sci 101:7851–7856

    Article  Google Scholar 

  29. Evans E (2001) Probing the relation between force-lifetime-and chemistry in single molecular bonds. Annu Rev Biophys Biomol Struct 30:105–128

    Article  Google Scholar 

  30. Merkel R, Nassoy P, Leung A, Ritchie K, Evans E (1999) Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy. Nature 397:50–53

    Article  Google Scholar 

  31. Li F, Redick SD, Erickson HP, Moy VT (2003) Force measurements of the integrin-fibronectin interaction. Biophys J 84:1252–1262

    Article  Google Scholar 

  32. Erdmann T, Schwarz US (2004) Stochastic dynamics of adhesion clusters under shared constant force and with rebinding. J Chem Phys 121:8997–9017

    Article  Google Scholar 

  33. Zaidel-Bar R, Cohen M, Addadi L, Geiger B (2004) Hierarchical assembly of cell-matrix adhesion complexes. Biochem Soc Trans 32:416–420

    Article  Google Scholar 

  34. Wang J, Gao H (2011) On hyperelastic stress–strain law of F-actin bundles. Theor Appl Mech Lett 1:014003

    Article  Google Scholar 

  35. Wang J, Gao H (2010) Size and shape dependent steady-state pull-off force in molecular adhesion between soft elastic materials. Int J Fract 166:13–19

    Article  Google Scholar 

  36. Qian J, Wang J, Lin Y, Gao H (2009) Lifetime and strength of periodic bond clusters between elastic media under inclined loading. Biophys J 97:2438–2445

    Article  Google Scholar 

  37. Wang J, Qian J, Gao H (2009) Effects of capillary condensation in adhesion between rough surfaces. Langmuir 25:11727–11731

    Article  Google Scholar 

  38. Qian J, Wang J, Gao H (2009) Tension-induced growth of focal adhesions at cell-substrate interface. IUTAM symposium on cellular. Mol Tissue Mech 16:193–201

    Google Scholar 

  39. Wang J, Qian J, Gao H (2008) Stability of molecular adhesion mediated by confined polymer repellers and ligand-receptor bonds. Mol Cell Biomech 5:19–26

    Google Scholar 

  40. Qian J, Wang J, Gao H (2008) Lifetime and strength of adhesive molecular bond clusters between elastic media. Langmuir 24:1262–1270

    Article  Google Scholar 

  41. Wang J, Gao H (2008) Clustering instability in adhesive contact between elastic solids via diffusive molecular bonds. J Mech Phys Solids 56:251–266

    Article  MathSciNet  MATH  Google Scholar 

  42. Honerkamp J (1994) Stochastic dynamic systems: concepts, numerical methods, data analysis. Wiley-VCH, New York

    Google Scholar 

  43. van Kampen NG (1992) Stochastic processes in physics and chemistry. Elsevier, Amsterdam

    Google Scholar 

  44. Chan P-Y, Lawrence MB, Dustin ML, Ferguson LM, Golan DE, Springer TA (1991) Influence of receptor lateral mobility on adhesion strengthening between membranes containing LFA-3 and CD2. J Cell Biol 115:245–255

    Article  Google Scholar 

  45. Kloboucek A, Behrisch A, Faix J, Sackmann E (1999) Adhesion-induced receptor segregation and adhesion plaque formation: a model membrane study. Biophys J 77:2311–2328

    Article  Google Scholar 

  46. Doi M, Edwards SF (1986) The theory of polymer dynamics. Oxford University Press, New York

    Google Scholar 

  47. Zuckerman DM, Bruinsma RF (1998) Vesicle-vesicle adhesion by mobile. Phys Rev E 57:964–977

    Article  Google Scholar 

  48. Rief MF, Oesterhelt F, Heymann B, Gaub HE (1997) Single molecule force spectroscopy on polysaccharides by atomic force microscopy. Science 275:1295–1297

    Article  Google Scholar 

  49. Torney DC, Dembo M, Bell GI (1986) Thermodynamics of cell adhesion. II. Freely mobile repellers. Biophys J 49:501–507

    Article  Google Scholar 

  50. de Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, Ithaca, New York

    Google Scholar 

  51. Erdmann T, Schwartz US (2006) Bistability of cell-matrix adhesions resulting from nonlinear receptor-ligand dynamics. Biophys J 91:L60–L62

    Article  Google Scholar 

  52. Lulevich V, Zink T, Chen H-Y, Liu F-T, Liu G-Y (2006) Cell mechanics using atomic force microscopy-based single-cell compression. Langmuir 22:81151–81155

    Article  Google Scholar 

  53. Trickey WR, Baaijens FPT, Laursen TA, Alexopoulos LG, Guilak F (2006) Determination of the Poisson’s ratio of the cell: recovery properties of chondrocytes after release from complete micropipette aspiration. J Biomech 39:78–87

    Article  Google Scholar 

  54. Tzlil S, Deserno M, Gelbart WM, Ben-Shaul A (2004) A statistical-thermodynamic model of viral budding. Biophys J 86:2037–2048

    Article  Google Scholar 

  55. Briggs JAG, Wilk T, Fuller SD (2003) Do lipid rafts mediate virus assembly and pseudotyping? J Gen Virol 84:757–768

    Article  Google Scholar 

  56. Quinn P, Griffiths G, Warren G (1984) Density of newly synthesized plasma membrane proteins in intracellular membranes II biochemical studies. J Cell Biol 98:2142–2147

    Article  Google Scholar 

  57. Adams JC (2001) Cell-matrix contact structures. Cell Mol Life Sci 58:371–392

    Article  Google Scholar 

  58. Bell GI (1978) Models for specific adhesion of cells to cells. Science 200:618–627

    Article  Google Scholar 

  59. Johnson KL (1985) Contact mechanics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  60. Tada H, Paris PC, Irwin GR (2000) The stress analysis of cracks handbook. ASME, New York

    Book  Google Scholar 

  61. Arnold M, Cavalcanti-Adam E, Glass R, Bluemmel J, Eck W, Kantlehner M, Kessler H, Spatz JP (2004) Activation of integrin function by nanopatterned adhesive interfaces. Chemphyschem 5:383–388

    Article  Google Scholar 

  62. Spatz JP, Mossmer S, Hartmann C, Moller M, Herzog T, Krieger M, Boyen HG, Ziemann P, Kabius B (2000) Ordered deposition of inorganic clusters from micellar block copolymer films. Langmuir 16:407–415

    Article  Google Scholar 

  63. Lin Y, Inamdar M, Freund LB (2008) The competition between Brownian motion and adhesion in soft materials. J Mech Phys Solids 56:241–250

    Article  MathSciNet  MATH  Google Scholar 

  64. Vitte J, Benoliel A, Pierres A, Bongrand P (2005) Regulation of cell adhesion. Clin Hemorheol Microcirc 33:167–188

    Google Scholar 

  65. Mulivor AW, Lipowsky HH (2004) Inflammation- and ischemia-induced shedding of venular glycocalyx. Am J Physiol Heart Circ Physiol 286:H1672–H1680

    Article  Google Scholar 

  66. Sabri S, Soler M, Foa C, Pierres A, Benoliel A, Bongrand P (2000) Glycocalyx modulation is a physiological means of regulating cell adhesion. J Cell Sci 113:1589–1600

    Google Scholar 

  67. Yamakawa H (1997) Helical wormlike chains in polymer solutions. Springer, Berlin

    Book  Google Scholar 

  68. Chen JZY, Sullivan DE (2006) Free energy of a wormlike polymer chain confined in a slit: crossover between two scaling regimes. Macromolecules 39:7769–7773

    Article  Google Scholar 

  69. Marko JF, Siggia ED (1995) Stretching DNA. Macromolecules 28:8759–8770

    Article  Google Scholar 

  70. Goodman SL, Sims PA, Albrecht RM (1996) Three-dimensional extracellular matrix textured biomaterials. Biomaterials 17:2087–2095

    Article  Google Scholar 

  71. Abrams GA, Goodman SL, Nealey PF, Franco M, Murphy CJ (2000) Nanoscale topography of the basement membrane underlying the corneal epithelium of the rhesus macaque. Cell Tissue Res 299:39–46

    Article  Google Scholar 

  72. Bozec L, Horton M (2005) Topography and mechanical properties of single molecules of type I collagen using atomic force microscopy. Biophys J 88:4223–4231

    Article  Google Scholar 

  73. Bettinger CJ, Langer R, Borenstein JT (2009) Engineering substrate topography at the micro- and nanoscale to control cell function. Angew Chem Int Edit 48:5406–5415

    Article  Google Scholar 

  74. Sykaras N, Iacopino AM, Marker VA (2000) Implant materials, designs, and surface topographies: their effect on osseointegration. A literature review. Int J Oral Maxillofac Implants 15:675–690

    Google Scholar 

  75. Eisenbarth E, Meyle J, Nachtigall W, Breme J (1996) Influence of the surface structure of titanium materials on the adhesion of fibroblasts. Biomaterials 17:1399–1403

    Article  Google Scholar 

  76. Gao H, Ji B, Jaeger IL, Arzt E, Fratzl P (2003) Materials become insensitive to flaws at nanoscale: lessons from nature. Proc Natl Acad Sci USA 100:5597–5600

    Article  Google Scholar 

  77. Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (2002) Molecular biology of the cell. Taylor & Francis, New York

    Google Scholar 

  78. Gardel ML, Shin JH, MacKintosh FC, Mahadevan L, Matsudaira P, Weitz DA (2004) Elastic behavior of cross-linked and bundled actin networks. Science 304:1301–1305

    Article  Google Scholar 

  79. Wagner B, Tharmann R, Haase I, Fischer M, Bausch AR (2006) Cytoskeletal polymer networks: the molecular structure of cross-linkers determines macroscopic properties. Proc Natl Acad Sci USA 103:13974–13978

    Article  Google Scholar 

  80. Hinner B, Tempel M, Sackmann E, Kroy K, Frey E (1998) Entanglement, elasticity, and viscous relaxation of actin solutions. Phys Rev Lett 81:2614–2617

    Article  Google Scholar 

  81. Odijk T (1998) Microfibrillar buckling within fibers under compression. J Chem Phys 108:6923–6928

    Article  Google Scholar 

  82. Wang J, Gao H (2007) Stretching a stiff polymer in a tube. J Mater Sci 42:8838–8843

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (11032006, 11072094, and 11121202), a grant from the Ph.D. Program Foundation of Ministry of Education of China (20100211110022), the program for New Century Excellent Talents in University (NCET-10-0445), and the Fundamental Research Funds for the Central Universities (lzujbky-2012-k06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jizeng Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wang, J. (2013). Specific Adhesion of Soft Elastic Materials. In: Thomopoulos, S., Birman, V., Genin, G. (eds) Structural Interfaces and Attachments in Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3317-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3317-0_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3316-3

  • Online ISBN: 978-1-4614-3317-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics