Skip to main content

Soft Tissue-to-Bone Healing in Anterior Cruciate Ligament Reconstruction

  • Chapter
  • First Online:
Structural Interfaces and Attachments in Biology
  • 1436 Accesses

Abstract

The anterior cruciate ligament (ACL) of the knee acts as the primary restraint to anterior translation of the tibia and is a secondary restraint to varus and valgus stress. It is estimated that 800,000 ACL tears occur annually, leading to high levels of knee instability as well as meniscal and cartilage injuries. The most common treatment for ACL tears is reconstruction with intra-articular grafts. This chapter reviews reconstruction strategies for ACL repair, with an emphasis on graft choices and repair techniques. Successful ACL reconstruction relies on incorporation of the graft into the bone tunnel. Poor healing at the interface between the graft and the bone can lead to loosening and potential failure of the reconstruction. The slow and variable outcome of current reconstruction approaches has generated strong interest in biologic, mechanical, and tissue engineering strategies for improving ACL repair.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Paulos L, Noyes FR, Grood E, Butler DL (1991) Knee rehabilitation after anterior cruciate ligament reconstruction and repair. J Orthop Sports Phys Ther 13(2):60–70

    Google Scholar 

  2. Markolf KL, Amstutz HC (1976) In vitro measurement of bone-acrylic interface pressure during femoral component insertion. Clin Orthop Relat Res 121:60–66

    Google Scholar 

  3. Schachter AK, Rokito AS (2007) ACL injuries in the skeletally immature patient. Orthopedics 30(5):365–370; quiz 362–371

    Google Scholar 

  4. Henry J, Chotel F, Chouteau J, Fessy MH, Berard J, Moyen B (2009) Rupture of the anterior cruciate ligament in children: early reconstruction with open physes or delayed reconstruction to skeletal maturity? Knee Surg Sports Traumatol Arthrosc 17(7):748–755

    Article  Google Scholar 

  5. Jones HP, Appleyard RC, Mahajan S, Murrell GA (2003) Meniscal and chondral loss in the anterior cruciate ligament injured knee. Sports Med 33(14):1075–1089

    Article  Google Scholar 

  6. Aglietti P, Giron F, Buzzi R, Biddau F, Sasso F (2004) Anterior cruciate ligament reconstruction: bone-patellar tendon-bone compared with double semitendinosus and gracilis tendon grafts. A prospective, randomized clinical trial. J Bone Joint Surg Am 86-A(10):2143–2155

    Google Scholar 

  7. Fithian DC, Paxton EW, Stone ML, Luetzow WF, Csintalan RP, Phelan D, Daniel DM (2005) Prospective trial of a treatment algorithm for the management of the anterior cruciate ligament-injured knee. Am J Sports Med 33(3):335–346

    Article  Google Scholar 

  8. Spindler KP, Warren TA, Callison JC Jr, Secic M, Fleisch SB, Wright RW (2005) Clinical outcome at a minimum of five years after reconstruction of the anterior cruciate ligament. J Bone Joint Surg Am 87(8):1673–1679

    Article  Google Scholar 

  9. Roe J, Pinczewski LA, Russell VJ, Salmon LJ, Kawamata T, Chew M (2005) A 7-year follow-up of patellar tendon and hamstring tendon grafts for arthroscopic anterior cruciate ligament reconstruction: differences and similarities. Am J Sports Med 33(9):1337–1345

    Article  Google Scholar 

  10. Freedman KB, D’Amato MJ, Nedeff DD, Kaz A, Bach BR Jr (2003) Arthroscopic anterior cruciate ligament reconstruction: a metaanalysis comparing patellar tendon and hamstring tendon autografts. Am J Sports Med 31(1):2–11

    Google Scholar 

  11. Yunes M, Richmond JC, Engels EA, Pinczewski LA (2001) Patellar versus hamstring tendons in anterior cruciate ligament reconstruction: a meta-analysis. Arthroscopy 17(3):248–257

    Article  Google Scholar 

  12. Benjamin M, Ralphs JR (1998) Fibrocartilage in tendons and ligaments—an adaptation to compressive load. J Anat 193(pt 4):481–494

    Article  Google Scholar 

  13. Lui P, Zhang P, Chan K, Qin L (2010) Biology and augmentation of tendon-bone insertion repair. J Orthop Surg Res 5:59

    Article  Google Scholar 

  14. Petersen W, Laprell H (2000) Insertion of autologous tendon grafts to the bone: a histological and immunohistochemical study of hamstring and patellar tendon grafts. Knee Surg Sports Traumatol Arthrosc 8(1):26–31

    Article  Google Scholar 

  15. Kawamura S, Ying L, Kim HJ, Dynybil C, Rodeo SA (2005) Macrophages accumulate in the early phase of tendon-bone healing. J Orthop Res 23(6):1425–1432

    Google Scholar 

  16. Haus J, Refior HJ (1987) A study of the synovial and ligamentous structure of the anterior cruciate ligament. Int Orthop 11(2):117–124

    Article  Google Scholar 

  17. Aune AK, Hukkanen M, Madsen JE, Polak JM, Nordsletten L (1996) Nerve regeneration during patellar tendon autograft remodelling after anterior cruciate ligament reconstruction: an experimental and clinical study. J Orthop Res 14(2):193–199

    Article  Google Scholar 

  18. Arnoczky SP, Tarvin GB, Marshall JL (1982) Anterior cruciate ligament replacement using patellar tendon. An evaluation of graft revascularization in the dog. J Bone Joint Surg Am 64(2):217–224

    Google Scholar 

  19. Wen CY, Qin L, Lee KM, Wong MW, Chan KM (2010) Grafted tendon healing in tibial tunnel is inferior to healing in femoral tunnel after anterior cruciate ligament reconstruction: a histomorphometric study in rabbits. Arthroscopy 26(1):58–66

    Article  Google Scholar 

  20. Deehan DJ, Cawston TE (2005) The biology of integration of the anterior cruciate ligament. J Bone Joint Surg Br 87(7):889–895

    Article  Google Scholar 

  21. Panni AS, Milano G, Lucania L, Fabbriciani C (1997) Graft healing after anterior cruciate ligament reconstruction in rabbits. Clin Orthop Relat Res 343:203–212

    Article  Google Scholar 

  22. Weiler A, Hoffmann RF, Bail HJ, Rehm O, Sudkamp NP (2002) Tendon healing in a bone tunnel. Part II: histologic analysis after biodegradable interference fit fixation in a model of anterior cruciate ligament reconstruction in sheep. Arthroscopy 18(2):124–135

    Article  Google Scholar 

  23. Lim JK, Hui J, Li L, Thambyah A, Goh J, Lee EH (2004) Enhancement of tendon graft osteointegration using mesenchymal stem cells in a rabbit model of anterior cruciate ligament reconstruction. Arthroscopy 20(9):899–910

    Google Scholar 

  24. Mutsuzaki H, Sakane M, Nakajima H, Ito A, Hattori S, Miyanaga Y, Ochiai N, Tanaka J (2004) Calcium-phosphate-hybridized tendon directly promotes regeneration of tendon-bone insertion. J Biomed Mater Res A 70(2):319–327

    Article  Google Scholar 

  25. Rodeo SA, Arnoczky SP, Torzilli PA, Hidaka C, Warren RF (1993) Tendon-healing in a bone tunnel. A biomechanical and histological study in the dog. J Bone Joint Surg Am 75(12):1795–1803

    Google Scholar 

  26. Grana WA, Egle DM, Mahnken R, Goodhart CW (1994) An analysis of autograft fixation after anterior cruciate ligament reconstruction in a rabbit model. Am J Sports Med 22(3):344–351

    Article  Google Scholar 

  27. Demirag B, Sarisozen B, Ozer O, Kaplan T, Ozturk C (2005) Enhancement of tendon-bone healing of anterior cruciate ligament grafts by blockage of matrix metalloproteinases. J Bone Joint Surg Am 87(11):2401–2410

    Article  Google Scholar 

  28. Blickenstaff KR, Grana WA, Egle D (1997) Analysis of a semitendinosus autograft in a rabbit model. Am J Sports Med 25(4):554–559

    Article  Google Scholar 

  29. Wen CY, Qin L, Lee KM, Chan KM (2009) Peri-graft bone mass and connectivity as predictors for the strength of tendon-to-bone attachment after anterior cruciate ligament reconstruction. Bone 45(3):545–552

    Article  Google Scholar 

  30. Hannafin JA, Arnoczky SP, Hoonjan A, Torzilli PA (1995) Effect of stress deprivation and cyclic tensile loading on the material and morphologic properties of canine flexor digitorum profundus tendon: an in vitro study. J Orthop Res 13(6):907–914

    Article  Google Scholar 

  31. Ekdahl M, Wang JH, Ronga M, Fu FH (2008) Graft healing in anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 16(10):935–947

    Article  Google Scholar 

  32. Rodeo SA, Kawamura S, Kim HJ, Dynybil C, Ying L (2006) Tendon healing in a bone tunnel differs at the tunnel entrance versus the tunnel exit: an effect of graft-tunnel motion? Am J Sports Med 34(11):1790–1800

    Article  Google Scholar 

  33. Lui PP, Ho G, Shum WT, Lee YW, Ho PY, Lo WN, Lo CK (2010) Inferior tendon graft to bone tunnel healing at the tibia compared to that at the femur after anterior cruciate ligament reconstruction. J Orthop Sci 15(3):389–401

    Article  Google Scholar 

  34. Grassman SR, McDonald DB, Thornton GM, Shrive NG, Frank CB (2002) Early healing processes of free tendon grafts within bone tunnels is bone-specific: a morphological study in a rabbit model. Knee 9(1):21–26

    Article  Google Scholar 

  35. West RV, Harner CD (2005) Graft selection in anterior cruciate ligament reconstruction. J Am Acad Orthop Surg 13(3):197–207

    Google Scholar 

  36. Shino K, Kawasaki T, Hirose H, Gotoh I, Inoue M, Ono K (1984) Replacement of the anterior cruciate ligament by an allogeneic tendon graft. An experimental study in the dog. J Bone Joint Surg Br 66(5):672–681

    Google Scholar 

  37. Nikolaou PK, Seaber AV, Glisson RR, Ribbeck BM, Bassett FH III (1986) Anterior cruciate ligament allograft transplantation. Long-term function, histology, revascularization, and operative technique. Am J Sports Med 14(5):348–360

    Article  Google Scholar 

  38. Jackson DW, Grood ES, Goldstein JD, Rosen MA, Kurzweil PR, Cummings JF, Simon TM (1993) A comparison of patellar tendon autograft and allograft used for anterior cruciate ligament reconstruction in the goat model. Am J Sports Med 21(2):176–185

    Article  Google Scholar 

  39. Zhang CL, Fan HB, Xu H, Li QH, Guo L (2006) Histological comparison of fate of ligamentous insertion after reconstruction of anterior cruciate ligament: autograft vs allograft. Chin J Traumatol 9(2):72–76

    Google Scholar 

  40. Cooper DE, Small J, Urrea L (1998) Factors affecting graft excursion patterns in endoscopic anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 6(suppl 1):S20–S24

    Article  Google Scholar 

  41. Noyes FR, Butler DL, Grood ES, Zernicke RF, Hefzy MS (1984) Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions. J Bone Joint Surg Am 66(3):344–352

    Google Scholar 

  42. Woo SL, Hollis JM, Adams DJ, Lyon RM, Takai S (1991) Tensile properties of the human femur-anterior cruciate ligament-tibia complex. The effects of specimen age and orientation. Am J Sports Med 19(3):217–225

    Article  Google Scholar 

  43. Butler DL (1989) Kappa Delta Award paper. Anterior cruciate ligament: its normal response and replacement. J Orthop Res 7(6):910–921

    Article  Google Scholar 

  44. Papageorgiou CD, Ma CB, Abramowitch SD, Clineff TD, Woo SL (2001) A multidisciplinary study of the healing of an intraarticular anterior cruciate ligament graft in a goat model. Am J Sports Med 29(5):620–626

    Google Scholar 

  45. Frank CB, Jackson DW (1997) The science of reconstruction of the anterior cruciate ligament. J Bone Joint Surg Am 79(10):1556–1576

    Google Scholar 

  46. Kousa P, Jarvinen TL, Vihavainen M, Kannus P, Jarvinen M (2003) The fixation strength of six hamstring tendon graft fixation devices in anterior cruciate ligament reconstruction. Part II: tibial site. Am J Sports Med 31(2):182–188

    Google Scholar 

  47. Kousa P, Jarvinen TL, Vihavainen M, Kannus P, Jarvinen M (2003) The fixation strength of six hamstring tendon graft fixation devices in anterior cruciate ligament reconstruction. Part I: femoral site. Am J Sports Med 31(2):174–181

    Google Scholar 

  48. Weiler A, Peine R, Pashmineh-Azar A, Abel C, Sudkamp NP, Hoffmann RF (2002) Tendon healing in a bone tunnel. Part I: biomechanical results after biodegradable interference fit fixation in a model of anterior cruciate ligament reconstruction in sheep. Arthroscopy 18(2):113–123

    Article  Google Scholar 

  49. Singhatat W, Lawhorn KW, Howell SM, Hull ML (2002) How four weeks of implantation affect the strength and stiffness of a tendon graft in a bone tunnel: a study of two fixation devices in an extraarticular model in ovine. Am J Sports Med 30(4):506–513

    Google Scholar 

  50. Zantop T, Weimann A, Wolle K, Musahl V, Langer M, Petersen W (2007) Initial and 6 weeks postoperative structural properties of soft tissue anterior cruciate ligament reconstructions with cross-pin or interference screw fixation: an in vivo study in sheep. Arthroscopy 23(1):14–20

    Article  Google Scholar 

  51. Colvin A, Sharma C, Parides M, Glashow J (2011) What is the best femoral fixation of hamstring autografts in anterior cruciate ligament reconstruction?: A meta-analysis. Clin Orthop Relat Res 469(4):1075–1081

    Article  Google Scholar 

  52. Greis PE, Burks RT, Bachus K, Luker MG (2001) The influence of tendon length and fit on the strength of a tendon-bone tunnel complex. A biomechanical and histologic study in the dog. Am J Sports Med 29(4):493–497

    Google Scholar 

  53. Yamazaki S, Yasuda K, Tomita F, Minami A, Tohyama H (2002) The effect of graft-tunnel diameter disparity on intraosseous healing of the flexor tendon graft in anterior cruciate ligament reconstruction. Am J Sports Med 30(4):498–505

    Google Scholar 

  54. Yamazaki S, Yasuda K, Tomita F, Minami A, Tohyama H (2006) The effect of intraosseous graft length on tendon-bone healing in anterior cruciate ligament reconstruction using flexor tendon. Knee Surg Sports Traumatol Arthrosc 14(11):1086–1093

    Article  Google Scholar 

  55. Zantop T, Ferretti M, Bell KM, Brucker PU, Gilbertson L, Fu FH (2008) Effect of tunnel-graft length on the biomechanics of anterior cruciate ligament-reconstructed knees: intra-articular study in a goat model. Am J Sports Med 36(11):2158–2166

    Article  Google Scholar 

  56. Johnson DL, Swenson TM, Irrgang JJ, Fu FH, Harner CD (1996) Revision anterior cruciate ligament surgery: experience from Pittsburgh. Clin Orthop Relat Res 325:100–109

    Article  Google Scholar 

  57. Corsetti JR, Jackson DW (1996) Failure of anterior cruciate ligament reconstruction: the biologic basis. Clin Orthop Relat Res 325:42–49

    Article  Google Scholar 

  58. Goradia VK, Rochat MC, Kida M, Grana WA (2000) Natural history of a hamstring tendon autograft used for anterior cruciate ligament reconstruction in a sheep model. Am J Sports Med 28(1):40–46

    Google Scholar 

  59. Loh JC, Fukuda Y, Tsuda E, Steadman RJ, Fu FH, Woo SL (2003) Knee stability and graft function following anterior cruciate ligament reconstruction: comparison between 11 o’clock and 10 o’clock femoral tunnel placement. 2002 Richard O’Connor Award paper. Arthroscopy 19(3):297–304

    Article  Google Scholar 

  60. Musahl V, Plakseychuk A, VanScyoc A, Sasaki T, Debski RE, McMahon PJ, Fu FH (2005) Varying femoral tunnels between the anatomical footprint and isometric positions: effect on kinematics of the anterior cruciate ligament-reconstructed knee. Am J Sports Med 33(5):712–718

    Article  Google Scholar 

  61. Zavras TD, Race A, Amis AA (2005) The effect of femoral attachment location on anterior cruciate ligament reconstruction: graft tension patterns and restoration of normal anterior-posterior laxity patterns. Knee Surg Sports Traumatol Arthrosc 13(2):92–100

    Article  Google Scholar 

  62. Adachi N, Ochi M, Uchio Y, Iwasa J, Kuriwaka M, Ito Y (2004) Reconstruction of the anterior cruciate ligament. Single- versus double-bundle multistranded hamstring tendons. J Bone Joint Surg Br 86(4):515–520

    Google Scholar 

  63. Buoncristiani AM, Tjoumakaris FP, Starman JS, Ferretti M, Fu FH (2006) Anatomic double-bundle anterior cruciate ligament reconstruction. Arthroscopy 22(9):1000–1006

    Article  Google Scholar 

  64. Colombet P, Robinson J, Jambou S, Allard M, Bousquet V, de Lavigne C (2006) Two-bundle, four-tunnel anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 14(7):629–636

    Article  Google Scholar 

  65. Cha PS, Brucker PU, West RV, Zelle BA, Yagi M, Kurosaka M, Fu FH (2005) Arthroscopic double-bundle anterior cruciate ligament reconstruction: an anatomic approach. Arthroscopy 21(10):1275

    Google Scholar 

  66. Muneta T, Sekiya I, Yagishita K, Ogiuchi T, Yamamoto H, Shinomiya K (1999) Two-bundle reconstruction of the anterior cruciate ligament using semitendinosus tendon with endobuttons: operative technique and preliminary results. Arthroscopy 15(6):618–624

    Article  Google Scholar 

  67. Muneta T, Koga H, Mochizuki T, Ju YJ, Hara K, Nimura A, Yagishita K, Sekiya I (2007) A prospective randomized study of 4-strand semitendinosus tendon anterior cruciate ligament reconstruction comparing single-bundle and double-bundle techniques. Arthroscopy 23(6):618–628

    Article  Google Scholar 

  68. Yasuda K, Kondo E, Ichiyama H, Kitamura N, Tanabe Y, Tohyama H, Minami A (2004) Anatomic reconstruction of the anteromedial and posterolateral bundles of the anterior cruciate ligament using hamstring tendon grafts. Arthroscopy 20(10):1015–1025

    Article  Google Scholar 

  69. Yamakado K, Kitaoka K, Yamada H, Hashiba K, Nakamura R, Tomita K (2002) The influence of mechanical stress on graft healing in a bone tunnel. Arthroscopy 18(1):82–90

    Article  Google Scholar 

  70. Ekdahl M, Nozaki M, Ferretti M, Tsai A, Smolinski P, Fu FH (2009) The effect of tunnel placement on bone-tendon healing in anterior cruciate ligament reconstruction in a goat model. Am J Sports Med 37(8):1522–1530

    Article  Google Scholar 

  71. Walsh WR, Stephens P, Vizesi F, Bruce W, Huckle J, Yu Y (2007) Effects of low-intensity pulsed ultrasound on tendon-bone healing in an intra-articular sheep knee model. Arthroscopy 23(2):197–204

    Article  Google Scholar 

  72. Woo SL, Gomez MA, Sites TJ, Newton PO, Orlando CA, Akeson WH (1987) The biomechanical and morphological changes in the medial collateral ligament of the rabbit after immobilization and remobilization. J Bone Joint Surg Am 69(8):1200–1211

    Google Scholar 

  73. Gelberman RH, Woo SL, Lothringer K, Akeson WH, Amiel D (1982) Effects of early intermittent passive mobilization on healing canine flexor tendons. J Hand Surg Am 7(2):170–175

    Google Scholar 

  74. Thomopoulos S, Williams GR, Soslowsky LJ (2003) Tendon to bone healing: differences in biomechanical, structural, and compositional properties due to a range of activity levels. J Biomech Eng 125(1):106–113

    Article  Google Scholar 

  75. Thomopoulos S, Zampiakis E, Das R, Silva MJ, Gelberman RH (2008) The effect of muscle loading on flexor tendon-to-bone healing in a canine model. J Orthop Res 26(12):1611–1617

    Article  Google Scholar 

  76. Woo SL, Kuei SC, Amiel D, Gomez MA, Hayes WC, White FC, Akeson WH (1981) The effect of prolonged physical training on the properties of long bone: a study of Wolff’s Law. J Bone Joint Surg Am 63(5):780–787

    Google Scholar 

  77. Jones HH, Priest JD, Hayes WC, Tichenor CC, Nagel DA (1977) Humeral hypertrophy in response to exercise. J Bone Joint Surg Am 59(2):204–208

    Google Scholar 

  78. Burstein AH, Currey JD, Frankel VH, Reilly DT (1972) The ultimate properties of bone tissue: the effects of yielding. J Biomech 5(1):35–44

    Article  Google Scholar 

  79. Sakai H, Fukui N, Kawakami A, Kurosawa H (2000) Biological fixation of the graft within bone after anterior cruciate ligament reconstruction in rabbits: effects of the duration of postoperative immobilization. J Orthop Sci 5(1):43–51

    Article  Google Scholar 

  80. Bedi A, Kovacevic D, Fox AJ, Imhauser CW, Stasiak M, Packer J, Brophy RH, Deng XH, Rodeo SA (2010) Effect of early and delayed mechanical loading on tendon-to-bone healing after anterior cruciate ligament reconstruction. J Bone Joint Surg Am 92(14):2387–2401

    Article  Google Scholar 

  81. Wilson TC, Kantaras A, Atay A, Johnson DL (2004) Tunnel enlargement after anterior cruciate ligament surgery. Am J Sports Med 32(2):543–549

    Article  Google Scholar 

  82. Hoher J, Moller HD, Fu FH (1998) Bone tunnel enlargement after anterior cruciate ligament reconstruction: fact or fiction? Knee Surg Sports Traumatol Arthrosc 6(4):231–240

    Article  Google Scholar 

  83. Beynnon BD, Fleming BC, Johnson RJ, Nichols CE, Renstrom PA, Pope MH (1995) Anterior cruciate ligament strain behavior during rehabilitation exercises in vivo. Am J Sports Med 23(1):24–34

    Article  Google Scholar 

  84. Beynnon BD, Johnson RJ, Fleming BC (2002) The science of anterior cruciate ligament rehabilitation. Clin Orthop Relat Res 402:9–20

    Article  Google Scholar 

  85. Beynnon BD, Johnson RJ, Fleming BC, Stankewich CJ, Renstrom PA, Nichols CE (1997) The strain behavior of the anterior cruciate ligament during squatting and active flexion-extension. A comparison of an open and a closed kinetic chain exercise. Am J Sports Med 25(6):823–829

    Article  Google Scholar 

  86. Noyes FR, Mangine RE, Barber S (1987) Early knee motion after open and arthroscopic anterior cruciate ligament reconstruction. Am J Sports Med 15(2):149–160

    Article  Google Scholar 

  87. Tyler TF, McHugh MP, Gleim GW, Nicholas SJ (1998) The effect of immediate weightbearing after anterior cruciate ligament reconstruction. Clin Orthop Relat Res 357:141–148

    Article  Google Scholar 

  88. Weiler A, Forster C, Hunt P, Falk R, Jung T, Unterhauser FN, Bergmann V, Schmidmaier G, Haas NP (2004) The influence of locally applied platelet-derived growth factor-BB on free tendon graft remodeling after anterior cruciate ligament reconstruction. Am J Sports Med 32(4):881–891

    Article  Google Scholar 

  89. Yamazaki S, Yasuda K, Tomita F, Tohyama H, Minami A (2005) The effect of transforming growth factor-beta1 on intraosseous healing of flexor tendon autograft replacement of anterior cruciate ligament in dogs. Arthroscopy 21(9):1034–1041

    Article  Google Scholar 

  90. Anderson K, Seneviratne AM, Izawa K, Atkinson BL, Potter HG, Rodeo SA (2001) Augmentation of tendon healing in an intraarticular bone tunnel with use of a bone growth factor. Am J Sports Med 29(6):689–698

    Google Scholar 

  91. Yoshikawa T, Tohyama H, Katsura T, Kondo E, Kotani Y, Matsumoto H, Toyama Y, Yasuda K (2006) Effects of local administration of vascular endothelial growth factor on mechanical characteristics of the semitendinosus tendon graft after anterior cruciate ligament reconstruction in sheep. Am J Sports Med 34(12):1918–1925

    Article  Google Scholar 

  92. Sasaki K, Kuroda R, Ishida K, Kubo S, Matsumoto T, Mifune Y, Kinoshita K, Tei K, Akisue T, Tabata Y, Kurosaka M (2008) Enhancement of tendon-bone osteointegration of anterior cruciate ligament graft using granulocyte colony-stimulating factor. Am J Sports Med 36(8):1519–1527

    Article  Google Scholar 

  93. Huangfu X, Zhao J (2007) Tendon-bone healing enhancement using injectable tricalcium phosphate in a dog anterior cruciate ligament reconstruction model. Arthroscopy 23(5):455–462

    Article  Google Scholar 

  94. Tien YC, Chih TT, Lin JH, Ju CP, Lin SD (2004) Augmentation of tendon-bone healing by the use of calcium-phosphate cement. J Bone Joint Surg Br 86(7):1072–1076

    Article  Google Scholar 

  95. Ishikawa H, Koshino T, Takeuchi R, Saito T (2001) Effects of collagen gel mixed with hydroxyapatite powder on interface between newly formed bone and grafted achilles tendon in rabbit femoral bone tunnel. Biomaterials 22(12):1689–1694

    Article  Google Scholar 

  96. Gulotta LV, Kovacevic D, Ying L, Ehteshami JR, Montgomery S, Rodeo SA (2008) Augmentation of tendon-to-bone healing with a magnesium-based bone adhesive. Am J Sports Med 36(7):1290–1297

    Article  Google Scholar 

  97. Breitbart AS, Grande DA, Kessler R, Ryaby JT, Fitzsimmons RJ, Grant RT (1998) Tissue engineered bone repair of calvarial defects using cultured periosteal cells. Plast Reconstr Surg 101(3):567–574; discussion 566–575

    Google Scholar 

  98. Ritsila V, Alhopuro S, Gylling U, Rintala A (1972) The use of free periosteum for bone formation in congenital clefts of the maxilla. A preliminary report. Scand J Plast Reconstr Surg 6(1):57–60

    Article  Google Scholar 

  99. Rubak JM (1983) Osteochondrogenesis of free periosteal grafts in the rabbit iliac crest. Acta Orthop Scand 54(6):826–831

    Article  Google Scholar 

  100. Liu SH, Wei FC, Zhang D, Sun SZ, Zhao HQ, Li GJ (2006) [Experimental study of mandibular periosteal distraction in rabbits]. Hua Xi Kou Qiang Yi Xue Za Zhi 24(3):273–275

    Google Scholar 

  101. Chen CH, Chen WJ, Shih CH, Yang CY, Liu SJ, Lin PY (2003) Enveloping the tendon graft with periosteum to enhance tendon-bone healing in a bone tunnel: a biomechanical and histologic study in rabbits. Arthroscopy 19(3):290–296

    Article  Google Scholar 

  102. Robert H, Es-Sayeh J (2004) The role of periosteal flap in the prevention of femoral widening in anterior cruciate ligament reconstruction using hamstring tendons. Knee Surg Sports Traumatol Arthrosc 12(1):30–35

    Article  Google Scholar 

  103. Chen CH, Chen WJ, Shih CH, Chou SW (2004) Arthroscopic anterior cruciate ligament reconstruction with periosteum-enveloping hamstring tendon graft. Knee Surg Sports Traumatol Arthrosc 12(5):398–405

    Google Scholar 

  104. Chen CH, Chang CH, Su CI, Wang KC, Liu HT, Yu CM, Wong CB, Wang IC (2010) Arthroscopic single-bundle anterior cruciate ligament reconstruction with periosteum-enveloping hamstring tendon graft: clinical outcome at 2 to 7 years. Arthroscopy 26(7):907–917

    Article  Google Scholar 

  105. Chen CH, Liu HW, Tsai CL, Yu CM, Lin IH, Hsiue GH (2008) Photoencapsulation of bone morphogenetic protein-2 and periosteal progenitor cells improve tendon graft healing in a bone tunnel. Am J Sports Med 36(3):461–473

    Article  Google Scholar 

  106. Ge Z, Goh JC, Lee EH (2005) The effects of bone marrow-derived mesenchymal stem cells and fascia wrap application to anterior cruciate ligament tissue engineering. Cell Transplant 14(10):763–773

    Article  Google Scholar 

  107. Soon MY, Hassan A, Hui JH, Goh JC, Lee EH (2007) An analysis of soft tissue allograft anterior cruciate ligament reconstruction in a rabbit model: a short-term study of the use of mesenchymal stem cells to enhance tendon osteointegration. Am J Sports Med 35(6):962–971

    Article  Google Scholar 

  108. Ju YJ, Muneta T, Yoshimura H, Koga H, Sekiya I (2008) Synovial mesenchymal stem cells accelerate early remodeling of tendon-bone healing. Cell Tissue Res 332(3):469–478

    Article  Google Scholar 

  109. Karaoglu S, Celik C, Korkusuz P (2009) The effects of bone marrow or periosteum on tendon-to-bone tunnel healing in a rabbit model. Knee Surg Sports Traumatol Arthrosc 17(2):170–178

    Article  Google Scholar 

  110. Martinek V, Latterman C, Usas A, Abramowitch S, Woo SL, Fu FH, Huard J (2002) Enhancement of tendon-bone integration of anterior cruciate ligament grafts with bone morphogenetic protein-2 gene transfer: a histological and biomechanical study. J Bone Joint Surg Am 84-A(7):1123–1131

    Google Scholar 

  111. Wang CJ, Weng LH, Hsu SL, Sun YC, Yang YJ, Chan YS, Yang YL (2010) pCMV-BMP-2-transfected cell-mediated gene therapy in anterior cruciate ligament reconstruction in rabbits. Arthroscopy 26(7):968–976

    Article  Google Scholar 

  112. Amiel D, Ishizue KK, Harwood FL, Kitabayashi L, Akeson WH (1989) Injury of the anterior cruciate ligament: the role of collagenase in ligament degeneration. J Orthop Res 7(4):486–493

    Article  Google Scholar 

  113. Roseti L, Buda R, Cavallo C, Desando G, Facchini A, Grigolo B (2008) Ligament repair: a molecular and immunohistological characterization. J Biomed Mater Res A 84(1):117–127

    Google Scholar 

  114. Rosenberg TD, Franklin JL, Baldwin GN, Nelson KA (1992) Extensor mechanism function after patellar tendon graft harvest for anterior cruciate ligament reconstruction. Am J Sports Med 20(5):519–525; discussion 516–525

    Google Scholar 

  115. Rodeo SA, Kawamura S, Ma CB, Deng XH, Sussman PS, Hays P, Ying L (2007) The effect of osteoclastic activity on tendon-to-bone healing: an experimental study in rabbits. J Bone Joint Surg Am 89(10):2250–2259

    Article  Google Scholar 

  116. Hays PL, Kawamura S, Deng XH, Dagher E, Mithoefer K, Ying L, Rodeo SA (2008) The role of macrophages in early healing of a tendon graft in a bone tunnel. J Bone Joint Surg Am 90(3):565–579

    Article  Google Scholar 

  117. Yeh WL, Lin SS, Yuan LJ, Lee KF, Lee MY, Ueng SW (2007) Effects of hyperbaric oxygen treatment on tendon graft and tendon-bone integration in bone tunnel: biochemical and histological analysis in rabbits. J Orthop Res 25(5):636–645

    Article  Google Scholar 

  118. Einhorn TA, Lane JM (1998) Significant advances have been made in the way surgeons treat fractures. Clin Orthop Relat Res 355(suppl):S2–S3

    Article  Google Scholar 

  119. Klassen JF, Trousdale RT (1997) Treatment of delayed and nonunion of the patella. J Orthop Trauma 11(3):188–194

    Article  Google Scholar 

  120. Qin L, Wang L, Wong MW, Wen C, Wang G, Zhang G, Chan KM, Cheung WH, Leung KS (2010) Osteogenesis induced by extracorporeal shockwave in treatment of delayed osteotendinous junction healing. J Orthop Res 28(1):70–76

    Google Scholar 

  121. Qin L, Lu H, Fok P, Cheung W, Zheng Y, Lee K, Leung K (2006) Low-intensity pulsed ultrasound accelerates osteogenesis at bone-tendon healing junction. Ultrasound Med Biol 32(12):1905–1911

    Article  Google Scholar 

  122. Malizos KN, Papachristos AA, Protopappas VC, Fotiadis DI (2006) Transosseous application of low-intensity ultrasound for the enhancement and monitoring of fracture healing process in a sheep osteotomy model. Bone 38(4):530–539

    Article  Google Scholar 

  123. Lu H, Qin L, Cheung W, Lee K, Wong W, Leung K (2008) Low-intensity pulsed ultrasound accelerated bone-tendon junction healing through regulation of vascular endothelial growth factor expression and cartilage formation. Ultrasound Med Biol 34(8):1248–1260

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott A. Rodeo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Solic, J.M., Rodeo, S.A. (2013). Soft Tissue-to-Bone Healing in Anterior Cruciate Ligament Reconstruction. In: Thomopoulos, S., Birman, V., Genin, G. (eds) Structural Interfaces and Attachments in Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3317-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3317-0_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3316-3

  • Online ISBN: 978-1-4614-3317-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics