The Role of Mechanobiology in the Attachment of Tendon to Bone

  • Andrea Schwartz
  • Stavros Thomopoulos


The attachment of dissimilar materials is a major engineering challenge due to stress concentrations that arise at the interface of the disparate materials. An effective biologic solution to this problem can be seen at the attachment of the relatively compliant tendon to the relatively stiff and brittle bone. In this chapter, we review the functionally graded tissue that exists between tendon and bone. The focus of the chapter is the role of mechanobiology in the development, maintenance, and healing of the tendon-to-bone attachment; the role of mechanical stress on fetal and postnatal development and on tendon-to-bone during healing is discussed. A better understanding of mechanobiology at the insertion may help guide rehabilitation strategies and tissue engineering protocols for enhancing tendon-to-bone healing.


Anterior Cruciate Ligament Rotator Cuff Growth Plate Endochondral Ossification Postnatal Development 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported in part by the National Institutes of Health (AR055580 and AR057836) and the National Science Foundation (CAREER 844607).


  1. 1.
    Bostrom MPG, Boskey A, Kauffman JK, Einhorn TA (2000) Form and function of bone. In: Buckwalter JA, Einhorn T, Simon SR (eds) Orthopaedic basic science, 2nd edn. American Academy of Orthopaedic Surgeons, Rosemont, IL, pp 319–370Google Scholar
  2. 2.
    Woo SLAK, Frank CB, Livesay GA, Ma CB, Zeminski JA, Wayne JS, Myers BS (2000) Anatomy, biology, and biomechanics of tendon and ligament. In: Buckwalter JA, Einhorn T, Simon SR (eds) Orthopaedic basic science, 2nd edn. American Academy of Orthopaedic Surgeons, Rosemont, IL, pp 581–616Google Scholar
  3. 3.
    Harryman DT II, Mack LA, Wang KY, Jackins SE, Richardson ML, Matsen FA III (1991) Repairs of the rotator cuff. Correlation of functional results with integrity of the cuff. J Bone Joint Surg Am 73(7):982–989Google Scholar
  4. 4.
    Galatz LM, Ball CM, Teefey SA, Middleton WD, Yamaguchi K (2004) The outcome and repair integrity of completely arthroscopically repaired large and massive rotator cuff tears. J Bone Joint Surg Am 86A(2):219–224Google Scholar
  5. 5.
    Galatz LM, Sandell LJ, Rothermich SY, Das R, Mastny A, Havlioglu N, Silva MJ, Thomopoulos S (2006) Characteristics of the rat supraspinatus tendon during tendon-to-bone healing after acute injury. J Orthop Res 24(3):541–550CrossRefGoogle Scholar
  6. 6.
    Thomopoulos S, Hattersley G, Rosen V, Mertens M, Galatz L, Williams GR, Soslowsky LJ (2002) The localized expression of extracellular matrix components in healing tendon insertion sites: an in situ hybridization study. J Orthop Res 20(3):454–463CrossRefGoogle Scholar
  7. 7.
    Thomopoulos S, Williams GR, Soslowsky LJ (2003) Tendon to bone healing: differences in biomechanical, structural, and compositional properties due to a range of activity levels. J Biomech Eng 125(1):106–113CrossRefGoogle Scholar
  8. 8.
    Benjamin M, Kumai T, Milz S, Boszczyk BM, Boszczyk AA, Ralphs JR (2002) The skeletal attachment of tendons–tendon “entheses”. Comp Biochem Physiol A Mol Integr Physiol 133(4):931–945CrossRefGoogle Scholar
  9. 9.
    Quain J (1856) Elements of anatomy, 6th edn. Walton and Maberly, LondonGoogle Scholar
  10. 10.
    Benjamin M, Toumi H, Ralphs JR, Bydder G, Best TM, Milz S (2006) Where tendons and ligaments meet bone: attachment sites (‘entheses’) in relation to exercise and/or mechanical load. J Anat 208(4):471–490CrossRefGoogle Scholar
  11. 11.
    Waggett AD, Ralphs JR, Kwan AP, Woodnutt D, Benjamin M (1998) Characterization of collagens and proteoglycans at the insertion of the human Achilles tendon. Matrix Biol 16(8):457–470CrossRefGoogle Scholar
  12. 12.
    Thomopoulos S, Williams GR, Gimbel JA, Favata M, Soslowsky LJ (2003) Variation of biomechanical, structural, and compositional properties along the tendon to bone insertion site. J Orthop Res 21(3):413–419CrossRefGoogle Scholar
  13. 13.
    Kumagai J, Sarkar K, Uhthoff HK, Okawara Y, Ooshima A (1994) Immunohistochemical distribution of type I, II and III collagens in the rabbit supraspinatus tendon insertion. J Anat 185(pt 2):279–284Google Scholar
  14. 14.
    Fukuta S, Oyama M, Kavalkovich K, Fu FH, Niyibizi C (1998) Identification of types II, IX and X collagens at the insertion site of the bovine achilles tendon. Matrix Biol 17(1):65–73CrossRefGoogle Scholar
  15. 15.
    Visconti CS, Kavalkovich K, Wu J-J, Niyibizi C (1996) Biochemical analysis of collagens at the ligament-bone interface reveals presence of cartilage-specific collagens. Arch Biochem Biophys 328(1):135–142CrossRefGoogle Scholar
  16. 16.
    Ralphs JR, Benjamin M, Waggett AD, Russell DC, Messner K, Gao J (1998) Regional differences in cell shape and gap junction expression in rat Achilles tendon: relation to fibrocartilage differentiation. J Anat 193(pt 2):215–222CrossRefGoogle Scholar
  17. 17.
    Wopenka B, Kent A, Pasteris JD, Yoon Y, Thomopoulos S (2008) The tendon-to-bone transition of the rotator cuff: a preliminary Raman spectroscopic study documenting the gradual mineralization across the insertion in rat tissue samples. Appl Spectrosc 62(12):1285–1294CrossRefGoogle Scholar
  18. 18.
    Gupta HS, Schratter S, Tesch W, Roschger P, Berzlanovich A, Schoeberl T, Klaushofer K, Fratzl P (2005) Two different correlations between nanoindentation modulus and mineral content in the bone-cartilage interface. J Struct Biol 149(2):138–148CrossRefGoogle Scholar
  19. 19.
    Gao J, Messner K, Ralphs JR, Benjamin M (1996) An immunohistochemical study of enthesis development in the medial collateral ligament of the rat knee joint. Anat Embryol 194(4):399–406CrossRefGoogle Scholar
  20. 20.
    Provot S, Schipani E (2005) Molecular mechanisms of endochondral bone development. Biochem Biophys Res Commun 328(3):658–665CrossRefGoogle Scholar
  21. 21.
    Villemure I, Stokes IA (2009) Growth plate mechanics and mechanobiology. A survey of present understanding. J Biomech 42(12):1793–1803CrossRefGoogle Scholar
  22. 22.
    Benjamin M, Ralphs JR (2004) Biology of fibrocartilage cells. Int Rev Cytol 233:1–45CrossRefGoogle Scholar
  23. 23.
    Liu Y, Birman V, Chen C, Thomopoulos S, Genin GM (2011) Mechanisms of bimaterial attachment at the interface of tendon to bone. J Eng Mater Technol 133(011006):281–288Google Scholar
  24. 24.
    Liu YX, Thomopoulos S, Birman V, Li JS, Genin GM (2012) Bi-material attachment through a compliant interfacial system at the tendon-to-bone insertion site. Mech Mater 44:83–92CrossRefGoogle Scholar
  25. 25.
    Thomopoulos S, Marquez JP, Weinberger B, Birman V, Genin GM (2006) Collagen fiber orientation at the tendon to bone insertion and its influence on stress concentrations. J Biomech 39(10):1842–1851CrossRefGoogle Scholar
  26. 26.
    Stouffer DC, Butler DL, Hosny D (1985) The relationship between crimp pattern and mechanical response of human patellar tendon-bone units. J Biomech Eng 107(2):158–165CrossRefGoogle Scholar
  27. 27.
    Hauch KN, Oyen ML, Odegard GM, Haut Donahue TL (2009) Nanoindentation of the insertional zones of human meniscal attachments into underlying bone. J Mech Behav Biomed Mater 2(4):339–347CrossRefGoogle Scholar
  28. 28.
    Villegas DF, Maes JA, Magee SD, Donahue TL (2007) Failure properties and strain distribution analysis of meniscal attachments. J Biomech 40(12):2655–2662CrossRefGoogle Scholar
  29. 29.
    Moffat KL, Sun WH, Pena PE, Chahine NO, Doty SB, Ateshian GA, Hung CT, Lu HH (2008) Characterization of the structure-function relationship at the ligament-to-bone interface. Proc Natl Acad Sci U S A 105(23):7947–7952CrossRefGoogle Scholar
  30. 30.
    Amini S, Veilleux D, Villemure I (2010) Tissue and cellular morphological changes in growth plate explants under compression. J Biomech 43(13):2582–2588CrossRefGoogle Scholar
  31. 31.
    Villemure I, Cloutier L, Matyas JR, Duncan NA (2007) Non-uniform strain distribution within rat cartilaginous growth plate under uniaxial compression. J Biomech 40(1):149–156CrossRefGoogle Scholar
  32. 32.
    Cohen B, Lai WM, Mow VC (1998) A transversely isotropic biphasic model for unconfined compression of growth plate and chondroepiphysis. J Biomech Eng 120(4):491–496CrossRefGoogle Scholar
  33. 33.
    Sergerie K, Lacoursiere MO, Levesque M, Villemure I (2009) Mechanical properties of the porcine growth plate and its three zones from unconfined compression tests. J Biomech 42(4):510–516CrossRefGoogle Scholar
  34. 34.
    Genin GM, Kent A, Birman V, Wopenka B, Pasteris JD, Marquez PJ, Thomopoulos S (2009) Functional grading of mineral and collagen in the attachment of tendon to bone. Biophys J 97(4):976–985CrossRefGoogle Scholar
  35. 35.
    Birch R (2002) Obstetric brachial plexus palsy. J Hand Surg Br 27(1):3–8CrossRefGoogle Scholar
  36. 36.
    Mehta SH, Blackwell SC, Bujold E, Sokol RJ (2006) What factors are associated with neonatal injury following shoulder dystocia? J Perinatol 26(2):85–88CrossRefGoogle Scholar
  37. 37.
    Moukoko D, Ezaki M, Wilkes D, Carter P (2004) Posterior shoulder dislocation in infants with neonatal brachial plexus palsy. J Bone Joint Surg Am 86-A(4):787–793Google Scholar
  38. 38.
    Smith NC, Rowan P, Benson LJ, Ezaki M, Carter PR (2004) Neonatal brachial plexus palsy. Outcome of absent biceps function at three months of age. J Bone Joint Surg Am 86-A(10):2163–2170Google Scholar
  39. 39.
    Kirkos JM, Kyrkos MJ, Kapetanos GA, Haritidis JH (2005) Brachial plexus palsy secondary to birth injuries. J Bone Joint Surg Br 87(2):231–235CrossRefGoogle Scholar
  40. 40.
    Wolff J (1892) Das Gesetz der Transformation der Knochen (Berlin A. Hirchwild). Translated as: The law of bone remodeling. In: Maquet P, Furlong R (eds) Springer-Verlag, BerlinGoogle Scholar
  41. 41.
    Goldstein SA (1987) The mechanical properties of trabecular bone: dependence on anatomic location and function. J Biomech 20(11–12):1055–1061CrossRefGoogle Scholar
  42. 42.
    Mullender MG, Huiskes R (1995) Proposal for the regulatory mechanism of Wolff’s law. J Orthop Res 13(4):503–512CrossRefGoogle Scholar
  43. 43.
    Lang T, LeBlanc A, Evans H, Lu Y, Genant H, Yu A (2004) Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. J Bone Miner Res 19(6):1006–1012CrossRefGoogle Scholar
  44. 44.
    Priest JD, Jones HH, Tichenor CJ, Nagel DA (1977) Arm and elbow changes in expert tennis players. Minn Med 60(5):399–404Google Scholar
  45. 45.
    Guilak F, Ratcliffe A, Mow VC (1995) Chondrocyte deformation and local tissue strain in articular cartilage: a confocal microscopy study. J Orthop Res 13(3):410–421CrossRefGoogle Scholar
  46. 46.
    Krishnan R, Park S, Eckstein F, Ateshian GA (2003) Inhomogeneous cartilage properties enhance superficial interstitial fluid support and frictional properties, but do not provide a homogeneous state of stress. J Biomech Eng 125(5):569–577CrossRefGoogle Scholar
  47. 47.
    Mizuno S, Tateishi T, Ushida T, Glowacki J (2002) Hydrostatic fluid pressure enhances matrix synthesis and accumulation by bovine chondrocytes in three-dimensional culture. J Cell Physiol 193(3):319–327CrossRefGoogle Scholar
  48. 48.
    O’Connor KM (1997) Unweighting accelerates tidemark advancement in articular cartilage at the knee joint of rats. J Bone Miner Res 12(4):580–589CrossRefGoogle Scholar
  49. 49.
    Carter DR, Beaupre GS, Wong M, Smith RL, Andriacchi TP, Schurman DJ (2004) The mechanobiology of articular cartilage development and degeneration. Clin Orthop Relat Res 427(suppl):S69–S77CrossRefGoogle Scholar
  50. 50.
    Magnusson SP, Hansen P, Kjaer M (2003) Tendon properties in relation to muscular activity and physical training. Scand J Med Sci Sports 13(4):211–223CrossRefGoogle Scholar
  51. 51.
    Woo SL, Gomez MA, Woo YK, Akeson WH (1982) Mechanical properties of tendons and ligaments. II. The relationships of immobilization and exercise on tissue remodeling. Biorheology 19(3):397–408Google Scholar
  52. 52.
    Amiel D, Woo SL, Harwood FL, Akeson WH (1982) The effect of immobilization on collagen turnover in connective tissue: a biochemical-biomechanical correlation. Acta Orthop Scand 53(3):325–332CrossRefGoogle Scholar
  53. 53.
    Walsh S, Frank C, Hart D (1992) Immobilization alters cell metabolism in an immature ligament. Clin Orthop Relat Res 277:277–288Google Scholar
  54. 54.
    Woo SL, Gomez MA, Sites TJ, Newton PO, Orlando CA, Akeson WH (1987) The biomechanical and morphological changes in the medial collateral ligament of the rabbit after immobilization and remobilization. J Bone Joint Surg Am 69(8):1200–1211Google Scholar
  55. 55.
    Vogel KG, Koob TJ (1989) Structural specialization in tendons under compression. Int Rev Cytol 115:267–293CrossRefGoogle Scholar
  56. 56.
    Vogel KG, Ordog A, Pogany G, Olah J (1993) Proteoglycans in the compressed region of human tibialis posterior tendon and in ligaments. J Orthop Res 11(1):68–77CrossRefGoogle Scholar
  57. 57.
    Vogel KG, Sandy JD, Pogany G, Robbins JR (1994) Aggrecan in bovine tendon. Matrix Biol 14(2):171–179CrossRefGoogle Scholar
  58. 58.
    Petersen W, Pufe T, Kurz B, Mentlein R, Tillmann B (2002) Angiogenesis in fetal tendon development: spatial and temporal expression of the angiogenic peptide vascular endothelial cell growth factor. Anat Embryol 205(4):263–270CrossRefGoogle Scholar
  59. 59.
    Pufe T, Petersen W, Kurz B, Tsokos M, Tillmann B, Mentlein R (2003) Mechanical factors influence the expression of endostatin—an inhibitor of angiogenesis—in tendons. J Orthop Res 21(4):610–616CrossRefGoogle Scholar
  60. 60.
    Thomopoulos S, Das R, Birman V, Smith L, Ku K, Elson E, Pryse KM, Marquez P, Genin GM (2011) Fibrocartilage tissue engineering: the role of the stress environment on cell morphology and matrix expression. Tissue Eng Part A 17(7–8):1039–1053CrossRefGoogle Scholar
  61. 61.
    Carter DR, Beaupré GS, Beaupre GS (2007) Skeletal function and form: mechanobiology of skeletal development, aging, and regeneration. Cambridge University Press, CambridgeGoogle Scholar
  62. 62.
    Nowlan NC, Sharpe J, Roddy KA, Prendergast PJ, Murphy P (2010) Mechanobiology of embryonic skeletal development: insights from animal models. Birth Defects Res C Embryo Today 90(3):203–213CrossRefGoogle Scholar
  63. 63.
    Osborne AC, Lamb KJ, Lewthwaite JC, Dowthwaite GP, Pitsillides AA (2002) Short-term rigid and flaccid paralyses diminish growth of embryonic chick limbs and abrogate joint cavity formation but differentially preserve pre-cavitated joints. J Musculoskelet Neuronal Interact 2(5):448–456Google Scholar
  64. 64.
    Nowlan NC, Bourdon C, Dumas G, Tajbakhsh S, Prendergast PJ, Murphy P (2010) Developing bones are differentially affected by compromised skeletal muscle formation. Bone 46(5):1275–1285CrossRefGoogle Scholar
  65. 65.
    Brent AE, Braun T, Tabin CJ (2005) Genetic analysis of interactions between the somitic muscle, cartilage and tendon cell lineages during mouse development. Development 132(3):515–528CrossRefGoogle Scholar
  66. 66.
    Sharir A, Stern T, Rot C, Shahar R, Zelzer E (2011) Muscle force regulates bone shaping for optimal load-bearing capacity during embryogenesis. Development 138(15):3247–3259CrossRefGoogle Scholar
  67. 67.
    Mikic B, Johnson TL, Chhabra AB, Schalet BJ, Wong M, Hunziker EB (2000) Differential effects of embryonic immobilization on the development of fibrocartilaginous skeletal elements. J Rehabil Res Dev 37(2):127–133Google Scholar
  68. 68.
    Gomez C, David V, Peet NM, Vico L, Chenu C, Malaval L, Skerry TM (2007) Absence of mechanical loading in utero influences bone mass and architecture but not innervation in Myod-Myf5-deficient mice. J Anat 210(3):259–271CrossRefGoogle Scholar
  69. 69.
    Kahn J, Shwartz Y, Blitz E, Krief S, Sharir A, Breitel DA, Rattenbach R, Relaix F, Maire P, Rountree RB, Kingsley DM, Zelzer E (2009) Muscle contraction is necessary to maintain joint progenitor cell fate. Dev Cell 16(5):734–743CrossRefGoogle Scholar
  70. 70.
    Kardon G (1998) Muscle and tendon morphogenesis in the avian hind limb. Development 125(20):4019–4032Google Scholar
  71. 71.
    Germiller JA, Goldstein SA (1997) Structure and function of embryonic growth plate in the absence of functioning skeletal muscle. J Orthop Res 15(3):362–370CrossRefGoogle Scholar
  72. 72.
    Pacifici M, Koyama E, Iwamoto M (2005) Mechanisms of synovial joint and articular cartilage formation: recent advances, but many lingering mysteries. Birth Defects Res C Embryo Today 75(3):237–248CrossRefGoogle Scholar
  73. 73.
    Mikic B, Isenstein AL, Chhabra A (2004) Mechanical modulation of cartilage structure and function during embryogenesis in the chick. Ann Biomed Eng 32(1):18–25CrossRefGoogle Scholar
  74. 74.
    Reich A, Jaffe N, Tong A, Lavelin I, Genina O, Pines M, Sklan D, Nussinovitch A, Monsonego-Ornan E (2005) Weight loading young chicks inhibits bone elongation and promotes growth plate ossification and vascularization. J Appl Physiol 98(6):2381–2389CrossRefGoogle Scholar
  75. 75.
    Reich A, Sharir A, Zelzer E, Hacker L, Monsonego-Ornan E, Shahar R (2008) The effect of weight loading and subsequent release from loading on the postnatal skeleton. Bone 43(4):766–774CrossRefGoogle Scholar
  76. 76.
    Stokes IA, Aronsson DD, Dimock AN, Cortright V, Beck S (2006) Endochondral growth in growth plates of three species at two anatomical locations modulated by mechanical compression and tension. J Orthop Res 24(6):1327–1334CrossRefGoogle Scholar
  77. 77.
    Stokes IA, Clark KC, Farnum CE, Aronsson DD (2007) Alterations in the growth plate associated with growth modulation by sustained compression or distraction. Bone 41(2):197–205CrossRefGoogle Scholar
  78. 78.
    Henderson JH, Carter DR (2002) Mechanical induction in limb morphogenesis: the role of growth-generated strains and pressures. Bone 31(6):645–653CrossRefGoogle Scholar
  79. 79.
    Ingber DE (2008) Tensegrity and mechanotransduction. J Bodyw Mov Ther 12(3):198–200CrossRefGoogle Scholar
  80. 80.
    Wang JH (2006) Mechanobiology of tendon. J Biomech 39(9):1563–1582CrossRefGoogle Scholar
  81. 81.
    St-Jacques B, Hammerschmidt M, McMahon AP (1999) Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev 13(16):2072–2086CrossRefGoogle Scholar
  82. 82.
    Vortkamp A, Lee K, Lanske B, Segre GV, Kronenberg HM, Tabin CJ (1996) Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science 273(5275):613–622CrossRefGoogle Scholar
  83. 83.
    Broadus AE, Macica C, Chen X (2007) The PTHrP functional domain is at the gates of endochondral bones. Ann N Y Acad Sci 1116:65–81CrossRefGoogle Scholar
  84. 84.
    Huang W, Chung UI, Kronenberg HM, de Crombrugghe B (2001) The chondrogenic transcription factor Sox9 is a target of signaling by the parathyroid hormone-related peptide in the growth plate of endochondral bones. Proc Natl Acad Sci U S A 98(1):160–165CrossRefGoogle Scholar
  85. 85.
    Akiyama H, Chaboissier MC, Martin JF, Schedl A, de Crombrugghe B (2002) The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev 16(21):2813–2828CrossRefGoogle Scholar
  86. 86.
    Wu Q, Zhang Y, Chen Q (2001) Indian hedgehog is an essential component of mechanotransduction complex to stimulate chondrocyte proliferation. J Biol Chem 276(38):35290–35296CrossRefGoogle Scholar
  87. 87.
    Chen X, Macica C, Nasiri A, Judex S, Broadus AE (2007) Mechanical regulation of PTHrP expression in entheses. Bone 41(5):752–759CrossRefGoogle Scholar
  88. 88.
    Shen G (2005) The role of type X collagen in facilitating and regulating endochondral ossification of articular cartilage. Orthod Craniofac Res 8(1):11–17CrossRefGoogle Scholar
  89. 89.
    Wu QQ, Chen Q (2000) Mechanoregulation of chondrocyte proliferation, maturation, and hypertrophy: ion-channel dependent transduction of matrix deformation signals. Exp Cell Res 256(2):383–391CrossRefGoogle Scholar
  90. 90.
    Villemure I, Chung MA, Seck CS, Kimm MH, Matyas JR, Duncan NA (2005) Static compressive loading reduces the mRNA expression of type II and X collagen in rat growth-plate chondrocytes during postnatal growth. Connect Tissue Res 46(4–5):211–219CrossRefGoogle Scholar
  91. 91.
    Cancel M, Grimard G, Thuillard-Crisinel D, Moldovan F, Villemure I (2009) Effects of in vivo static compressive loading on aggrecan and type II and X collagens in the rat growth plate extracellular matrix. Bone 44(2):306–315CrossRefGoogle Scholar
  92. 92.
    Cserjesi P, Brown D, Ligon KL, Lyons GE, Copeland NG, Gilbert DJ, Jenkins NA, Olson EN (1995) Scleraxis: a basic helix-loop-helix protein that prefigures skeletal formation during mouse embryogenesis. Development 121(4):1099–1110Google Scholar
  93. 93.
    Schweitzer R, Chyung JH, Murtaugh LC, Brent AE, Rosen V, Olson EN, Lassar A, Tabin CJ (2001) Analysis of the tendon cell fate using Scleraxis, a specific marker for tendons and ligaments. Development 128(19):3855–3866Google Scholar
  94. 94.
    Brent AE, Schweitzer R, Tabin CJ (2003) A somitic compartment of tendon progenitors. Cell 113(2):235–248CrossRefGoogle Scholar
  95. 95.
    Murchison ND, Price BA, Conner DA, Keene DR, Olson EN, Tabin CJ, Schweitzer R (2007) Regulation of tendon differentiation by scleraxis distinguishes force-transmitting tendons from muscle-anchoring tendons. Development 134(14):2697–2708CrossRefGoogle Scholar
  96. 96.
    Scott A, Danielson P, Abraham T, Fong G, Sampaio AV, Underhill TM (2011) Mechanical force modulates scleraxis expression in bioartificial tendons. J Musculoskelet Neuronal Interact 11(2):124–132Google Scholar
  97. 97.
    Maeda T, Sakabe T, Sunaga A, Sakai K, Rivera AL, Keene DR, Sasaki T, Stavnezer E, Iannotti J, Schweitzer R, Ilic D, Baskaran H, Sakai T (2011) Conversion of mechanical force into TGF-beta-mediated biochemical signals. Curr Biol 21(11):933–941CrossRefGoogle Scholar
  98. 98.
    Mendias CL, Gumucio JP, Bakhurin KI, Lynch EB, Brooks SV (2012) Physiological loading of tendons induces scleraxis expression in epitenon fibroblasts. J Orthop Res 30(4):606–612CrossRefGoogle Scholar
  99. 99.
    Stains JP, Civitelli R (2005) Cell-to-cell interactions in bone. Biochem Biophys Res Commun 328(3):721–727CrossRefGoogle Scholar
  100. 100.
    Stains JP, Civitelli R (2005) Cell-cell interactions in regulating osteogenesis and osteoblast function. Birth Defects Res C Embryo Today 75(1):72–80CrossRefGoogle Scholar
  101. 101.
    Banes AJ, Horesovsky G, Larson C, Tsuzaki M, Judex S, Archambault J, Zernicke R, Herzog W, Kelley S, Miller L (1999) Mechanical load stimulates expression of novel genes in vivo and in vitro in avian flexor tendon cells. Osteoarthritis Cartilage 7(1):141–153CrossRefGoogle Scholar
  102. 102.
    Waggett AD, Benjamin M, Ralphs JR (2006) Connexin 32 and 43 gap junctions differentially modulate tenocyte response to cyclic mechanical load. Eur J Cell Biol 85(11):1145–1154CrossRefGoogle Scholar
  103. 103.
    Grimston SK, Brodt MD, Silva MJ, Civitelli R (2008) Attenuated response to in vivo mechanical loading in mice with conditional osteoblast ablation of the connexin43 gene (Gja1). J Bone Miner Res 23(6):879–886CrossRefGoogle Scholar
  104. 104.
    Grimston SK, Goldberg DB, Watkins M, Brodt MD, Silva MJ, Civitelli R (2011) Connexin43 deficiency reduces the sensitivity of cortical bone to the effects of muscle paralysis. J Bone Miner Res 26(9):2151–2160CrossRefGoogle Scholar
  105. 105.
    Grimston SK, Screen J, Haskell JH, Chung DJ, Brodt MD, Silva MJ, Civitelli R (2006) Role of connexin43 in osteoblast response to physical load. Ann N Y Acad Sci 1068:214–224CrossRefGoogle Scholar
  106. 106.
    Grimston SK, Silva MJ, Civitelli R (2007) Bone loss after temporarily induced muscle paralysis by Botox is not fully recovered after 12 weeks. Ann N Y Acad Sci 1116:444–460CrossRefGoogle Scholar
  107. 107.
    Fujioka H, Wang GJ, Mizuno K, Balian G, Hurwitz SR (1997) Changes in the expression of type-X collagen in the fibrocartilage of rat Achilles tendon attachment during development. J Orthop Res 15(5):675–681CrossRefGoogle Scholar
  108. 108.
    Galatz L, Rothermich S, VanderPloeg K, Petersen B, Sandell L, Thomopoulos S (2007) Development of the supraspinatus tendon-to-bone insertion: localized expression of extracellular matrix and growth factor genes. J Orthop Res 25(12):1621–1628CrossRefGoogle Scholar
  109. 109.
    Bland YS, Ashhurst DE (1997) Fetal and postnatal development of the patella, patellar tendon and suprapatella in the rabbit; changes in the distribution of the fibrillar collagens. J Anat 190(Pt 3):327–342CrossRefGoogle Scholar
  110. 110.
    Bland YS, Ashhurst DE (2001) The hip joint: the fibrillar collagens associated with development and ageing in the rabbit. J Anat 198(pt 1):17–27CrossRefGoogle Scholar
  111. 111.
    Blitz E, Viukov S, Sharir A, Shwartz Y, Galloway JL, Pryce BA, Johnson RL, Tabin CJ, Schweitzer R, Zelzer E (2009) Bone ridge patterning during musculoskeletal assembly is mediated through SCX regulation of Bmp4 at the tendon-skeleton junction. Dev Cell 17(6):861–873CrossRefGoogle Scholar
  112. 112.
    Kronenberg HM (2003) Developmental regulation of the growth plate. Nature 423(6937):332–336CrossRefGoogle Scholar
  113. 113.
    Chen X, Macica CM, Dreyer BE, Hammond VE, Hens JR, Philbrick WM, Broadus AE (2006) Initial characterization of PTH-related protein gene-driven lacZ expression in the mouse. J Bone Miner Res 21(1):113–123CrossRefGoogle Scholar
  114. 114.
    Asou Y, Nifuji A, Tsuji K, Shinomiya K, Olson EN, Koopman P, Noda M (2002) Coordinated expression of scleraxis and Sox9 genes during embryonic development of tendons and cartilage. J Orthop Res 20(4):827–833CrossRefGoogle Scholar
  115. 115.
    Thomopoulos S, Kim HM, Rothermich SY, Biederstadt C, Das R, Galatz LM (2007) Decreased muscle loading delays maturation of the tendon enthesis during postnatal development. J Orthop Res 25(9):1154–1163CrossRefGoogle Scholar
  116. 116.
    Kim HM, Galatz LM, Patel N, Das R, Thomopoulos S (2009) Recovery potential after postnatal shoulder paralysis. An animal model of neonatal brachial plexus palsy. J Bone Joint Surg Am 91(4):879–891CrossRefGoogle Scholar
  117. 117.
    Das R, Rich J, Kim HM, McAlinden A, Thomopoulos S (2011) Effects of botulinum toxin-induced paralysis on postnatal development of the supraspinatus muscle. J Orthop Res 29(2):281–288CrossRefGoogle Scholar
  118. 118.
    Kim HM, Galatz LM, Das R, Patel N, Thomopoulos S (2010) Musculoskeletal deformities secondary to neurotomy of the superior trunk of the brachial plexus in neonatal mice. J Orthop Res 28(10):1391–1398CrossRefGoogle Scholar
  119. 119.
    Tatara A, Lipner J, Das R, Kim HM, Patel N, Silva MJ, Thomopoulos S (2010) The effects of muscle load and osteoclast activity on bone formation at the developing tendon enthesis. Trans Orthop Res Soc 57:134Google Scholar
  120. 120.
    Iannotti JP, Naranja RJ, Gartsman GM (1994) Surgical treatment of the intact cuff and repairable cuff defect: arthroscopic and open techniques. In: Norris TR (ed) Orthopaedic knowledge update: shoulder and elbow. American Academy of Orthopaedic Surgeons, Rosemont, IL, pp 151–155Google Scholar
  121. 121.
    Fu FH, Bennett CH, Lattermann C, Ma CB (1999) Current trends in anterior cruciate ligament reconstruction. Part 1: biology and biomechanics of reconstruction. Am J Sports Med 27(6):821–830Google Scholar
  122. 122.
    Kannus P, Jozsa L (1991) Histopathological changes preceding spontaneous rupture of a tendon. A controlled study of 891 patients. J Bone Joint Surg Am 73(10):1507–1525Google Scholar
  123. 123.
    Waggy C, Blaha, JD, Lobosky, DA, Beresford, WA, Clovis E (1994) Healing of tendon to bone insertion site in rabbits: a model of the effect of partial disruption. In: Transaction of the Orthopaedic Research Society, 40:39Google Scholar
  124. 124.
    St Pierre P, Olson EJ, Elliott JJ, O’Hair KC, McKinney LA, Ryan J (1995) Tendon-healing to cortical bone compared with healing to a cancellous trough. A biomechanical and histological evaluation in goats. J Bone Joint Surg Am 77(12):1858–1866Google Scholar
  125. 125.
    Ditsios K, Boyer MI, Kusano N, Gelberman RH, Silva MJ (2003) Bone loss following tendon laceration, repair and passive mobilization. J Orthop Res 21(6):990–996CrossRefGoogle Scholar
  126. 126.
    Galatz LM, Rothermich SY, Zaegel M, Silva MJ, Havlioglu N, Thomopoulos S (2005) Delayed repair of tendon to bone injuries leads to decreased biomechanical properties and bone loss. J Orthop Res 23(6):1441–1447Google Scholar
  127. 127.
    Thomopoulos S, Matsuzaki H, Zaegel M, Gelberman RH, Silva MJ (2007) Alendronate prevents bone loss and improves tendon-to-bone repair strength in a canine model. J Orthop Res 25(4):473–479CrossRefGoogle Scholar
  128. 128.
    Cadet ER, Vorys GC, Rahman R, Park SH, Gardner TR, Lee FY, Levine WN, Bigliani LU, Ahmad CS (2010) Improving bone density at the rotator cuff footprint increases supraspinatus tendon failure stress in a rat model. J Orthop Res 28(3):308–314Google Scholar
  129. 129.
    Silva MJ, Thomopoulos S, Kusano N, Zaegel MA, Harwood FL, Matsuzaki H, Havlioglu N, Dovan TT, Amiel D, Gelberman RH (2006) Early healing of flexor tendon insertion site injuries: tunnel repair is mechanically and histologically inferior to surface repair in a canine model. J Orthop Res 24(5):990–1000CrossRefGoogle Scholar
  130. 130.
    Gimbel JA, Van Kleunen JP, Williams GR, Thomopoulos S, Soslowsky LJ (2007) Long durations of immobilization in the rat result in enhanced mechanical properties of the healing supraspinatus tendon insertion site. J Biomech Eng 129(3):400–404CrossRefGoogle Scholar
  131. 131.
    Peltz CD, Dourte LM, Kuntz AF, Sarver JJ, Kim SY, Williams GR, Soslowsky LJ (2009) The effect of postoperative passive motion on rotator cuff healing in a rat model. J Bone Joint Surg Am 91(10):2421–2429CrossRefGoogle Scholar
  132. 132.
    Sarver JJ, Peltz CD, Dourte L, Reddy S, Williams GR, Soslowsky LJ (2008) After rotator cuff repair, stiffness—but not the loss in range of motion—increased transiently for immobilized shoulders in a rat model. J Shoulder Elbow Surg 17(1 suppl):108S–113SCrossRefGoogle Scholar
  133. 133.
    Dagher E, Hays PL, Kawamura S, Godin J, Deng XH, Rodeo SA (2009) Immobilization modulates macrophage accumulation in tendon-bone healing. Clin Orthop Relat Res 467(1):281–287CrossRefGoogle Scholar
  134. 134.
    Hays PL, Kawamura S, Deng XH, Dagher E, Mithoefer K, Ying L, Rodeo SA (2008) The role of macrophages in early healing of a tendon graft in a bone tunnel. J Bone Joint Surg Am 90(3):565–579CrossRefGoogle Scholar
  135. 135.
    Kawamura S, Ying L, Kim HJ, Dynybil C, Rodeo SA (2005) Macrophages accumulate in the early phase of tendon-bone healing. J Orthop Res 23(6):1425–1432Google Scholar
  136. 136.
    Galatz LM, Charlton N, Das R, Kim HM, Havlioglu N, Thomopoulos S (2009) Complete removal of load is detrimental to rotator cuff healing. J Shoulder Elbow Surg 18(5):669–675CrossRefGoogle Scholar
  137. 137.
    Thomopoulos S, Zampiakis E, Das R, Silva MJ, Gelberman RH (2008) The effect of muscle loading on flexor tendon-to-bone healing in a canine model. J Orthop Res 26(12):1611–1617CrossRefGoogle Scholar
  138. 138.
    Stasiak M, Imhauser C, Packer J, Bedi A, Brophy R, Kovacevic D, Jackson K, Deng XH, Rodeo S, Torzilli P (2010) A novel in vivo joint loading system to investigate the effect of daily mechanical load on a healing anterior cruciate ligament reconstruction. J Med Device 4(1):15003CrossRefGoogle Scholar
  139. 139.
    Brophy RH, Kovacevic D, Imhauser CW, Stasiak M, Bedi A, Fox AJ, Deng XH, Rodeo SA (2011) Effect of short-duration low-magnitude cyclic loading versus immobilization on tendon-bone healing after ACL reconstruction in a rat model. J Bone Joint Surg Am 93(4):381–393CrossRefGoogle Scholar
  140. 140.
    Bedi A, Kovacevic D, Fox AJ, Imhauser CW, Stasiak M, Packer J, Brophy RH, Deng XH, Rodeo SA (2010) Effect of early and delayed mechanical loading on tendon-to-bone healing after anterior cruciate ligament reconstruction. J Bone Joint Surg Am 92(14):2387–2401CrossRefGoogle Scholar
  141. 141.
    Peltz CD, Sarver JJ, Dourte LM, Wurgler-Hauri CC, Williams GR, Soslowsky LJ (2010) Exercise following a short immobilization period is detrimental to tendon properties and joint mechanics in a rat rotator cuff injury model. J Orthop Res 28(7):841–845Google Scholar
  142. 142.
    Eliasson P, Andersson T, Aspenberg P (2012) Achilles tendon healing in rats is improved by intermittent mechanical loading during the inflammatory phase. J Orthop Res 30(2):274–279CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Orthopaedic SurgeryWashington UniversitySt. LouisUSA

Personalised recommendations