Skip to main content

Mechanics of Self-Similar Hierarchical Adhesive Structures Inspired by Gecko Feet

  • Chapter
  • First Online:
Structural Interfaces and Attachments in Biology
  • 1491 Accesses

Abstract

Gecko and many insects have evolved specialized adhesive tissues with hierarchical structures that allow them to maneuver on vertical walls and ceilings. The adhesion mechanisms of gecko must be robust enough to function on unknown rough surfaces and easily releasable upon animal movement. In this chapter, we review the robust and releasable adhesion devices used by the gecko. These topics are presented from the point of view of contact mechanics and fracture mechanics. Findings provide a theoretical foundation to understand adhesion mechanisms in biology and also suggest possible strategies to develop novel adhesive materials for engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Scherge M, Gorb S (2001) Biological micro- and nanotribology. Springer, New York

    Google Scholar 

  2. Autumn K, Liang YA, Hsieh ST, Zesch W, Chan WP, Kenny TW, Fearing R, Full RJ (2000) Adhesive force of a single gecko foot-hair. Nature 405:681–685

    Article  Google Scholar 

  3. Autumn K, Peattie AM (2002) Mechanisms of adhesion in geckos. Integr Comp Biol 42:1081–1090

    Article  Google Scholar 

  4. Autumn K, Sitti M, Liang YA, Peattie AM, Hansen WR, Sponberg S, Kenny TW, Fearing R, Israelachvili JN, Full RJ (2002) Evidence for van der Waals adhesion in gecko setae. Proc Natl Acad Sci USA 99:12252–12256

    Article  Google Scholar 

  5. Huber G, Gorb S, Spolenak R, Arzt E (2005) Resolving the nanoscale adhesion of individual gecko spatulae by atomic force microscopy. Biol Lett 1:2–4

    Article  Google Scholar 

  6. Israelachvili JN (1992) Intermolecular and surface forces, 2nd edn. Academic, London

    Google Scholar 

  7. Gao H, Wang X, Yao H, Gorb S, Arzt E (2005) Mechanics of hierarchical adhesion structures of geckos. Mech Mater 37:275–285

    Article  Google Scholar 

  8. Hertz H (1882) Über die Berührung fester elastischer Körper (On the Contact of Elastic Solids). J Reine Angew Math 92:156–171

    MATH  Google Scholar 

  9. Johnson KL, Kendall K, Roberts AD (1971) Surface energy and contact of elastic solids. Proc R Soc Lond A 324:301–313

    Article  Google Scholar 

  10. Griffith AA (1921) The phenomena of rupture and flow in solids. Philos Trans R Soc Lond A 221:163–198

    Article  Google Scholar 

  11. Derjaguin BV, Muller VM, Toporov YP (1975) Effect of contact deformations on the adhesion of particles. J Colloid Interface Sci 53:314–326

    Article  Google Scholar 

  12. Bradley RS (1932) The cohesive force between solid surfaces and the surface energy of solids. Philos Mag 13:853–862

    MATH  Google Scholar 

  13. Maugis D (1992) Adhesion of spheres: the JKR-DMT transition using a Dugdale model. J Colloid Interface Sci 150:243–269

    Article  Google Scholar 

  14. Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8:100–104

    Article  Google Scholar 

  15. Hui CY, Baney JM, Kramer EJ (1998) Contact mechanics and adhesion of viscoelastic spheres. Langmuir 14:6570–6578

    Article  Google Scholar 

  16. Haiat G, Huy MCP, Barthel E (2003) The adhesive contact of viscoelastic spheres. J Mech Phys Solids 51:69–99

    Article  MathSciNet  MATH  Google Scholar 

  17. Kim KS, McMeeking RM, Johnson KL (1998) Adhesion, slip, cohesive zones and energy fluxes for elastic spheres in contact. J Mech Phys Solids 46:243–266

    Article  MathSciNet  MATH  Google Scholar 

  18. Arzt E, Enders S, Gorb S (2002) Towards a micromechanical understanding of biological surface devices. Z Metallk 93:345–351

    Google Scholar 

  19. Arzt E, Gorb S, Spolenak R (2003) From micro to nano contacts in biological attachment devices. Proc Natl Acad Sci USA 100:10603–10606

    Article  Google Scholar 

  20. Persson BNJ (2003) On the mechanism of adhesion in biological systems. J Chem Phys 118:7614–7621

    Article  Google Scholar 

  21. Spolenak R, Gorb S, Gao H, Arzt E (2005) Effects of contact shape on the scaling of biological attachments. Proc R Soc A 461:305–319

    Article  Google Scholar 

  22. Persson BNJ (2003) Nanoadhesion. Wear 254:832–834

    Article  Google Scholar 

  23. Gao H, Yao H (2004) Shape insensitive optimal adhesion of nanoscale fibrillar structures. Proc Natl Acad Sci USA 101:7851–7856

    Article  Google Scholar 

  24. Glassmaker NJ, Jagota A, Hui CY (2005) Adhesion enhancement in a biomimetic fibrillar interface. Acta Biomater 1(4):367–375

    Article  Google Scholar 

  25. Gao H, Ji B, Buehler MJ, Yao H (2004) Flaw tolerant bulk and surface nanostructures of biological systems. Mech Chem Biosys 1:37–52

    Google Scholar 

  26. Gao H, Ji B, Jäger IL, Arzt E, Fratzl P (2003) Materials become insensitive to flaws at nanoscale: lessons from nature. Proc Natl Acad Sci USA 100:5597–5600

    Article  Google Scholar 

  27. Gao H, Chen S (2005) Flaw tolerance in a thin strip under tension. J App Mech 72:732–737

    Article  MathSciNet  MATH  Google Scholar 

  28. Hui CY, Glassmaker NJ, Tang T, Jagota A (2004) Design of biomimetic fibrillar interface: 2. Mechanics of enhanced adhesion. J R Soc Interface 1:35–48

    Article  Google Scholar 

  29. Northen MT, Turner KL (2005) A batch fabricated biomimetic dry adhesive. Nanotechnology 16:1159–1166

    Article  Google Scholar 

  30. Greenwood JA (1997) Adhesion of elastic spheres. Proc R Soc Lond A 453:1277–1297

    Article  MathSciNet  MATH  Google Scholar 

  31. Jagota A, Bennison SJ (2002) Mechanics of adhesion through a fibrillar microstructure. Integr Comp Biol 42:1140–1145

    Article  Google Scholar 

  32. Tang T, Hui CY, Glassmaker NJ (2005) Can a fibrillar interface be stronger and tougher than a non-fibrillar one? J R Soc Interface 2:505–516

    Article  Google Scholar 

  33. Glassmaker NJ, Jagota A, Hui CY, Kim J (2004) Design of biomimetic fibrillar interfaces: 1. Making contact. J R Soc Lond Interface 1:23–33

    Article  Google Scholar 

  34. Sitti M, Fearing RS (2003) Synthetic gecko foot-hair micro/nano-structures as dry adhesives. J Adhesion Sci Technol 17:1055–1073

    Article  Google Scholar 

  35. Hui CY, Jagota A, Lin YY, Kramer EJ (2002) Constraints on microcontact printing imposed by stamp deformation. Langmuir 18:1394–1407

    Article  Google Scholar 

  36. Geim AK, Dubonos SV, Grigorieva IV, Novoselov KS, Zhukov AA, Shapoval SY (2003) Microfabricated adhesive mimicking gecko foot-hair. Nat Mater 2:461–463

    Article  Google Scholar 

  37. Williams EE, Peterson JA (1982) Convergent and alternative designs in the digital adhesive pads of scincid lizards. Science 215:1509–1511

    Article  Google Scholar 

  38. Peattie AM, Full RJ (2007) Phylogenetic analysis of the scaling of wet and dry biological fibrillar adhesives. Proc Natl Acad Sci USA 104(47):18595–18600

    Article  Google Scholar 

  39. Tada J, Paris PC, Irwin GR (2000) The stress analysis of cracks handbook, 3rd edn. ASME Press, New York

    Book  Google Scholar 

  40. Kendall K (1975) Thin-film peeling-elastic term. J Phys D: Appl Phys 8:1449–1452

    Article  Google Scholar 

  41. Chen B, Wu P, Gao H (2009) Pre-tension generates strongly reversible adhesion of a spatula pad on substrate. J R Soc Interface 6:529–537

    Google Scholar 

  42. Gotoh M (1967) Some problems of bonded anisotropic plates with cracks along the bond. Int J Fract Mech 3:253–265

    Google Scholar 

  43. Willis JR (1971) Fracture mechanics of interfacial cracks. J Mech Phys Solids 19:353–368

    Article  MATH  Google Scholar 

  44. Ting TCT (1986) Explicit solution and invariance of the singularities at an interface crack in anisotropic composites. Int J Solids Struct 22:965–983

    Article  MathSciNet  MATH  Google Scholar 

  45. Suo Z (1990) Singularities, interfaces and cracks in dissimilar anisotropic media. Proc R Soc Lond A 427:331–358

    Article  MathSciNet  MATH  Google Scholar 

  46. Gao H, Abbudi M, Barnett DM (1992) On interfacial crack-tip field in anisotropic elastic solids. J Mech Phys Solids 40:393–416

    Article  MATH  Google Scholar 

  47. Hwu C (1993) Fracture parameters for the orthotropic bimaterial interface cracks. Engr Fract Mech 45:89–97

    Article  Google Scholar 

  48. Yao H, Gao H (2006) Mechanics of robust and releasable adhesion in biology: bottom-up designed hierarchical structures of gecko. J Mech Phys Solids 54:1120–1146

    Article  MATH  Google Scholar 

  49. Yao H, Chen S, Guduru PR, Gao H (2009) Orientation-dependent adhesion strength of a rigid cylinder in non-slipping contact with a transversely isotropic half-space. Int J Solids Struct 46:1167–1175

    Article  MATH  Google Scholar 

  50. Tvergaard V, Hutchinson JW (1992) The relation between crack growth resistance and fracture process parameters in elastic–plastic solids. J Mech Phys Solids 40:1377–1397

    Article  MATH  Google Scholar 

  51. Xu XP, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42:1397–1434

    Article  MATH  Google Scholar 

  52. Northen MT, Greiner C, Arzt E, Turner KL (2008) A gecko-inspired reversible adhesive. Adv Mater 20:3905–3909

    Article  Google Scholar 

  53. Qu L, Dai L, Stone M, Xia Z, Wang ZL (2008) Carbon nanotube arrays with strong shear binding-on and easy normal lifting-off. Science 322:238–242

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge stimulating discussions on biological adhesion systems with many colleagues including K. Autumn, E. Arzt, B. Chen, Q.H. Cheng, L.M. Dai, R. Fearing, R.J. Full, S. Gorb, P. Guduru, A. Jagota, C.Y. Hui, K. Kendall, R. Spolenak, Z.L. Wang, Z.Q. Zhang, and Y.W. Zhang. HY acknowledges helpful discussions with Dr. Patrick Klein on the FEM simulations using Tahoe. Support of this work has been provided by the Max Planck Society, Brown University, the A*Star VIP Program in Singapore, the National Natural Science Foundation of China (11072273), and the Program for New Century Excellent Talents in China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huajian Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yao, H., Gao, H. (2013). Mechanics of Self-Similar Hierarchical Adhesive Structures Inspired by Gecko Feet. In: Thomopoulos, S., Birman, V., Genin, G. (eds) Structural Interfaces and Attachments in Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3317-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3317-0_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3316-3

  • Online ISBN: 978-1-4614-3317-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics