Decreasing Postprandial Plasma Glucose Using an α-Glucosidase Inhibitor in Subjects with IGT for the Prevention of Type 2 Diabetes Mellitus: The STOP-NIDDM Trial

  • Jean-Louis Chiasson
  • Markku Laakso
  • Markolf Hanefeld
Chapter

Abstract

We are currently witnessing a worldwide explosion in the prevalence of type 2 diabetes mellitus [1]. Because of the high morbidity and the excess mortality associated with diabetes, it has major societal implications [2, 3]. Diabetes still remains the most common cause of blindness, end-stage renal disease and non-traumatic amputation and a major cause of cardiovascular disease (CVD) [4, 5]. Consequently, it has a strong impact on healthcare cost [6]. Given the magnitude of the problem, type 2 diabetes is one of the major challenges of the twenty-first century. The only way that we can curtail this ever-growing problem is by developing and implementing prevention strategies.

Keywords

Placebo Cholesterol Obesity Starch Carbohydrate 

References

  1. 1.
    Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27:1047–53.PubMedCrossRefGoogle Scholar
  2. 2.
    Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic. Nature. 2001;414:782–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Amos AF, McCarty DJ, Zimmet P. The rising global burden of diabetes and its complications: estimates and projections to the year 2010. Diabet Med. 1997;14 Suppl 5:S1–85.PubMedGoogle Scholar
  4. 4.
    Klein R, Klein BEK, Moss SE. Relation of glycemic control to diabetic microvascular complications in diabetes mellitus. Ann Intern Med. 1996;124(1 Pt 2):90–6.PubMedGoogle Scholar
  5. 5.
    Fox CS, Pencina MJ, Wilson PW, Paynter NP, Vasan RS, D’Agostino Sr RB. Lifetime risk of cardiovascular disease among individuals with and without diabetes stratified by obesity status in the Framingham heart study. Diabetes Care. 2008;31:1582–4.PubMedCrossRefGoogle Scholar
  6. 6.
    American Diabetes Association. Economic costs of diabetes in the U.S. in 2007. Diabetes Care. 2008;31:596–615.CrossRefGoogle Scholar
  7. 7.
    Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakker PI, Chen H, et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science. 2007;316:1331–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Sladek R, Rocheleau G, Rung J, Dina C, Shen L, Serre D, et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature. 2007;445:881–5.PubMedCrossRefGoogle Scholar
  9. 9.
    Hossain P, Kawar B, El Nahas M. Obesity and diabetes in the developing world—a growing challenge. N Engl J Med. 2007;356:213–5.PubMedCrossRefGoogle Scholar
  10. 10.
    Dwyer T, Magnussen CG, Schmidt MD, Ukoumunne OC, Ponsonby AL, Raitakari OT, et al. Decline in physical fitness from childhood to adulthood associated with increased obesity and insulin resistance in adults. Diabetes Care. 2009;32:683–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Arnlov J, Sundstrom J, Ingelsson E, Lind L. Impact of BMI and the metabolic syndrome on the risk of diabetes in middle-aged men. Diabetes Care. 2011;34:61–5.PubMedCrossRefGoogle Scholar
  12. 12.
    Lillioja S, Bogardus C. Obesity and insulin resistance: lessons learned from the Pima Indians. Diabetes Metab Rev. 1988;4:517–40.PubMedCrossRefGoogle Scholar
  13. 13.
    Schinner S, Scherbaum WA, Bornstein SR, Barthel A. Molecular mechanisms of insulin resistance. Diabet Med. 2005;22:674–82.PubMedCrossRefGoogle Scholar
  14. 14.
    Kahn SE. The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of type 2 diabetes. Diabetologia. 2003;46:3–19.PubMedCrossRefGoogle Scholar
  15. 15.
    Unwin N, Shaw J, Zimmet P, Alberti KG. Impaired glucose tolerance and impaired fasting glycaemia: the current status on definition and intervention. Diabet Med. 2002;19:708–23.PubMedCrossRefGoogle Scholar
  16. 16.
    Gavin III JR, Alberti KGMM, Davidson MB, DeFronzo RA, Drash AL, Gabbe SG, et al. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care. 1997;20:1183–97.Google Scholar
  17. 17.
    Diabetes Prevention Program Research Group. The prevalence of retinopathy in impaired glucose tolerance and recent-onset diabetes in the diabetes prevention program. Diabet Med. 2007;24:137–44.CrossRefGoogle Scholar
  18. 18.
    Eschwege E, Richard JL, Thibult N, Ducimetière P, Warnet JM, Claude JR, et al. Coronary heart disease mortality in relation with diabetes, blood glucose and plasma insulin levels. Horm Metab Res. 1985;15(Suppl Series):41–6.Google Scholar
  19. 19.
    Tominaga M, Eguchi H, Manaka H, Igarashi K, Kato T, Sekikawa A. Impaired glucose tolerance is a risk factor for cardiovascular disease, but not impaired fasting glucose. The Funagata Diabetes Study. Diabetes Care. 1999;22:920–4.PubMedCrossRefGoogle Scholar
  20. 20.
    Bonora E. Postprandial peaks as a risk factor for cardiovascular disease: epidemiological perspectives. Int J Clin Pract Suppl. 2002;129:5–11.PubMedGoogle Scholar
  21. 21.
    Rossetti L, Giaccari A, DeFronzo RA. Glucose toxicity. Diabetes Care. 1990;13:610–30.PubMedGoogle Scholar
  22. 22.
    Garvey WT, Olefsky JM, Griffin J, Hamman RF, Kolterman OG. The effect of insulin treatment on insulin secretion and insulin action in type II diabetes mellitus. Diabetes. 1985;34:222–34.PubMedCrossRefGoogle Scholar
  23. 23.
    Kosaka K, Kuzuya T, Akanuma Y, Hagura R. Increase in insulin response after treatment of overt maturity onset diabetes mellitus is independent of the mode of treatment. Diabetologia. 1980;18:23–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Paolisso G, Tagliamonte MR, Rizzo MR, Gualdiero P, Saccomanno F, Gambardella A, et al. Lowering fatty acids potentiates acute insulin response in first degree relatives of people with type II diabetes. Diabetologia. 1998;41:1127–32.PubMedCrossRefGoogle Scholar
  25. 25.
    Kolterman OG, Gray RS, Shapiro G, Scarlett JA, Griffin J, Olefsky JM. The acute and chronic effects of sulfonylurea therapy in type II diabetic subjects. Diabetes. 1984;33:346–54.PubMedCrossRefGoogle Scholar
  26. 26.
    Beck-Nielsen H, Richelsen B, Hasling C, Nielsen OH, Heding L, Sorensen NS. Improved in vivo insulin effect during continuous subcutaneous insulin infusion in patients with IDDM. Diabetes. 1984;33:832–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Bonner-Weir S, Trent DF, Weir GC. Partial pancreatectomy in the rat and subsequent defect in glucose-induced insulin release. J Clin Invest. 1983;71:1544–53.PubMedCrossRefGoogle Scholar
  28. 28.
    Rossetti L, Smith D, Shulman GI, Papachristou D, DeFronzo RA. Correction of hyperglycemia with phlorizin normalizes tissue sensitivity to insulin in diabetic rats. J Clin Invest. 1987;79:1510–5.PubMedCrossRefGoogle Scholar
  29. 29.
    Zawalich WS, Zawalich KC, Shulman GI, Rossetti L. Chronic in vivo hyperglycemia impairs phosphoinositide hydrolysis and insulin release in isolated perfused rat islets. Endocrinology. 1990;126:253–60.PubMedCrossRefGoogle Scholar
  30. 30.
    Rossetti L, Shulman GI, Zawalich W, DeFronzo RA. Effect of chronic hyperglycemia on in vivo insulin secretion in partially pancreatectomized rats. J Clin Invest. 1987;80:1037–44.PubMedCrossRefGoogle Scholar
  31. 31.
    Ceriello A, Davidson J, Hanefeld M, Leiter L, Monnier L, Owens D, et al. Postprandial hyperglycaemia and cardiovascular complications of diabetes: an update. Nutr Metab Cardiovasc Dis. 2006;16:453–6.PubMedCrossRefGoogle Scholar
  32. 32.
    Ceriello A, Giugliano D, Quatraro A, Dello RP, Lefebvre PJ. Metabolic control may influence the increased superoxide generation in diabetic serum. Diabet Med. 1991;8:540–2.PubMedCrossRefGoogle Scholar
  33. 33.
    Berg TJ, Nourooz-Zadeh J, Wolff SP, Tritschler HJ, Bangstad H-J, Hanssen KF. Hydroperoxides in plasma are reduced by intensified insulin treatment. A randomized controlled study of IDDM patients with microalbuminuria. Diabetes Care. 1998;21:1295–300.PubMedCrossRefGoogle Scholar
  34. 34.
    Ceriello A, Bortolotti N, Crescentini A, Motz E, Lizzio S, Russo A, et al. Antioxidant defences are reduced during the oral glucose tolerance test in normal and non-insulin-dependent diabetic subjects. Eur J Clin Invest. 1998;28:329–33.PubMedCrossRefGoogle Scholar
  35. 35.
    Marfella R, Quagliaro L, Nappo F, Ceriello A, Giugliano D. Acute hyperglycemia induces an oxidative stress in healthy subjects. J Clin Invest. 2001;108:635–6.PubMedGoogle Scholar
  36. 36.
    Ceriello A, Quagliaro L, Piconi L, Assaloni R, Da Ros R, Maier A, et al. Effect of postprandial hypertriglyceridemia and hyperglycemia on circulating adhesion molecules and oxidative stress generation and the possible role of simvastatin treatment. Diabetes. 2004;53:701–10.PubMedCrossRefGoogle Scholar
  37. 37.
    Lam TK, Carpentier A, Lewis GF, van de Werve G, Fantus IG, Giacca A. Mechanisms of the free fatty acid-induced increase in hepatic glucose production. Am J Physiol Endocrinol Metab. 2003;284:E863–73.PubMedGoogle Scholar
  38. 38.
    Carpentier A, Zinman B, Leung N, Giacca A, Hanley AJ, Harris SB, et al. Free fatty acid-mediated impairment of glucose-stimulated insulin secretion in nondiabetic Oji-Cree individuals from the Sandy Lake community of Ontario, Canada: a population at very high risk for developing type 2 diabetes. Diabetes. 2003;52:1485–95.PubMedCrossRefGoogle Scholar
  39. 39.
    Carpentier A, Mittelman SD, Bergman RN, Giacca A, Lewis GF. Prolonged elevation of plasma free fatty acids impairs pancreatic beta-cell function in obese nondiabetic humans but not in individuals with type 2 diabetes. Diabetes. 2000;49:399–408.PubMedCrossRefGoogle Scholar
  40. 40.
    Boden G. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes. 1997;46:3–10.PubMedCrossRefGoogle Scholar
  41. 41.
    McGarry JD. Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes. 2002;51:7–18.PubMedCrossRefGoogle Scholar
  42. 42.
    Henriksen EJ. Exercise training and the antioxidant alpha-lipoic acid in the treatment of insulin resistance and type 2 diabetes. Free Radic Biol Med. 2006;40:3–12.PubMedCrossRefGoogle Scholar
  43. 43.
    Ogihara T, Asano T, Katagiri H, Sakoda H, Anai M, Shojima N, et al. Oxidative stress induces insulin resistance by activating the nuclear factor-kappa B pathway and disrupting normal subcellular distribution of phosphatidylinositol 3-kinase. Diabetologia. 2004;47:794–805.PubMedCrossRefGoogle Scholar
  44. 44.
    Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction? Diabetes. 2003;52:1–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Robertson RP, Harmon J, Tran PO, Poitout V. Beta-cell glucose toxicity, lipotoxicity, and chronic oxidative stress in type 2 diabetes. Diabetes. 2004;53 Suppl 1:S119–24.PubMedCrossRefGoogle Scholar
  46. 46.
    Zraika S, Hull RL, Udayasankar J, Aston-Mourney K, Subramanian SL, Kisilevsky R, et al. Oxidative stress is induced by islet amyloid formation and time-dependently mediates amyloid-induced beta cell apoptosis. Diabetologia. 2009;52:626–35.PubMedCrossRefGoogle Scholar
  47. 47.
    Ceriello A. The post-prandial state and cardiovascular disease: relevance to diabetes mellitus. Diabetes Metab Res Rev. 2000;16:125–32.PubMedCrossRefGoogle Scholar
  48. 48.
    Coutinho M, Gerstein HC, Wang Y, Yusuf S. The relationship between glucose and incident cardiovascular events. A metaregression analysis of published data from 20 studies of 95,783 individuals followed for 12.4 years. Diabetes Care. 1999;22:233–40.PubMedCrossRefGoogle Scholar
  49. 49.
    Qiao Q, Nakagami T, Tuomilehto J, Borch-Johnsen K, Balkau B, Iwamoto Y, et al. Comparison of the fasting and the 2-h glucose criteria for diabetes in different Asian cohorts. Diabetologia. 2000;43:1470–5.PubMedCrossRefGoogle Scholar
  50. 50.
    Qiao Q, Tuomilehto J, Borch-Johnsen K. Post-challenge hyperglycaemia is associated with premature death and macrovascular complications. Diabetologia. 2003;46 Suppl 1:M17–21.PubMedGoogle Scholar
  51. 51.
    The DECODE Study Group. Glucose tolerance and cardiovascular mortality: comparison of fasting and 2-hour diagnostic criteria. Arch Intern Med. 2001;161:397–405.CrossRefGoogle Scholar
  52. 52.
    Ceriello A, Bortolotti N, Motz E, Pieri C, Marra M, Tonutti L, et al. Meal-induced oxidative stress and low-density lipoprotein oxidation in diabetes: the possible role of hyperglycemia. Metabolism. 1999;48:1503–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Ceriello A, Assaloni R, Da Ros R, Maier A, Piconi L, Quagliaro L, et al. Effect of atorvastatin and irbesartan, alone and in combination, on postprandial endothelial dysfunction, oxidative stress, and inflammation in type 2 diabetic patients. Circulation. 2005;111:2518–24.PubMedCrossRefGoogle Scholar
  54. 54.
    Ceriello A. Fibrinogen and diabetes mellitus: is it time for intervention trials? Diabetologia. 1997;40:731–4.PubMedCrossRefGoogle Scholar
  55. 55.
    Ceriello A, Falleti E, Bortolotti N, Motz E, Cavarape A, Russo A, et al. Increased circulating intercellular adhesion molecule-1 levels in type II diabetic patients: the possible role of metabolic control and oxidative stress. Metabolism. 1996;45:498–501.PubMedCrossRefGoogle Scholar
  56. 56.
    Kawano H, Motoyama T, Hirashima O, Hirai N, Miyao Y, Sakamoto T, et al. Hyperglycemia rapidly suppresses flow-mediated endothelium-dependent vasodilation of brachial artery. J Am Coll Cardiol. 1999;34:146–54.PubMedCrossRefGoogle Scholar
  57. 57.
    Hanefeld M, Koehler C, Schaper F, Fuecker K, Henkel E, Temelkova-Kurktschiev T. Postprandial plasma glucose is an independent risk factor for increased carotid intima-media thickness in non-diabetic individuals. Atherosclerosis. 1999;144:229–35.PubMedCrossRefGoogle Scholar
  58. 58.
    Bischoff H. The mechanism of α-glucosidase inhibition in the management of diabetes. Clin Invest Med. 1995;18:303–11.PubMedGoogle Scholar
  59. 59.
    Rabasa-Lhoret R, Chiasson J-L. Potential of α-glucosidase inhibitors in elderly patients with diabetes mellitus and impaired glucose tolerance. Drugs Aging. 1998;13:131–43.PubMedCrossRefGoogle Scholar
  60. 60.
    Rosak C, Nitzsche G, König P, Hofmann U. The effect of the timing and the administration of acarbose on postprandial hyperglycaemia. Diabet Med. 1995;12:979–84.PubMedCrossRefGoogle Scholar
  61. 61.
    Lebovitz HE. α-Glucosidase inhibitors as agents in the treatment of diabetes. Diabetes Rev. 1998;6:132–45.Google Scholar
  62. 62.
    Chiasson JL. α-Glucosidase inhibitors. In: Fonseca VA, editor. Excerpt from clinical diabetes translating research into practice. Toronto: Elsevier Canada; 2007. p. 321–30.Google Scholar
  63. 63.
    Chiasson J-L, Josse RG, Hunt JA, Palmason C, Rodger NW, Ross SA, et al. The efficacy of acarbose in the treatment of patients with non-insulin-dependent diabetes mellitus. A multicenter controlled clinical trial. Ann Intern Med. 1994;121:928–35.PubMedGoogle Scholar
  64. 64.
    Hoffmann J, Spengler M. Efficacy of 24-week monotherapy with acarbose, glibenclamide, or placebo in NIDDM patients. The Essen Study. Diabetes Care. 1994;17:561–6.PubMedCrossRefGoogle Scholar
  65. 65.
    Hoffmann J, Spengler M. Efficacy of 24-week monotherapy with acarbose, metformin, or placebo in dietary-treated NIDDM patients: the Essen-II Study. Am J Med. 1997;103:483–90.PubMedCrossRefGoogle Scholar
  66. 66.
    van de Laar FA, Lucassen PL, Akkermans RP, van de Lisdonk EH, Rutten GE, van Weel C. Alpha-glucosidase inhibitors for patients with type 2 diabetes: results from a Cochrane systematic review and meta-analysis. Diabetes Care. 2005;28:154–63.PubMedCrossRefGoogle Scholar
  67. 67.
    Chiasson J-L, Josse RG, Leiter LA, Mihic M, Nathan DM, Palmason C, et al. The effect of acarbose on insulin sensitivity in subjects with impaired glucose tolerance. Diabetes Care. 1996;19:1190–3.PubMedCrossRefGoogle Scholar
  68. 68.
    Meneilly GS, Ryan EA, Radziuk J, Lau DCW, Yale J-F, Morais J, et al. Effect of acarbose on insulin sensitivity in elderly patients with diabetes. Diabetes Care. 2000;23:1162–7.PubMedCrossRefGoogle Scholar
  69. 69.
    Inoue I, Shinoda Y, Nakano T, Sassa M, Goto S, Awata T, et al. Acarbose ameliorates atherogenecity of low-density lipoprotein in patients with impaired glucose tolerance. Metabolism. 2006;55:946–52.PubMedCrossRefGoogle Scholar
  70. 70.
    Lu JM, et al. The effect of acarbose on postprandial CRP levels in subjects with impaired glucose tolerance. Chin J Endocrinol Metab. 2003;19:254–6.Google Scholar
  71. 71.
    Ceriello A, Taboga C, Tonutti L, Giacomello R, Stel L, Motz E, et al. Post-meal coagulation activation in diabetes mellitus: the effect of acarbose. Diabetologia. 1996;39:469–73.PubMedCrossRefGoogle Scholar
  72. 72.
    Ochiai H, Ooka H, Shida C, Ishikawa T, Inoue D, Okazaki R. Acarbose treatment increases serum total adiponectin levels in patients with type 2 diabetes. Endocr J. 2008;55:549–56.PubMedCrossRefGoogle Scholar
  73. 73.
    Kato T, Inoue T, Node K. Postprandial endothelial dysfunction in subjects with new-onset type 2 diabetes: an acarbose and nateglinide comparative study. Cardiovasc Diabetol. 2010;9:12.PubMedCrossRefGoogle Scholar
  74. 74.
    Seifarth C, Bergmann J, Holst JJ, Ritzel R, Schmiegel W, Nauck MA. Prolonged and enhanced secretion of glucagon-like peptide 1 (7-36 amide) after oral sucrose due to alpha-glucosidase inhibition (acarbose) in type 2 diabetic patients. Diabet Med. 1998;15:485–91.PubMedCrossRefGoogle Scholar
  75. 75.
    Qualmann C, Nauck MA, Holst JJ, Orskov C, Creutzfeldt W. Glucagon-like peptide 1 (7-36 amide) secretion in response to luminal sucrose from the upper and lower gut. A study using alpha-glucosidase inhibition (acarbose). Scand J Gastroenterol. 1995;30:892–6.PubMedCrossRefGoogle Scholar
  76. 76.
    Miyamura M, Schnell O, Yamashita C, Yoshioka T, Matsumoto C, Mori T, et al. Effects of acarbose on the acceleration of postprandial hyperglycemia-induced pathological changes induced by intermittent hypoxia in lean mice. J Pharmacol Sci. 2010;114:32–40.PubMedCrossRefGoogle Scholar
  77. 77.
    Minatoguchi S, Zhang Z, Bao N, Kobayashi H, Yasuda S, Iwasa M, et al. Acarbose reduces myocardial infarct size by preventing postprandial hyperglycemia and hydroxyl radical production and opening mitochondrial KATP channels in rabbits. J Cardiovasc Pharmacol. 2009;54:25–30.PubMedCrossRefGoogle Scholar
  78. 78.
    Hanefeld M, Fischer S, Schulze J, Spengler M, Wargenau M, Schollberg K, et al. Therapeutic potentials of acarbose as first-line drug in NIDDM insufficiently treated with diet alone. Diabetes Care. 1991;14:732–7.PubMedCrossRefGoogle Scholar
  79. 79.
    Kado S, Murakami T, Aoki A, Nagasse T, Katsura Y, Noritake M, et al. Effect of acarbose on postprandial lipid metabolism in type 2 diabetes mellitus. Diabetes Res Clin Pract. 1998;41:49–55.PubMedCrossRefGoogle Scholar
  80. 80.
    Hanefeld M, Cagatay M, Petrowitsch T, Neuser D, Petzinna D, Rupp M. Acarbose reduces the risk for myocardial infarction in type 2 diabetic patients: meta-analysis of seven long-term studies. Eur Heart J. 2004;25:10–6.PubMedCrossRefGoogle Scholar
  81. 81.
    Wolever TMS, Chiasson J-L, Josse RG, Hunt JA, Palmason C, Rodger NW, et al. Small weight loss on long-term acarbose therapy with no change in dietary pattern or nutrient intake of individuals with non-insulin-dependent diabetes. Int J Obes. 1997;21:756–63.CrossRefGoogle Scholar
  82. 82.
    Mertes G. Safety and efficacy of acarbose in the treatment of type 2 diabetes: data from a 5-year surveillance study. Diabetes Res Clin Pract. 2001;52:193–204.PubMedCrossRefGoogle Scholar
  83. 83.
    Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M. Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial. Lancet. 2002;359:2072–7.PubMedCrossRefGoogle Scholar
  84. 84.
    Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA. 2001;285:2486–97.CrossRefGoogle Scholar
  85. 85.
    The Diabetes Prevention Program Research Group. Effects of withdrawal from metformin on the development of diabetes in the diabetes prevention program. Diabetes Care. 2003;26:977–80.CrossRefGoogle Scholar
  86. 86.
    Knowler WC, Hamman RF, Edelstein SL, Barrett-Connor E, Ehrmann DA, Walker EA, et al. Prevention of type 2 diabetes with troglitazone in the diabetes prevention program. Diabetes. 2005;54:1150–6.PubMedCrossRefGoogle Scholar
  87. 87.
    Hanefeld M, Karasik A, Koehler C, Westermeier T, Chiasson JL. Metabolic syndrome and its single traits as risk factors for diabetes in people with impaired glucose tolerance: the STOP-NIDDM trial. Diab Vasc Dis Res. 2009;6:32–7.PubMedCrossRefGoogle Scholar
  88. 88.
    Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346:393–403.PubMedCrossRefGoogle Scholar
  89. 89.
    Tuomilehto J, Lindstrom J, Eriksson JG, Valle TT, Hamalainen H, Ilanne-Parikka P, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001;344:1343–50.PubMedCrossRefGoogle Scholar
  90. 90.
    Zacharova J, Chiasson JL, Laakso M. The common polymorphisms (single nucleotide polymorphism [SNP] +45 and SNP +276) of the adiponectin gene predict the conversion from impaired glucose tolerance to type 2 diabetes: the STOP-NIDDM trial. Diabetes. 2005;54:893–9.PubMedCrossRefGoogle Scholar
  91. 91.
    Zacharova J, Todorova BR, Chiasson JL, Laakso M. The G-250A substitution in the promoter region of the hepatic lipase gene is associated with the conversion from impaired glucose tolerance to type 2 diabetes: the STOP-NIDDM trial. J Intern Med. 2005;257:185–93.PubMedCrossRefGoogle Scholar
  92. 92.
    Andrulionyte L, Peltola P, Chiasson JL, Laakso M. Single nucleotide polymorphisms of PPARD in combination with the Gly482Ser substitution of PGC-1A and the Pro12Ala substitution of PPARG2 predict the conversion from impaired glucose tolerance to type 2 diabetes: the STOP-NIDDM trial. Diabetes. 2006;55:2148–52.PubMedCrossRefGoogle Scholar
  93. 93.
    Andrulionyte L, Laukkanen O, Chiasson JL, Laakso M. Single nucleotide polymorphisms of the HNF4alpha gene are associated with the conversion to type 2 diabetes mellitus: the STOP-NIDDM trial. J Mol Med. 2006;84:701–8.PubMedCrossRefGoogle Scholar
  94. 94.
    Zacharova J, Chiasson JL, Laakso M. Leptin receptor gene variation predicts weight change in subjects with impaired glucose tolerance. Obes Res. 2005;13:501–6.PubMedCrossRefGoogle Scholar
  95. 95.
    de Marco R, Locatelli F, Zoppini G, Verlato G, Bonora E, Muggeo M. Cause-specific mortality in type 2 diabetes. The Verona Diabetes Study. Diabetes Care. 1999;22:756–61.PubMedCrossRefGoogle Scholar
  96. 96.
    Stamler J, Vaccaro O, Neaton JD, Wentworth D. Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care. 1993;16:434–44.PubMedCrossRefGoogle Scholar
  97. 97.
    Manson JE, Colditz GA, Stampfer MJ, Willett WC, Krolewski AS, Rosner B, et al. A prospective study of maturity-onset diabetes mellitus and risk of coronary heart disease and stroke in women. Arch Intern Med. 1991;151:1141–7.PubMedCrossRefGoogle Scholar
  98. 98.
    Laakso M. Hyperglycemia and cardiovascular disease in type 2 diabetes. Diabetes. 1999;48:937–42.PubMedCrossRefGoogle Scholar
  99. 99.
    U.K.Prospective Diabetes Study Group. U.K. Prospective Diabetes Study 27. Plasma lipids and lipoproteins at diagnosis of NIDDM by age and sex. Diabetes Care. 1997;20:1683–7.CrossRefGoogle Scholar
  100. 100.
    Hypertension in Diabetes Study (HDS): I. Prevalence of hypertension in newly presenting type 2 diabetic patients and the association with risk factors for cardiovascular and diabetic complications. J Hypertens. 1993;11:309–17.Google Scholar
  101. 101.
    Hanefeld M, Fischer S, Julius U, Schulze J, Schwanebeck U, Schmechel H, et al.; The DIS Group. Risk factors for myocardial infarction and death in newly detected NIDDM: the Diabetes Intervention Study, 11-year follow-up. Diabetologia. 1996;39:1577–83.CrossRefGoogle Scholar
  102. 102.
    Haffner SM, Stern MP, Hazuda HP, Mitchell BD, Patterson JK. Cardiovascular risk factors in confirmed prediabetic individuals. JAMA. 1990;263:2893–998.PubMedCrossRefGoogle Scholar
  103. 103.
    Fuller JH, Shipley MJ, Rose G, Jarrett RJ, Keen H. Coronary-heart-disease risk and impaired glucose tolerance. The Whitehall study. Lancet. 1980;1:1373–6.PubMedCrossRefGoogle Scholar
  104. 104.
    Fontbonne A, Eschwège E, Cambien F, Richard J-L, Ducimetière P, Thibult N, et al. Hypertriglyceridaemia as a risk factor of coronary heart disease mortality in subjects with impaired glucose tolerance or diabetes. Diabetologia. 1989;32:300–4.PubMedCrossRefGoogle Scholar
  105. 105.
    Pyorala K. Relationship of glucose tolerance and plasma insulin to the incidence of coronary heart disease: results from two population studies in Finland. Diabetes Care. 1979;2:131–41.PubMedCrossRefGoogle Scholar
  106. 106.
    Barzilay JI, Spiekerman CF, Wahl PW, Kuller LH, Cushman M, Furberg CD, et al. Cardiovascular disease in older adults with glucose disorders: comparison of American Diabetes Association criteria for diabetes mellitus with WHO criteria. Lancet. 1999;354:622–5.PubMedCrossRefGoogle Scholar
  107. 107.
    Temelkova-Kurktschiev TS, Koehler C, Henkel E, Leonhardt W, Fuecker K, Hanefeld M. Postchallenge plasma glucose and glycemic spikes are more strongly associated with atherosclerosis than fasting glucose or HbA1c level. Diabetes Care. 2000;23:1830–4.PubMedCrossRefGoogle Scholar
  108. 108.
    Bonora E, Kiechl S, Oberhollenzer F, Egger G, Bonadonna RC, Muggeo M, et al. Impaired glucose tolerance, type II diabetes mellitus and carotid atherosclerosis: prospective results from the Bruneck Study. Diabetologia. 2000;43:156–64.PubMedCrossRefGoogle Scholar
  109. 109.
    O’Leary DH, Polak JF, Kronmal RA, Kittner SJ, Bond MG, Wolfson Jr SK, et al. Distribution and correlates of sonographically detected carotid artery disease in the Cardiovascular Health Study. The CHS Collaborative Research Group. Stroke. 1992;23:1752–60.PubMedCrossRefGoogle Scholar
  110. 110.
    Yamasaki Y, Kawamori R, Matsushima H, Nishizawa H, Kodama M, Kubota M, et al. Asymptomatic hyperglycaemia is associated with increased intimal plus medial thickness of the carotid artery. Diabetologia. 1995;38:585–91.PubMedCrossRefGoogle Scholar
  111. 111.
    Beks PHJ, Mackaay AJC, De Vries H, De Neeling JND, Bouter LM, Heine RJ. Carotid artery stenosis is related to blood glucose level in an elderly Caucasian population: the Hoorn Study. Diabetologia. 1997;40:290–8.PubMedCrossRefGoogle Scholar
  112. 112.
    Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M. Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance. The STOP-NIDDM Trial. JAMA. 2003;290:486–94.PubMedCrossRefGoogle Scholar
  113. 113.
    Zeymer U, Schwarzmaier-D’assie A, Petzinna D, Chiasson JL. Effect of acarbose treatment on the risk of silent myocardial infarctions in patients with impaired glucose tolerance: results of the randomised STOP-NIDDM trial electrocardiography substudy. Eur J Cardiovasc Prev Rehabil. 2004;11:412–5.PubMedCrossRefGoogle Scholar
  114. 114.
    Hanefeld M, Chiasson JL, Koehler C, Henkel E, Schaper F, Temelkova-Kurktschiev T. Acarbose slows progression of intima-media thickness of the carotid arteries in subjects with impaired glucose tolerance. Stroke. 2004;35:1073–8.PubMedCrossRefGoogle Scholar
  115. 115.
    Hanefeld M, Koehler C, Westermeier T, Saunders G, Chiasson JL. Predictors of newly diagnosed hypertension in people with IGT: impact of acarbose treatment. A scondary analysis of the STOP-NIDDM trial. Diabetes. 2010;59:Abstract 325-OR.Google Scholar
  116. 116.
    Josse RG, McGuire AJ, Saal GB. A review of the economic evidence for acarbose in the prevention of diabetes and cardiovascular events in individuals with impaired glucose tolerance. Int J Clin Pract. 2006;60:847–55.PubMedCrossRefGoogle Scholar
  117. 117.
    Caro JJ, Getsios D, Caro I, Klittich WS, O’Brien JA. Economic evaluation of therapeutic interventions to prevent type 2 diabetes in Canada. Diabet Med. 2004;21:1229–36.PubMedCrossRefGoogle Scholar
  118. 118.
    Quilici S, Chancellor J, Maclaine G, McGuire A, Andersson D, Chiasson JL. Cost-effectiveness of acarbose for the management of impaired glucose tolerance in Sweden. Int J Clin Pract. 2005;59:1143–52.PubMedCrossRefGoogle Scholar
  119. 119.
    Evers T, Luddeke HJ, Liebl A, et al. Economic value of acarbose treatment in persons with impaired glucose tolerance (IGT) for the German health care system. Value Health. 2004;7:741.CrossRefGoogle Scholar
  120. 120.
    Sabes R. Cost-effectiveness analysis of acarbose in the treatment of patients with impaired glucose tolerance. Gac Sanit. 2004;18:431–9.PubMedCrossRefGoogle Scholar
  121. 121.
    Stern MP, Williams K, Haffner SM. Identification of persons at high risk for type 2 diabetes mellitus: do we need the oral glucose tolerance test? Ann Intern Med. 2002;136:575–81.PubMedGoogle Scholar
  122. 122.
    Anderson KM, Odell PM, Wilson PW, Kannel WB. Cardiovascular disease risk profiles. Am Heart J. 1991;121:293–8.PubMedCrossRefGoogle Scholar
  123. 123.
    Ur E. Definition, classification and diagnosis of diabetes of other dysglycemic categories. Can J Diabetes. 2008;32 Suppl 1:S5–9.Google Scholar
  124. 124.
    Ur E, Chiasson JL, Ransom T, Rowe R. Prevention of diabetes. Can J Diabetes. 2008;32 Suppl 1:S17–9.Google Scholar
  125. 125.
    Colagiuri S, Hussain Z, Zimmet P, Cameron A, Shaw J. Screening for type 2 diabetes and impaired glucose metabolism: the Australian experience. Diabetes Care. 2004;27:367–71.PubMedCrossRefGoogle Scholar
  126. 126.
    Zhang P, Engelgau MM, Valdez R, Cadwell B, Benjamin SM, Narayan KM. Efficient cutoff points for three screening tests for detecting undiagnosed diabetes and pre-diabetes: an economic analysis. Diabetes Care. 2005;28:1321–5.PubMedCrossRefGoogle Scholar
  127. 127.
    Kousta E, Lawrence NJ, Penny A, Millauer BA, Robinson S, Dornhorst A, et al. Implications of new diagnostic criteria for abnormal glucose homeostasis in women with previous gestational diabetes. Diabetes Care. 1999;22:933–7.PubMedCrossRefGoogle Scholar
  128. 128.
    Larsson H, Lindgarde F, Berglund G, Ahren B. Prediction of diabetes using ADA or WHO criteria in post-menopausal women: a 10-year follow-up study. Diabetologia. 2000;43:1224–8.PubMedCrossRefGoogle Scholar
  129. 129.
    Simmons D, Thompson CF, Engelgau MM. Controlling the diabetes epidemic: how should we screen for undiagnosed diabetes and dysglycaemia? Diabet Med. 2005;22:207–12.PubMedCrossRefGoogle Scholar
  130. 130.
    Tuomilehto J, Lindstrom J, Hellmich M, Lehmacher W, Westermeier T, Evers T, et al. Development and validation of a risk-score model for subjects with impaired glucose tolerance for the assessment of the risk of type 2 diabetes mellitus-The STOP-NIDDM risk-score. Diabetes Res Clin Pract. 2010;87:267–74.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Jean-Louis Chiasson
    • 1
  • Markku Laakso
    • 2
  • Markolf Hanefeld
    • 3
  1. 1.Department of Medicine, Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM)Université de MontréalMontréalCanada
  2. 2.Department of MedicineUniversity of Eastern FinlandKuopioFinland
  3. 3.Centre for Clinical StudiesDresdenGermany

Personalised recommendations