Skip to main content

EEG: Theoretical Background and Practical Aspects

  • Chapter
  • First Online:
Functional Neuroimaging in Exercise and Sport Sciences

Abstract

In the last two decades, the use of electroencephalography/electrotomography has gained increased attention in exercise settings. Today, up-to-date hardware and software solutions allow to record electrocortical activity even during exercise and appropriate software solutions (e.g., source localization) allow identifying specific brain regions that are affected by exercise. This chapter aims to give an overview of the genesis of EEG signals and describe techniques as well as current hardware and software solutions to record, process, and localize brain cortical activity during and after exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Axmacher N, Mormann F, Fernandez G, Elger CE, Fell J (2006) Memory formation by neuronal synchronization. Brain Res Rev 52:170–182

    Article  PubMed  Google Scholar 

  • Bai X, Towle VL, He EJ, He B (2007) Evaluation of cortical current density imaging methods using intracranial electrocorticograms and functional MRI. Neuroimage 35:598–608

    Article  PubMed  Google Scholar 

  • Basar E (1998a) Brain function and oscillations: Volume I: Brain oscillations. Principles and approaches. Springer, New York

    Google Scholar 

  • Basar E (1998b) Brain function and oscillations: Volume II: Integrative brain function. Neurophysiology and cognitive processes. Springer, New York

    Google Scholar 

  • Beaussart M, Niquet G, Gaudier E, Guislain F (1959) [The EEG of boxers examined immediately after combat. Comparative study with the EEG recorded before combat in 52 cases]. Rev Obstet Ginecol Venez 101:422–427

    PubMed  CAS  Google Scholar 

  • Bell AJ, Sejnowski TJ (1995) An information-maximization approach to blind separation and blind deconvolution. Neural Comput 7:1129–1159

    Article  PubMed  CAS  Google Scholar 

  • Benwell NM, Mastaglia FL, Thickbroom GW (2007) Changes in the functional MR signal in motor and non-motor areas during intermittent fatiguing hand exercise. Exp Brain Res 182:93–97

    Article  PubMed  Google Scholar 

  • Boecker H, Henriksen G, Sprenger T, Miederer I, Willoch F, Valet M, Berthele A, Tolle TR (2008) Positron emission tomography ligand activation studies in the sports sciences: measuring neurochemistry in vivo. Methods 45:307–318

    Article  PubMed  CAS  Google Scholar 

  • Bonnet MH, Arand DL (2001) Impact of activity and arousal upon spectral EEG parameters. Physiol Behav 74:291–298

    Article  PubMed  CAS  Google Scholar 

  • BrĂ¼mmer V, Schneider S, StrĂ¼der HK, Askew CD (2011) Primary motor cortex activity is elevated with incremental exercise intensity. Neuroscience 181:150–162

    Article  PubMed  Google Scholar 

  • Caglar E, Sabuncuoglu H, Keskin T, Isikli S, Keskil S, Korkusuz F (2005) In vivo human brain biochemistry after aerobic exercise: preliminary report on functional magnetic resonance spectroscopy. Surg Neurol 64(Suppl 2):S53–S56, discussion S56–S57

    Article  PubMed  Google Scholar 

  • Crabbe JB, Dishman RK (2004) Brain electrocortical activity during and after exercise: a quantitative synthesis. Psychophysiology 41:563–574

    Article  PubMed  Google Scholar 

  • Crespo-Garcia M, Atienza M, Cantero JL (2008) Muscle artifact removal from human sleep EEG by using independent component analysis. Ann Biomed Eng 36:467–475

    Article  PubMed  Google Scholar 

  • Delorme A, Sejnowski T, Makeig S (2007) Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis. Neuroimage 34:1443–1449

    Article  PubMed  Google Scholar 

  • Dietz V (2003) Spinal cord pattern generators for locomotion. Clin Neurophysiol 114:1379–1389

    Article  PubMed  CAS  Google Scholar 

  • Duzel E, Penny WD, Burgess N (2010) Brain oscillations and memory. Curr Opin Neurobiol 20:143–149

    Article  PubMed  Google Scholar 

  • Fumoto M, Oshima T, Kamiya K, Kikuchi H, Seki Y, Nakatani Y, Yu X, Sekiyama T, Sato-Suzuki I, Arita H (2010) Ventral prefrontal cortex and serotonergic system activation during pedaling exercise induces negative mood improvement and increased alpha band in EEG. Behav Brain Res 213:1–9

    Article  PubMed  CAS  Google Scholar 

  • Galka A, Yamashita O, Ozaki T, Biscay R, Valdes-Sosa P (2004) A solution to the dynamical inverse problem of EEG generation using spatiotemporal Kalman filtering. Neuroimage 23:435–453

    Article  PubMed  Google Scholar 

  • Gamma A, Lehmann D, Frei E, Iwata K, Pascual-Marqui RD, Vollenweider FX (2004) Comparison of simultaneously recorded [H2(15)O]-PET and LORETA during cognitive and pharmacological activation. Hum Brain Mapp 22:83–96

    Article  PubMed  Google Scholar 

  • Gray CM, Singer W (1989) Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc Natl Acad Sci USA 86:1698–1702

    Article  PubMed  CAS  Google Scholar 

  • Grech R, Cassar T, Muscat J, Camilleri KP, Fabri SG, Zervakis M, Xanthopoulos P, Sakkalis V, Vanrumste B (2008) Review on solving the inverse problem in EEG source analysis. J Neuroeng Rehabil 5:25

    Article  PubMed  Google Scholar 

  • Grillner S (1985) Neurobiological bases of rhythmic motor acts in vertebrates. Science 228:143–149

    Article  PubMed  CAS  Google Scholar 

  • Grillner S, Wallen P (1985) Central pattern generators for locomotion, with special reference to vertebrates. Annu Rev Neurosci 8:233–261

    Article  PubMed  CAS  Google Scholar 

  • Hall EE, Ekkekakis P, Petruzzello SJ (2010) Predicting affective responses to exercise using resting EEG frontal asymmetry: does intensity matter? Biol Psychol 83:201–206

    Article  PubMed  Google Scholar 

  • Hillman CH, Kamijo K, Pontifex MB (2012) The relation of ERP indices of exercise to brain health and cognition. In: Boecker H, Hillman CH, Scheef L, StrĂ¼der HK (eds) Functional neuroimaging in exercise and sport sciences. Springer, New York

    Google Scholar 

  • Hoechstetter K, Bornfleth H, Weckesser D, Ille N, Berg P, Scherg M (2004) BESA source coherence: a new method to study cortical oscillatory coupling. Brain Topogr 16:233–238

    Article  PubMed  Google Scholar 

  • Jasper HH (1958) The ten-twenty electrode system of the international Federation. Electroencephalogr Clin Neurophysiol Suppl 35:371–375

    Google Scholar 

  • Kirschstein T, Kohling R (2009) What is the source of the EEG? Clin EEG Neurosci 40:146–149

    Article  PubMed  Google Scholar 

  • Klimesch W, Sauseng P, Hanslmayr S (2007) EEG alpha oscillations: the inhibition-timing hypothesis. Brain Res Rev 53:63–88

    Article  PubMed  Google Scholar 

  • Kubitz KA, Pothakos K (1997) Does aerobic exercise decrease brain activation? J Sport Exerc Psychol 19:291–301

    Google Scholar 

  • Lindsley DB (1960) Attention, consciousness, sleep and wakefulness. In: Field J, Magoun HW, Hall VE (eds) Handbook of physiology. American Physiological Society, Washington, DC, pp 1553–1593

    Google Scholar 

  • MacDougall HG, Moore ST (2005) Marching to the beat of the same drummer: the spontaneous tempo of human locomotion. J Appl Physiol 99:1164–1173

    Article  PubMed  Google Scholar 

  • Marder E (2001) Moving rhythms. Nature 410:755

    Article  PubMed  CAS  Google Scholar 

  • Martin JH (1991) The collective electrical behavior of cortical neurons: the electroencephalogram and the mechanisms of epilepsy. In: Kandel ER, Schwartz JH, Jessel TM (eds) Principles of neuroscience. Prentice-Hall, London, pp 777–791

    Google Scholar 

  • Mechau D, Mucke S, Weiss M, Liesen H (1998) Effect of increasing running velocity on electroencephalogram in a field test. Eur J Appl Physiol Occup Physiol 78:340–345

    Article  PubMed  CAS  Google Scholar 

  • Miller R (2007) Theory of the normal waking EEG: from single neurones to waveforms in the alpha, beta and gamma frequency ranges. Int J Psychophysiol 64:18–23

    Article  PubMed  Google Scholar 

  • Mosher JC, Leahy RM (1998) Recursive MUSIC: a framework for EEG and MEG source localization. IEEE Trans Biomed Eng 45:1342–1354

    Article  PubMed  CAS  Google Scholar 

  • Mulert C, Jager L, Schmitt R, Bussfeld P, Pogarell O, Moller HJ, Juckel G, Hegerl U (2004) Integration of fMRI and simultaneous EEG: towards a comprehensive understanding of localization and time-course of brain activity in target detection. Neuroimage 22:83–94

    Article  PubMed  Google Scholar 

  • Murray MP, Drought AB, Kory RC (1964) Walking patterns of normal men. J Bone Joint Surg Am 46:335–360

    PubMed  CAS  Google Scholar 

  • Nielsen B, Hyldig T, Bidstrup F, Gonzalez-Alonso J, Christoffersen GR (2001) Brain activity and fatigue during prolonged exercise in the heat. Pflugers Arch 442:41–48

    Article  PubMed  CAS  Google Scholar 

  • Oda S, Matsumoto T, Nakagawa K, Moriya K (1999) Relaxation effects in humans of underwater exercise of moderate intensity. Eur J Appl Physiol Occup Physiol 80:253–259

    Article  PubMed  CAS  Google Scholar 

  • Ogawa S, Lee TM, Nayak AS, Glynn P (1990) Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med 14:68–78

    Article  PubMed  CAS  Google Scholar 

  • Onton J, Westerfield M, Townsend J, Makeig S (2006) Imaging human EEG dynamics using independent component analysis. Neurosci Biobehav Rev 30:808–822

    Article  PubMed  Google Scholar 

  • Pascual-Marqui RD (2002) Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol 24(Suppl D):5–12

    PubMed  Google Scholar 

  • Pascual-Marqui RD, Esslen M, Kochi K, Lehmann D (2002) Functional imaging with low-resolution brain electromagnetic tomography (LORETA): a review. Methods Find Exp Clin Pharmacol 24(Suppl C):91–95

    PubMed  Google Scholar 

  • Pontifex MB, Hillman CH (2008) Neuroelectric measurement of cognition during aerobic exercise. Methods 45:271–278

    Article  PubMed  CAS  Google Scholar 

  • Romo-Vazquez R, Ranta R, Louis-Dorr V, Maquin D (2007) EEG ocular artefacts and noise removal. Conf Proc IEEE Eng Med Biol Soc 2007:5445–5448

    PubMed  CAS  Google Scholar 

  • Schneider S, Askew CD, Diehl J, Mierau A, Kleinert J, Abel T, Carnahan H, StrĂ¼der HK (2009a) EEG activity and mood in health orientated runners after different exercise intensities. Physiol Behav 96(4–5):709–716

    Article  PubMed  CAS  Google Scholar 

  • Schneider S, Brummer V, Abel T, Askew CD, StrĂ¼der HK (2009b) Changes in brain cortical activity measured by EEG are related to individual exercise preferences. Physiol Behav 98:447–452

    Article  PubMed  CAS  Google Scholar 

  • Schneider S, Askew CD, Abel T, Mierau A, StrĂ¼der HK (2010a) Brain and exercise: a first approach using electro tomography. Med Sci Sports Exerc Mar 42:600–607

    Article  Google Scholar 

  • Schneider S, Askew CD, Abel T, StrĂ¼der HK (2010b) Exercise, music, and the brain: is there a central pattern generator? J Sports Sci 28(12):1337–1343

    Article  PubMed  Google Scholar 

  • Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme, Stuttgart

    Google Scholar 

  • Talsma D, Woldorff MG (2005) Methods for the estimation and removal of artifacts and overlap in ERP waveforms. In: Handy TC (ed) Event-related potentials: a methods handbook. MIT, Cambridge, pp 116–148

    Google Scholar 

  • Thomas R, Stephane P (2008) Prefrontal cortex oxygenation and neuromuscular responses to exhaustive exercise. Eur J Appl Physiol 102:153–163

    Article  PubMed  CAS  Google Scholar 

  • Thompson T, Steffert T, Ros T, Leach J, Gruzelier J (2008) EEG applications for sport and ­performance. Methods 45:279–288

    Article  PubMed  CAS  Google Scholar 

  • Wang XJ (2010) Neurophysiological and computational principles of cortical rhythms in ­cognition. Physiol Rev 90:1195–1268

    Article  PubMed  Google Scholar 

  • Wong SW, Kimmerly DS, Masse N, Menon RS, Cechetto DF, Shoemaker JK (2007) Sex differences in forebrain and cardiovagal responses at the onset of isometric handgrip exercise: a retrospective fMRI study. J Appl Physiol 103:1402–1411

    Article  PubMed  Google Scholar 

  • Woo M, Kim S, Kim J, Petruzzello SJ, Hatfield BD (2009) Examining the exercise-affect dose-response relationship: does duration influence frontal EEG asymmetry? Int J Psychophysiol 72(2):166–172

    Article  PubMed  Google Scholar 

  • Zuckermann M (1991) Psychobiology of personality. Cambridge University Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Schneider .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schneider, S., StrĂ¼der, H.K. (2012). EEG: Theoretical Background and Practical Aspects. In: Boecker, H., Hillman, C., Scheef, L., StrĂ¼der, H. (eds) Functional Neuroimaging in Exercise and Sport Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3293-7_9

Download citation

Publish with us

Policies and ethics