Skip to main content

Molecular Mechanisms for the Ability of Exercise Supporting Cognitive Abilities and Counteracting Neurological Disorders

  • Chapter
  • First Online:
Functional Neuroimaging in Exercise and Sport Sciences

Abstract

New evidence indicates that exercise exerts its effects by affecting ­molecular events related to the management of energy metabolism and synaptic plasticity. An important instigator in the molecular machinery stimulated by exercise is brain-derived neurotrophic factor (BDNF), which acts at the interface of metabolism and plasticity. Recent studies show that select dietary factors share similar mechanisms with exercise, and in some cases, they can complement the action of exercise. Therefore, exercise and dietary management appear as a noninvasive and effective strategy to counteract neurological and cognitive disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott LF, Nelson SB (2000) Synaptic plasticity: taming the beast. Nat Neurosci 3(Suppl): 1178–1183

    Article  PubMed  CAS  Google Scholar 

  • Agrawal R, Mishra B, Tyagi E, Nath C, Shukla R (2010) Effect of curcumin on brain insulin receptors and memory functions in STZ (ICV) induced dementia model of rat. Pharmacol Res 61:247–252

    Article  PubMed  CAS  Google Scholar 

  • Ahlskog JE (2011) Does vigorous exercise have a neuroprotective effect in Parkinson disease? Neurology 77:288–294

    Article  PubMed  Google Scholar 

  • Akbar M, Calderon F, Wen Z, Kim HY (2005) Docosahexaenoic acid: a positive modulator of Akt signaling in neuronal survival. Proc Natl Acad Sci USA 102:10858–10863

    Article  PubMed  CAS  Google Scholar 

  • Albeck DS, Sano K, Prewitt GE, Dalton L (2006) Mild forced treadmill exercise enhances spatial learning in the aged rat. Behav Brain Res 168:345–348

    Article  PubMed  Google Scholar 

  • Anlar B, Sullivan KA, Feldman EL (1999) Insulin-like growth factor-I and central nervous system development. Horm Metab Res 31:120–125

    Article  PubMed  CAS  Google Scholar 

  • Avery SV (2011) Molecular targets of oxidative stress. Biochem J 434:201–210

    Article  PubMed  CAS  Google Scholar 

  • Baruch DE, Swain RA, Helmstetter FJ (2004) Effects of exercise on Pavlovian fear conditioning. Behav Neurosci 118:1123–1127

    Article  PubMed  Google Scholar 

  • Belarbi K, Burnouf S, Fernandez-Gomez FJ, Laurent C, Lestavel S, Figeac M, Sultan A, Troquier L, Leboucher A, Caillierez R, Grosjean ME, Demeyer D, Obriot H, Brion I, Barbot B, Galas MC, Staels B, Humez S, Sergeant N, Schraen-Maschke S, Muhr-Tailleux A, Hamdane M, Buée L, Blum D (2011) Beneficial effects of exercise in a transgenic mouse model of Alzheimer’s disease-like Tau pathology. Neurobiol Dis 43:486–494

    Article  PubMed  CAS  Google Scholar 

  • Bibb JA, Mayford MR, Tsien JZ, Alberini CM (2010) Cognition enhancement strategies. J Neurosci 30:14987–14992

    Article  PubMed  CAS  Google Scholar 

  • Blass JP (2000) The mitochondrial spiral. An adequate cause of dementia in the Alzheimer’s syndrome. Ann N Y Acad Sci 924:170–183

    Article  PubMed  CAS  Google Scholar 

  • Boero J, Qin W, Cheng J, Woolsey TA, Strauss AW, Khuchua Z (2003) Restricted neuronal expression of ubiquitous mitochondrial creatine kinase: changing patterns in development and with increased activity. Mol Cell Biochem 244:69–76

    Article  PubMed  CAS  Google Scholar 

  • Borger E, Aitken L, Muirhead KE, Allen ZE, Ainge JA, Conway SJ, Gunn-Moore FJ (2011) Mitochondrial β-amyloid in Alzheimer’s disease. Biochem Soc Trans 39:868–873

    Article  PubMed  CAS  Google Scholar 

  • Bramham CR, Messaoudi E (2005) BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Prog Neurobiol 76:99–125

    Article  PubMed  CAS  Google Scholar 

  • Bruel-Jungerman E, Veyrac A, Dufour F, Horwood J, Laroche S, Davis S (2009) Inhibition of PI3K-Akt signaling blocks exercise-mediated enhancement of adult neurogenesis and synaptic plasticity in the dentate gyrus. PLoS One 4:e7901

    Article  PubMed  CAS  Google Scholar 

  • Burzynski SR (2003) Gene silencing – a new theory of aging. Med Hypotheses 60:578–583

    Article  PubMed  CAS  Google Scholar 

  • Cangelosi PR (2011) Baby Boomers: are we ready for their impact on health care? J Psychosoc Nurs Ment Health Serv 49(9):15–17

    Article  PubMed  Google Scholar 

  • Carek PJ, Laibstain SE, Carek SM (2011) Exercise for the treatment of depression and anxiety. Int J Psychiatry Med 41:15–28

    Article  PubMed  Google Scholar 

  • Carlini VP, Monzón ME, Varas MM, Cragnolini AB, Schiöth HB, Scimonelli TN, de Barioglio SR (2002) Ghrelin increases anxiety-like behavior and memory retention in rats. Biochem Biophys Res Commun 299:739–743

    Article  PubMed  CAS  Google Scholar 

  • Carlini VP, Varas MM, Cragnolini AB, Schiöth HB, Scimonelli TN, de Barioglio SR (2004) Differential role of the hippocampus, amygdala, and dorsal raphe nucleus in regulating feeding, memory, and anxiety-like behavioral responses to ghrelin. Biochem Biophys Res Commun 313:635–641

    Article  PubMed  CAS  Google Scholar 

  • Caroni P (1998) Neuro-regeneration: plasticity for repair and adaptation. Essays Biochem 33:53–64

    PubMed  CAS  Google Scholar 

  • Carro E, Trejo JL, Busiguina S, Torres-Aleman I (2001) Circulating insulin-like growth factor I mediates the protective effects of physical exercise against brain insults of different etiology and anatomy. J Neurosci 21:5678–5684

    PubMed  CAS  Google Scholar 

  • Chae CH, Kim HT (2009) Forced, moderate-intensity treadmill exercise suppresses apoptosis by increasing the level of NGF and stimulating phosphatidylinositol 3-kinase signaling in the hippocampus of induced aging rats. Neurochem Int 55:208–213

    Article  PubMed  CAS  Google Scholar 

  • Chao HT, Zoghbi HY (2009) The yin and yang of MeCP2 phosphorylation. Proc Natl Acad Sci USA 106:4577–4578

    Article  PubMed  CAS  Google Scholar 

  • Chen WG, Chang Q, Lin Y, Meissner A, West AE, Griffith EC, Jaenisch R, Greenberg ME (2003) Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science 302:885–889

    Article  PubMed  CAS  Google Scholar 

  • Cheng G, Polito CC, Haines JK, Shafizadeh SF, Fiorini RN, Zhou X, Schmidt MG, Chavin KD (2003) Decrease of intracellular ATP content downregulated UCP2 expression in mouse hepatocytes. Biochem Biophys Res Commun 308:573–580

    Article  PubMed  CAS  Google Scholar 

  • Chytrova G, Ying Z, Gómez-Pinilla F (2008) Exercise normalizes levels of MAG and Nogo-A growth inhibitors after brain trauma. Eur J Neurosci 27:1–11

    Article  PubMed  Google Scholar 

  • Chytrova G, Ying Z, Gómez-Pinilla F (2009) Exercise contributes to the effects of DHA dietary supplementation by acting on membrane-related synaptic systems. Brain Res 1341:32–40

    Article  PubMed  CAS  Google Scholar 

  • Cohen-Cory S, Kidane AH, Shirkey NJ, Marshak S (2010) Brain-derived neurotrophic factor and the development of structural neuronal connectivity. Dev Neurobiol 70:271–288

    PubMed  CAS  Google Scholar 

  • Colle LM, Holmes LJ, Pappius HM (1986) Correlation between behavioral status and cerebral glucose utilization in rats following freezing lesion. Brain Res 397:27–36

    Article  PubMed  CAS  Google Scholar 

  • Corrigan FM, Horrobin DF, Skinner ER, Besson JA, Cooper MB (1998) Abnormal content of n-6 and n-3 long-chain unsaturated fatty acids in the phosphoglycerides and cholesterol esters of parahippocampal cortex from Alzheimer’s disease patients and its relationship to acetyl CoA content. Int J Biochem Cell Biol 30:197–207

    Article  PubMed  CAS  Google Scholar 

  • Ding Q, Ying Z, Gómez-Pinilla F (2011) Exercise influences hippocampal plasticity by modulating brain-derived neurotrophic factor processing. Neuroscience 192:773–780

    Article  PubMed  CAS  Google Scholar 

  • Erickson KI, Prakash RS, Voss MW, Chaddock L, Hu L, Morris KS, White SM, Wójcicki TR, McAuley E, Kramer AF (2009) Aerobic fitness is associated with hippocampal volume in elderly humans. Hippocampus 19:1030–1039

    Article  PubMed  Google Scholar 

  • Fabel K, Tam B, Kaufer D, Baiker A, Simmons N, Kuo CJ, Palmer TD (2003) VEGF is necessary for exercise-induced adult hippocampal neurogenesis. Eur J Neurosci 18:2803–2812

    Article  PubMed  Google Scholar 

  • Figurov A, Pozzo-Miller LD, Olafsson P, Wang T, Lu B (1996) Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus. Nature 381: 706–709

    Article  PubMed  CAS  Google Scholar 

  • Foster PP, Rosenblatt KP, Kuljiš RO (2011) Exercise-induced cognitive plasticity, implications for mild cognitive impairment and Alzheimer’s disease. Front Neurol 2:28

    PubMed  CAS  Google Scholar 

  • Gannon RL, Millan MJ (2006) The corticotropin-releasing factor (CRF)(1) receptor antagonists CP154,526 and DMP695 inhibit light-induced phase advances of hamster circadian activity rhythms. Brain Res 1083:96–102

    Article  PubMed  CAS  Google Scholar 

  • Gilmore JH, Jarskog LF, Vadlamudi S (2003) Maternal infection regulates BDNF and NGF expression in fetal and neonatal brain and maternal-fetal unit of the rat. J Neuroimmunol 138:49–55

    Article  PubMed  CAS  Google Scholar 

  • Gomes da Silva S, Unsain N, Mascó DH, Toscano-Silva M, de Amorim HA, Silva Araújo BH, Simões PS, da Graça Naffah-Mazzacoratti M, Mortara RA, Scorza FA, Cavalheiro EA, Arida RM (2012) Early exercise promotes positive hippocampal plasticity and improves spatial memory in the adult life of rats. Hippocampus 22(2):347–358

    Article  PubMed  Google Scholar 

  • Gómez-Pinilla F (2008) Brain foods: the effects of nutrients on brain function. Nat Rev Neurosci 9:568–578

    Article  PubMed  CAS  Google Scholar 

  • Gómez-Pinilla F, Ying Z (2010) Differential effects of exercise and dietary docosahexaenoic acid on molecular systems associated with control of allostasis in the hypothalamus and hippocampus. Neuroscience 168:130–137

    Article  PubMed  CAS  Google Scholar 

  • Gómez-Pinilla F, Vaynman S, Ying Z (2008) Brain-derived neurotrophic factor functions as a metabotrophin to mediate the effects of exercise on cognition. Eur J Neurosci 28:2278–2287

    Article  PubMed  Google Scholar 

  • Gómez-Pinilla F, Zhuang Y, Feng J, Ying Z, Fan G (2011) Exercise impacts brain-derived neurotrophic factor plasticity by engaging mechanisms of epigenetic regulation. Eur J Neurosci 33:383–390

    Article  PubMed  Google Scholar 

  • Griesbach GS, Gómez-Pinilla F, Hovda DA (2004a) The upregulation of plasticity-related proteins following TBI is disrupted with acute voluntary exercise. Brain Res 1016:154–162

    Article  PubMed  CAS  Google Scholar 

  • Griesbach GS, Hovda DA, Molteni R, Wu A, Gómez-Pinilla F (2004b) Voluntary exercise following traumatic brain injury: brain-derived neurotrophic factor upregulation and recovery of function. Neuroscience 125:129–139

    Article  PubMed  CAS  Google Scholar 

  • Griesbach GS, Gómez-Pinilla F, Hovda DA (2007) Time window for voluntary exercise-induced increases in hippocampal neuroplasticity molecules after traumatic brain injury is severity dependent. J Neurotrauma 24:1161–1171

    Article  PubMed  Google Scholar 

  • Griesbach GS, Hovda DA, Gómez-Pinilla F (2009) Exercise-induced improvement in cognitive performance after traumatic brain injury in rats is dependent on BDNF activation. Brain Res 1288:105–115

    Article  PubMed  CAS  Google Scholar 

  • Griesbach GS, Hovda DA, Tio DL, Taylor AN (2011) Heightening of the stress response during the first weeks after a mild traumatic brain injury. Neuroscience 178:147–158

    Article  PubMed  CAS  Google Scholar 

  • Guzowski JF, Lyford GL, Stevenson GD, Houston FP, McGaugh JL, Worley PF, Barnes CA (2000) Inhibition of activity-dependent arc protein expression in the rat hippocampus impairs the maintenance of long-term potentiation and the consolidation of long-term memory. J Neurosci 20:3993–4001

    PubMed  CAS  Google Scholar 

  • Han XJ, Tomizawa K, Fujimura A, Ohmori I, Nishiki T, Matsushita M, Matsui H (2011) Regulation of mitochondrial dynamics and neurodegenerative diseases. Acta Med Okayama 65:1–10

    PubMed  CAS  Google Scholar 

  • Hardie DG (2004) AMP-activated protein kinase: a key system mediating metabolic responses to exercise. Med Sci Sports Exerc 36:28–34

    Article  PubMed  CAS  Google Scholar 

  • Hartmann M, Heumann R, Lessmann V (2001) Synaptic secretion of BDNF after high-frequency stimulation of glutamatergic synapses. EMBO J 20:5887–5897

    Article  PubMed  CAS  Google Scholar 

  • Hoekstra JG, Montine KS, Zhang J, Montine TJ (2011) Mitochondrial therapeutics in Alzheimer’s disease and Parkinson’s disease. Alzheimers Res Ther 3:21

    Article  PubMed  Google Scholar 

  • Hopkins ME, Nitecki R, Bucci DJ (2011) Physical exercise during adolescence versus adulthood: differential effects on object recognition memory and brain-derived neurotrophic factor levels. Neuroscience 194:84–94

    Article  PubMed  CAS  Google Scholar 

  • Horrocks LA, Farooqui AA (2004) Docosahexaenoic acid in the diet: its importance in maintenance and restoration of neural membrane function. Prostaglandins Leukot Essent Fatty Acids 70:361–372

    Article  PubMed  CAS  Google Scholar 

  • Hovda DA, Sutton RL, Feeney DM (1987) Recovery of tactile placing after visual cortex ablation in cat: a behavioral and metabolic study of diaschisis. Exp Neurol 97:391–402

    Article  PubMed  CAS  Google Scholar 

  • Isaacs AM, Senn DB, Yuan M, Shine JP, Yankner BA (2006) Acceleration of amyloid beta-peptide aggregation by physiological concentrations of calcium. J Biol Chem 281:27916–27923

    Article  PubMed  CAS  Google Scholar 

  • Itoh T, Imano M, Nishida S, Tsubaki M, Hashimoto S, Ito A, Satou T (2011a) Exercise increases neural stem cell proliferation surrounding the area of damage following rat traumatic brain injury. J Neural Transm 118:193–202

    Article  PubMed  Google Scholar 

  • Itoh T, Imano M, Nishida S, Tsubaki M, Hashimoto S, Ito A, Satou T (2011b) Exercise inhibits neuronal apoptosis and improves cerebral function following rat traumatic brain injury. J Neural Transm 118(9):1263–1272

    Article  PubMed  Google Scholar 

  • Jak AJ (2012) The impact of physical and mental activity on cognitive aging. Curr Top Behav Neurosci 10:273–291

    Google Scholar 

  • Kang H, Welcher AA, Shelton D, Schuman EM (1997) Neurotrophins and time: different roles for TrkB signaling in hippocampal long-term potentiation. Neuron 19:653–664

    Article  PubMed  CAS  Google Scholar 

  • Kasai H, Hayama T, Ishikawa M, Watanabe S, Yagishita S, Noguchi J (2010) Learning rules and persistence of dendritic spines. Eur J Neurosci 32:241–249

    Article  PubMed  Google Scholar 

  • Kernie SG, Parent JM (2010) Forebrain neurogenesis after focal Ischemic and traumatic brain injury. Neurobiol Dis 37:267–274

    Article  PubMed  Google Scholar 

  • Kim HY (2007) Novel metabolism of docosahexaenoic acid in neural cells. J Biol Chem 282:18661–18665

    Article  PubMed  CAS  Google Scholar 

  • Kim DH, Ko IG, Kim BK, Kim TW, Kim SE, Shin MS, Kim CJ, Kim H, Kim KM, Baek SS (2010) Treadmill exercise inhibits traumatic brain injury-induced hippocampal apoptosis. Physiol Behav 101:660–665

    Article  PubMed  CAS  Google Scholar 

  • Kim-Han JS, Dugan LL (2005) Mitochondrial uncoupling proteins in the central nervous system. Antioxid Redox Signal 7:1173–1181

    Article  PubMed  CAS  Google Scholar 

  • Knaepen K, Goekint M, Heyman EM, Meeusen R (2010) Neuroplasticity – exercise-induced response of peripheral brain-derived neurotrophic factor: a systematic review of experimental studies in human subjects. Sports Med 40:765–801

    Article  PubMed  Google Scholar 

  • Kovalchuk Y, Hanse E, Kafitz KW, Konnerth A (2002) Postsynaptic Induction of BDNF-Mediated Long-Term Potentiation. Science 295:1729–1734

    Article  PubMed  CAS  Google Scholar 

  • Kronenberg G, Bick-Sander A, Bunk E, Wolf C, Ehninger D, Kempermann G (2006) Physical exercise prevents age-related decline in precursor cell activity in the mouse dentate gyrus. Neurobiol Aging 27:1505–1513

    Article  PubMed  Google Scholar 

  • Lau YS, Patki G, Das-Panja K, Le WD, Ahmad SO (2011) Neuroprotective effects and mechanisms of exercise in a chronic mouse model of Parkinson’s disease with moderate neurodegeneration. Eur J Neurosci 33:1264–1274

    Article  PubMed  Google Scholar 

  • Lee R, Kermani P, Teng KK, Hempstead BL (2001) Regulation of cell survival by secreted proneurotrophins. Science 294:1945–1948

    Article  PubMed  CAS  Google Scholar 

  • Lima FD, Oliveira MS, Furian AF, Souza MA, Rambo LM, Ribeiro LR, Silva LF, Retamoso LT, Hoffmann MS, Magni DV, Pereira L, Fighera MR, Mello CF, Royes LF (2009) Adaptation to oxidative challenge induced by chronic physical exercise prevents Na+, K+-ATPase activity inhibition after traumatic brain injury. Brain Res 1279:147–155

    Article  PubMed  CAS  Google Scholar 

  • Manabe T (2002) Does BDNF have pre- or postsynaptic targets? Science 295:1651–1653

    Article  PubMed  CAS  Google Scholar 

  • Maren S, Baudry M (1995) Properties and mechanisms of long-term synaptic plasticity in the mammalian brain: relationships to learning and memory. Neurobiol Learn Mem 63:1–18

    Article  PubMed  CAS  Google Scholar 

  • Marx J (2005) Alzheimer’s disease. Play and exercise protect mouse brain from amyloid buildup. Science 307:1547

    Article  PubMed  CAS  Google Scholar 

  • Mastorakos G, Pavlatou M, Diamanti-Kandarakis E, Chrousos GP (2005) Exercise and the stress system. Hormones (Athens) 4:73–89

    Google Scholar 

  • Minichiello L, Calella AM, Medina DL, Bonhoeffer T, Klein R, Korte M (2002) Mechanism of TrkB-mediated hippocampal long-term potentiation. Neuron 36:121–137

    Article  PubMed  CAS  Google Scholar 

  • Mota BC, Pereira L, Souza MA, Silva LF, Magni DV, Ferreira AP, Oliveira MS, Furian AF, Mazzardo-Martins L, Silva MD, Santos AR, Ferreira J, Fighera MR, Royes LF (2012) Exercise pre-conditioning reduces brain inflammation and protects against toxicity induced by traumatic brain injury: behavioral and neurochemical approach. Neurotox Res 21(2):175–184

    Article  PubMed  CAS  Google Scholar 

  • Namiecińska M, Marciniak K, Nowak JZ (2005) VEGF as an angiogenic, neurotrophic, and neuroprotective factor. Postepy Hig Med Dosw (Online) 59:573–583

    Google Scholar 

  • Nedvidkova J, Smitka K, Papezova H, Vondra K, Hill M, Hainer V (2011) Acipimox during exercise points to an inhibitory feedback of GH on ghrelin secretion in bulimic and healthy women. Regul Pept 167:134–139

    Article  PubMed  CAS  Google Scholar 

  • Nguyen TL, Kim CK, Cho JH, Lee KH, Ahn JY (2010) Neuroprotection signaling pathway of nerve growth factor and brain-derived neurotrophic factor against staurosporine induced apoptosis in hippocampal H19-7/IGF-IR [corrected]. Exp Mol Med 42:583–595

    Article  PubMed  CAS  Google Scholar 

  • Palacino JJ, Sagi D, Goldberg MS, Krauss S, Motz C, Wacker M, Klose J, Shen J (2004) Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J Biol Chem 279:18614–18622

    Article  PubMed  CAS  Google Scholar 

  • Parnpiansil P, Jutapakdeegul N, Chentanez T, Kotchabhakdi N (2003) Exercise during pregnancy increases hippocampal brain-derived neurotrophic factor mRNA expression and spatial learning in neonatal rat pup. Neurosci Lett 352:45–48

    Article  PubMed  CAS  Google Scholar 

  • Parvez S, Ramachandran B, Frey JU (2010) Functional differences between and across different regions of the apical branch of hippocampal CA1 dendrites with respect to long-term depression induction and synaptic cross-tagging. J Neurosci 30:5118–5123

    Article  PubMed  CAS  Google Scholar 

  • Pittenger C, Kandel ER (2003) In search of general mechanisms for long-lasting plasticity: aplysia and the hippocampus. Philos Trans R Soc Lond B Biol Sci 358:757–763

    Article  PubMed  Google Scholar 

  • Ramsey MM, Adams MM, Ariwodola OJ, Sonntag WE, Weiner JL (2005) Functional characterization of des-IGF-1 action at excitatory synapses in the CA1 region of rat hippocampus. J Neurophysiol 94:247–254

    Article  PubMed  CAS  Google Scholar 

  • Saatman KE, Contreras PC, Smith DH, Raghupathi R, McDermott KL, Fernandez SC, Sanderson KL, Voddi M, McIntosh TK (1997) Insulin-like growth factor-1 (IGF-1) improves both neurological motor and cognitive outcome following experimental brain injury. Exp Neurol 147:418–427

    Article  PubMed  CAS  Google Scholar 

  • Sahay A, Scobie KN, Hill AS, O’Carroll CM, Kheirbek MA, Burghardt NS, Fenton AA, Dranovsky A, Hen R (2011) Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature 472:466–470

    Article  PubMed  CAS  Google Scholar 

  • Salem N Jr, Litman B, Kim HY, Gawrisch K (2001) Mechanisms of action of docosahexaenoic acid in the nervous system. Lipids 36:945–959

    Article  PubMed  CAS  Google Scholar 

  • Saw CL, Huang Y, Kong AN (2010) Synergistic anti-inflammatory effects of low doses of ­curcumin in combination with polyunsaturated fatty acids: docosahexaenoic acid or eicosapentaenoic acid. Biochem Pharmacol 79:421–430

    Article  PubMed  CAS  Google Scholar 

  • Sharma S, Ying Z, Gómez-Pinilla F (2010) A pyrazole curcumin derivative restores membrane homeostasis disrupted after brain trauma. Exp Neurol 226:191–199

    Article  PubMed  CAS  Google Scholar 

  • Smith DM, Mizumori SJ (2006) Hippocampal place cells, context, and episodic memory. Hippocampus 16:716–729

    Article  PubMed  Google Scholar 

  • Smith PJ, Blumenthal JA, Hoffman BM, Cooper H, Strauman TA, Welsh-Bohmer K, Browndyke JN, Sherwood A (2010) Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials. Psychosom Med 72:239–252

    Article  PubMed  Google Scholar 

  • Stranahan AM, Zhou Y, Martin B, Maudsley S (2009) Pharmacomimetics of exercise: novel approaches for hippocampally-targeted neuroprotective agents. Curr Med Chem 16:4668–4678

    Article  PubMed  CAS  Google Scholar 

  • Suzuki H, Park SJ, Tamura M, Ando S (1998) Effect of the long-term feeding of dietary lipids on the learning ability, fatty acid composition of brain stem phospholipids and synaptic membrane fluidity in adult mice: a comparison of sardine oil diet with palm oil diet. Mech Ageing Dev 101:119–128

    Article  PubMed  CAS  Google Scholar 

  • Szabo Z, Ying Z, Radak Z, Gómez-Pinilla F (2010) Voluntary exercise may engage proteasome function to benefit the brain after trauma. Brain Res 1341:25–31

    Article  PubMed  CAS  Google Scholar 

  • Tanaka J, Horiike Y, Matsuzaki M, Miyazaki T, Ellis-Davies GC, Kasai H (2008) Protein synthesis and neurotrophin-dependent structural plasticity of single dendritic spines. Science 319:1683–1687

    Article  PubMed  CAS  Google Scholar 

  • Trejo JL, Carro E, Torres-Aleman I (2001) Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J Neurosci 21:1628–1634

    PubMed  CAS  Google Scholar 

  • Tsankova NM, Berton O, Renthal W, Kumar A, Neve RL, Nestler EJ (2006) Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci 9:519–525

    Article  PubMed  CAS  Google Scholar 

  • Tully AM, Roche HM, Doyle R, Fallon C, Bruce I, Lawlor B, Coakley D, Gibney MJ (2003) Low serum cholesteryl ester-docosahexaenoic acid levels in Alzheimer’s disease: a case-control study. Br J Nutr 89:483–489

    Article  PubMed  CAS  Google Scholar 

  • Uchida S, Inanaga Y, Kobayashi M, Hurukawa S, Araie M, Sakuragawa N (2000) Neurotrophic function of conditioned medium from human amniotic epithelial cells. J Neurosci Res 62:585–590

    Article  PubMed  CAS  Google Scholar 

  • Um HS, Kang EB, Koo JH, Kim HT, Jin-Lee, Kim EJ, Yang CH, An GY, Cho IH, Cho JY (2011) Treadmill exercise represses neuronal cell death in an aged transgenic mouse model of Alzheimer’s disease. Neurosci Res 69:161–173

    Google Scholar 

  • Vaynman S, Gómez-Pinilla F (2005) License to run: exercise impacts functional plasticity in the intact and injured central nervous system by using neurotrophins. Neurorehabil Neural Repair 19:283–295

    Article  PubMed  Google Scholar 

  • Vaynman S, Gómez-Pinilla F (2006) Revenge of the “sit”: how lifestyle impacts neuronal and cognitive health through molecular systems that interface energy metabolism with neuronal plasticity. J Neurosci Res 84:699–715

    Article  PubMed  CAS  Google Scholar 

  • Vaynman S, Ying Z, Gómez-Pinilla F (2004) Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur J Neurosci 20:2580–2590

    Article  PubMed  Google Scholar 

  • Walz C, Jüngling K, Lessmann V, Gottmann K (2006) Presynaptic plasticity in an immature neocortical network requires NMDA receptor activation and BDNF release. J Neurophysiol 96:3512–3516

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Butowt R, Vasko MR, von Bartheld CS (2002) Mechanisms of the release of anterogradely transported neurotrophin-3 from axon terminals. J Neurosci 22:931–945

    PubMed  CAS  Google Scholar 

  • Warraich Z, Kleim JA (2010) Neural plasticity: the biological substrate for neurorehabilitation. PM R 2:S208–S219

    Article  PubMed  Google Scholar 

  • Wei QY, Chen WF, Zhou B, Yang L, Liu ZL (2006) Inhibition of lipid peroxidation and protein oxidation in rat liver mitochondria by curcumin and its analogues. Biochim Biophys Acta 1760:70–77

    Article  PubMed  CAS  Google Scholar 

  • Wheaton P, Mathias JL, Vink R (2011) Impact of pharmacological treatments on outcome in adult rodents after traumatic brain injury: a meta-analysis. J Psychopharmacol 25(12):1581–1599

    Article  PubMed  CAS  Google Scholar 

  • Winocur G, Moscovitch M (2011) Memory transformation and systems consolidation. J Int Neuropsychol Soc 17(5):766–780

    Article  PubMed  Google Scholar 

  • Wong-Goodrich SJ, Pfau ML, Flores CT, Fraser JA, Williams CL, Jones LW (2010) Voluntary running prevents progressive memory decline and increases adult hippocampal neurogenesis and growth factor expression after whole-brain irradiation. Cancer Res 70:9329–9338

    Article  PubMed  CAS  Google Scholar 

  • Wu A, Ying Z, Gómez-Pinilla F (2004) Dietary omega-3 fatty acids normalize BDNF levels, reduce oxidative damage, and counteract learning disability after traumatic brain injury in rats. J Neurotrauma 21:1457–1467

    Article  PubMed  Google Scholar 

  • Wu A, Ying Z, Gómez-Pinilla F (2006) Dietary curcumin counteracts the outcome of traumatic brain injury on oxidative stress, synaptic plasticity, and cognition. Exp Neurol 197:309–317

    Article  PubMed  CAS  Google Scholar 

  • Wu A, Ying Z, Gómez-Pinilla F (2008) Docosahexaenoic acid dietary supplementation enhances the effects of exercise on synaptic plasticity and cognition. Neuroscience 155:751–759

    Article  PubMed  CAS  Google Scholar 

  • Wu A, Ying Z, Schubert D, Gómez-Pinilla F (2011) Brain and spinal cord interaction: a dietary curcumin derivative counteracts locomotor and cognitive deficits after brain trauma. Neurorehabil Neural Repair 25:332–342

    Article  PubMed  Google Scholar 

  • Xu J, Kao SY, Lee FJ, Song W, Jin LW, Yankner BA (2002) Dopamine-dependent neurotoxicity of alpha-synuclein: a mechanism for selective neurodegeneration in Parkinson disease. Nat Med 8:600–606

    Article  PubMed  CAS  Google Scholar 

  • Yoneyama M, Shiba T, Hasebe S, Ogita K (2011) Adult neurogenesis is regulated by endogenous factors produced during neurodegeneration. J Pharmacol Sci 115(4):425–432

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Chen Y, Jenkins LW, Kochanek PM, Clark RS (2005) Bench-to-bedside review: apoptosis/programmed cell death triggered by traumatic brain injury. Crit Care 9:66–75

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, Lee HG, Perry G, Smith MA (2007) Alzheimer disease, the two-hit hypothesis: an update. Biochim Biophys Acta 1772:494–502

    Article  PubMed  CAS  Google Scholar 

  • Zoladz JA, Pilc A (2010) The effect of physical activity on the brain derived neurotrophic factor: from animal to human studies. J Physiol Pharmacol 61:533–541

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by National Institutes of Health Awards NS50465-06, NS068473, and NS56413.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Gómez-Pinilla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gómez-Pinilla, F., Feng, C. (2012). Molecular Mechanisms for the Ability of Exercise Supporting Cognitive Abilities and Counteracting Neurological Disorders. In: Boecker, H., Hillman, C., Scheef, L., Strüder, H. (eds) Functional Neuroimaging in Exercise and Sport Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3293-7_2

Download citation

Publish with us

Policies and ethics