Skip to main content

NIRS for Measuring Cerebral Hemodynamic Responses During Exercise

  • Chapter
  • First Online:
Book cover Functional Neuroimaging in Exercise and Sport Sciences

Abstract

NIRS is ideally suited to perform brain imaging in various populations during movement as it represents several advantages over other methods (Perrey, Methods 45:289–299, 2008). Thus, it is not surprising that the last two decades have witnessed a considerable increase in the use of NIRS with healthy subjects and patients. This chapter first outlines typical hemodynamic changes measured with NIRS in responses to different exercise demands. Then, we describe its future prospective in neuroimaging clinical studies with emphasis on the fact that although there are still many problems to solve, the potential benefits of NIRS are considerable for obtaining further insights into brain functions during exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amann M, Eldridge MW, Lovering AT, Stickland MK, Pegelow DF, Dempsey JA (2006) Arterial oxygenation influences central motor output and exercise performance via effects on peripheral locomotor muscle fatigue in humans. J Physiol 575:937–952

    Article  PubMed  CAS  Google Scholar 

  • Bhambhani Y, Malik R, Mookerjee S (2007) Cerebral oxygenation declines at exercise intensities above the respiratory compensation threshold. Respir Physiol Neurobiol 156:196–202

    Article  PubMed  Google Scholar 

  • Bigland-Ritchie B, Furbush F, Woods JJ (1986) Fatigue of intermittent submaximal voluntary contractions: central and peripheral factors. J Appl Physiol 61:421–429

    PubMed  CAS  Google Scholar 

  • Dalsgaard MK (2006) Fuelling cerebral activity in exercising man. J Cereb Blood Flow Metab 26:731–750

    Article  PubMed  CAS  Google Scholar 

  • Dalsgaard MK, Secher NH (2007) The brain at work: a cerebral metabolic manifestation of central fatigue? J Neurosci Res 85:3334–3339

    Article  PubMed  CAS  Google Scholar 

  • Derosieres G, Perrey S (2012) Relationship between submaximal handgrip muscle force and NIRS-measured motor cortical activation. Adv Exp Med Biol 737:269–274

    Article  Google Scholar 

  • Gandevia SC (2001) Spinal and supraspinal factors in human muscle fatigue. Physiol Rev 81:1725–1789

    PubMed  CAS  Google Scholar 

  • González-Alonso J, Dalsgaard MK, Osada T, Volianitis S, Dawson EA, Yoshiga CC, Secher NH (2004) Brain and central haemodynamics and oxygenation during maximal exercise in humans. J Physiol 557:331–342

    Article  PubMed  Google Scholar 

  • Hansen AJ (1985) Effect of anoxia on ion distribution in the brain. Physiol Rev 65:101–148

    PubMed  CAS  Google Scholar 

  • Harada T, Miyai I, Suzuki M, Kubota K (2009) Gait capacity affects cortical activation patterns related to speed control in the elderly. Exp Brain Res 193:445–454

    Article  PubMed  Google Scholar 

  • Hirth C, Obrig H, Villringer K, Thiel A, Bernarding J, Mühlnickel W, Flor H, Dirnagl U, Villringer A (1996) Non-invasive functional mapping of the human motor cortex using near-infrared spectroscopy. Neuroreport 7:1977–1981

    Article  PubMed  CAS  Google Scholar 

  • Ide K, Horn A, Secher NH (1999) Cerebral metabolic response to submaximal exercise. J Appl Physiol 87:1604–1608

    PubMed  CAS  Google Scholar 

  • Jöbsis FF (1977) Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198(4323):1264–1267

    Article  PubMed  Google Scholar 

  • Jørgensen LG (1995) Transcranial Doppler ultrasound for cerebral perfusion. Acta Physiol Scand Suppl 625:1–44

    PubMed  Google Scholar 

  • Kleinschmidt A, Obrig H, Requardt M, Merboldt KD, Dirnagl U, Villringer A, Frahm J (1996) Simultaneous recording of cerebral blood oxygenation changes during human brain activation by magnetic resonance imaging and near-infrared spectroscopy. J Cereb Blood Flow Metab 16:817–826

    Article  PubMed  CAS  Google Scholar 

  • Kono T, Matsuo K, Tsunashima K, Kasai K, Takizawa R, Rogers MA, Yamasue H, Yano T, Taketani Y, Kato N (2007) Multiple-time replicability of near-infrared spectroscopy recording during prefrontal activation task in healthy men. Neurosci Res 57:504–512

    Article  PubMed  Google Scholar 

  • Madsen PL (1993) Blood flow and oxygen uptake in the human brain during various states of sleep and wakefulness. Acta Neurol Scand Suppl 148:3–27

    PubMed  CAS  Google Scholar 

  • Maki A, Yamashita Y, Ito Y, Watanabe E, Mayanagi Y, Koizumi H (1995) Spatial and temporal analysis of human motor activity using noninvasive NIR topography. Med Phys 22:1997–2005

    Article  PubMed  CAS  Google Scholar 

  • Millet GY, Lepers R (2004) Alterations of neuromuscular function after prolonged running, cycling and skiing exercises. Sports Med 34:105–116

    Article  PubMed  Google Scholar 

  • Miyai I, Tanabe HC, Sase I, Eda H, Oda I, Konishi I, Tsunazawa Y, Suzuki T, Yanagida T, Kubota K (2001) Cortical mapping of gait in humans: a near-infrared spectroscopic topography study. Neuroimage 14:1186–1192

    Article  PubMed  CAS  Google Scholar 

  • Miyai I, Fujimoto Y, Yamamoto H, Ueda Y, Saito T, Nozaki S, Kang J (2002) Long-term effect of body weight-supported treadmill training in Parkinson’s disease: a randomized controlled trial. Arch Phys Med Rehabil 83:1370–1373

    Article  PubMed  Google Scholar 

  • Miyai I, Yagura H, Hatakenaka M, Oda I, Konishi I, Kubota K (2003) Longitudinal optical imaging study for locomotor recovery after stroke. Stroke 34:2866–2870

    Article  PubMed  Google Scholar 

  • Miyai I, Suzuki M, Hatakenaka M, Kubota K (2006) Effect of body weight support on cortical activation during gait in patients with stroke. Exp Brain Res 169:85–91

    Article  PubMed  Google Scholar 

  • Neary PJ, Roberts AD, Leavins N, Harrison MF, Croll JC, Sexsmith JR (2008) Prefrontal cortex oxygenation during incremental exercise in chronic fatigue syndrome. Clin Physiol Funct Imaging 28:364–372

    Article  Google Scholar 

  • Nielsen HB, Boushel R, Madsen P, Secher NH (1999) Cerebral desaturation during exercise reversed by O2 supplementation. Am J Physiol 277:H1045–H1052

    PubMed  CAS  Google Scholar 

  • Nybo L, Rasmussen P (2007) Inadequate cerebral oxygen delivery and central fatigue during strenuous exercise. Exerc Sport Sci Rev 35:110–118

    Article  PubMed  Google Scholar 

  • Obrig H, Hirth C, Junge-Hülsing JG, Döge C, Wolf T, Dirnagl U, Villringer A (1996) Cerebral oxygenation changes in response to motor stimulation. J Appl Physiol 81:1174–1183

    PubMed  CAS  Google Scholar 

  • Orgogozo JM, Larsen B (1979) Activation of the supplementary motor area during voluntary movement in man suggests it works as a supramotor area. Science 206:847–850

    Article  PubMed  CAS  Google Scholar 

  • Pereira MI, Gomes PS, Bhambhani YN (2007) A brief review of the use of near infrared spectroscopy with particular interest in resistance exercise. Sports Med 37:615–624

    Article  PubMed  Google Scholar 

  • Perrey S (2008) Non-invasive NIR spectroscopy of human brain function during exercise. Methods 45:289–299

    Article  PubMed  CAS  Google Scholar 

  • Racinais S, Girard O, Micallef JP, Perrey S (2007) Failed excitability of spinal motoneurons induced by prolonged running exercise. J Neurophysiol 97:596–603

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen P, Dawson EA, Nybo L, van Lieshout JJ, Secher NH, Gjedde A (2007) Capillary-oxygenation-level-dependent near-infrared spectrometry in frontal lobe of humans. J Cereb Blood Flow Metab 27:1082–1093

    PubMed  CAS  Google Scholar 

  • Rasmussen P, Nielsen J, Overgaard M, Krogh-Madsen R, Gjedde A, Secher NH, Petersen NC (2010) Reduced muscle activation during exercise related to brain oxygenation and metabolism in humans. J Physiol 588:1985–1995

    Article  PubMed  CAS  Google Scholar 

  • Ross EZ, Middleton N, Shave R, George K, Nowicky A (2007) Corticomotor excitability contributes to neuromuscular fatigue following marathon running in man. Exp Physiol 92:417–426

    Article  PubMed  Google Scholar 

  • Rupp T, Perrey S (2008) Prefrontal cortex oxygenation and neuromuscular responses to exhaustive exercise. Eur J Appl Physiol 102:153–163

    PubMed  Google Scholar 

  • Rupp T, Perrey S (2009) Effect of severe hypoxia on prefrontal cortex and muscle oxygenation responses at rest and during exhaustive exercise. Adv Exp Med Biol 645:329–334

    Article  PubMed  Google Scholar 

  • Saitou H, Yanagi H, Hara S, Tscuchiya S, Tomura S (2000) Cerebral blood flow and oxygenation among poststroke hemiplegic patients: effects of 13 rehabilitation tasks measured by near-infrared spectroscopy. Arch Phys Med Rehab 81:1348–1356

    Article  CAS  Google Scholar 

  • Shibuya K, Kuboyama N (2007) Human motor cortex oxygenation during exhaustive pinching task. Brain Res 1156:120–124

    Article  PubMed  CAS  Google Scholar 

  • Shibuya K, Tanaka J, Kuboyama N, Murai S, Ogaki T (2004a) Cerebral cortex activity during supramaximal exhaustive exercise. J Sports Med Phys Fitness 44:215–219

    PubMed  CAS  Google Scholar 

  • Shibuya K, Tanaka J, Kuboyama N, Ogaki T (2004b) Cerebral oxygenation during intermittent supramaximal exercise. Respir Physiol Neurobiol 140:165–172

    Article  PubMed  Google Scholar 

  • Shibuya K, Sadamoto T, Sato K, Moriyama M, Iwadate M (2008) Quantification of delayed oxygenation in ipsilateral primary motor cortex compared with contralateral side during a unimanual dominant-hand motor task using near-infrared spectroscopy. Brain Res 1210:142–147

    Article  PubMed  CAS  Google Scholar 

  • Sirikul B, Hunter GR, Larson-Meyer DE, Desmond R, Newcomer BR (2007) Relationship between metabolic function and skeletal muscle fatigue during a 90 s maximal isometric contraction. Appl Physiol Nutr Metab 32:394–399

    Article  PubMed  Google Scholar 

  • Subudhi AW, Dimmen AC, Roach RC (2007) Effects of acute hypoxia on cerebral and muscle oxygenation during incremental exercise. J Appl Physiol 103:177–183

    Article  PubMed  CAS  Google Scholar 

  • Subudhi AW, Miramon BR, Granger ME, Roach RC (2009) Frontal and motor cortex oxygenation during maximal exercise in normoxia and hypoxia. J Appl Physiol 106:1153–1158

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, Miyai I, Ono T, Oda I, Konishi I, Kochiyama T, Kubota K (2004) Prefrontal and premotor cortices are involved in adapting walking and running speed on the treadmill: an optical imaging study. Neuroimage 23:1020–1026

    Article  PubMed  Google Scholar 

  • Suzuki M, Miyai I, Ono T, Kubota K (2008) Activities in the frontal cortex and gait performance are modulated by preparation. An fNIRS study. Neuroimage 39:600–607

    Article  PubMed  Google Scholar 

  • Timinkul A, Kato M, Omori T, Deocaris CC, Ito A, Kizuka T, Sakairi Y, Nishijima T, Asada T, Soya H (2008) Enhancing effect of cerebral blood volume by mild exercise in healthy young men: a near-infrared spectroscopy study. Neurosci Res 61:242–248

    Article  PubMed  Google Scholar 

  • Wolf M, Ferrari M, Quaresima V (2007) Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications. J Biomed Opt 12:062104

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Perrey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Perrey, S. (2012). NIRS for Measuring Cerebral Hemodynamic Responses During Exercise. In: Boecker, H., Hillman, C., Scheef, L., Strüder, H. (eds) Functional Neuroimaging in Exercise and Sport Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3293-7_14

Download citation

Publish with us

Policies and ethics