Skip to main content

Ion Acceleration and Outflow from Mars and Venus: An Overview

  • Chapter
Book cover The Plasma Environment of Venus, Mars, and Titan

Part of the book series: Space Sciences Series of ISSI ((SSSI,volume 37))

Abstract

Solar wind forcing of Mars and Venus results in outflow and escape of ionospheric ions. Observations show that the replenishment of ionospheric ions starts in the dayside at low altitudes (≈300–800 km), ions moving at a low velocity (5–10 km/s) in the direction of the external/ magnetosheath flow. At high altitudes, in the inner magnetosheath and in the central tail, ions may be accelerated up to keV energies. However, the dominating energization and outflow process, applicable for the inner magnetosphere of Mars and Venus, leads to outflow at energies ≈5–20 eV.

The aim of this overview is to analyze ion acceleration processes associated with the outflow and escape of ionospheric ions from Mars and Venus. Qualitatively, ion acceleration may be divided in two categories:

  1. (a)

    Modest ion acceleration, leading to bulk outflow and/or return flow (circulation).

  2. (b)

    Acceleration to well over escape velocity, up into the keV range.

In the first category we find a processes denoted “planetary wind”, the result of e.g. ambipolar diffusion, wave enhanced planetary wind, and mass-loaded ion pickup. In the second category we find ion pickup, current sheet acceleration, wave acceleration, and parallel electric fields, the latter above Martian crustal magnetic field regions. Both categories involve mass loading. Highly mass-loaded ion energization may lead to a low-velocity bulk flow—A consequence of energy and momentum conservation. It is therefore not self-evident what group, or what processes are connected with the low-energy outflow of ionospheric ions from Mars.

Experimental and theoretical findings on ionospheric ion acceleration and outflow from Mars and Venus are discussed in this report.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • M.H. Acuña et al., Magnetic field and plasma observations at Mars: initial results of the Mars Global Surveyor mission. Science 279, 1676 (1999)

    ADS  Google Scholar 

  • H. Alfvén, On the Origin of the Solar System (Oxford University Press, London, 1953)

    Google Scholar 

  • P.M. Banks, T.E. Holzer, The polar wind. J. Geophys. Res. 73, 6846 (1968)

    Article  ADS  Google Scholar 

  • S. Barabash, R. Lundin, H. Andersson, K. Brinkfeldt et al., The Analyzer of Space Plasmas and Energetic Atoms (ASPERA-3) for the Mars Express Mission. Space Sci. Rev. 126(1–4), 113–164 (2006)

    ADS  Google Scholar 

  • S. Barabash, J.-A. Sauvaud, and the ASPERA-4 Team, The analyzer of space plasmas and energetic atoms (ASPERA-4) for the Venus Express Mission. Planet. Space Sci. 55(12), 1772–1792 (2007a)

    Article  ADS  Google Scholar 

  • S. Barabash, A. Fedorov, R. Lundin, J.-A. Sauvaud, Martian atmospheric erosion rates. Science 315, 501–503 (2007b)

    Article  ADS  Google Scholar 

  • S. Barabash, A. Fedorov, J.J. Sauvaud, R. Lundin, C.T. Russell, Y. Futaana, T.L. Zhang, H. Andersson, K. Brinkfeldt, A. Grigoriev, M. Holmström, M. Yamauchi et al., The loss of ions from Venus through the plasma wake. Nature 450, 770, 650–653 (2007c). doi:10.038/nature06434

    Article  ADS  Google Scholar 

  • D.A. Brain, F. Bagenal, M.H. Acuña, J.E.P. Connerney, D.H. Crider, C. Mazelle, D.L. Mitchell, N.F. Ness, Observations of low-frequency electromagnetic plasma waves upstream from the Martian shock. J. Geophys. Res. 107(A6), SMP 9-1 (2002). doi:10.1029/2000JA000416

    Article  Google Scholar 

  • D.A. Brain, J.S. Halekas, L.M. Peticolas, R.P. Lin, J.G. Luhmann, D.L. Mitchell, G.T. Delory, S.W. Bougher, M.H. Acuña, H. Rème, Geophys Res Lett, 33(1) (2006). doi:10.1029/2005GL024782

  • J.C. Brandt, Y. Yi, C.C. Petersen, M. Snow, Comet de Vico (122P) and latitude variations of plasma phenomena. Planet. Space Sci. 45, 813–819 (1997)

    Article  ADS  Google Scholar 

  • S.H. Brecht, J.R. Ferrante, Global hybrid simulation of unmagnetized planets: comparison of Venus and Mars. J. Geophys. Res. 96, 11209 (1991)

    Article  ADS  Google Scholar 

  • S.H. Brecht, J.R. Ferrrante, J.G. Luhmann, Three-dimensional simulations of the solar wind interaction with Mars. J. Geophys. Res. 98, 1345 (1993)

    Article  ADS  Google Scholar 

  • L.H. Brace, A.J. Kliore, The structure of the Venus ionosphere. Space Sci. Rev. 55, 81–164 (1990)

    ADS  Google Scholar 

  • L.H. Brace, R.F. Theis, W.R. Hoegy, Plasma clouds above the ionopause of Venus and their implications. Planet. Space Sci. 30, 29–37 (1982)

    Article  ADS  Google Scholar 

  • L.H. Brace, W.T. Kasprzak, H.A. Taylor, R.F. Theis, C.T. Russell, A. Barnes, J.D. Mihalov, D.M. Hunten, The ionotail of Venus: its configuration and evidence for ion escape. J. Geophys. Res. 92, 15 (1987)

    Article  ADS  Google Scholar 

  • M.H. Carr, J.W. Head, Oceans on Mars: an assessment of the observational evidence and possible fate. J. Geophys. Res. 108, 5042 (1996). doi:10.1029/2002JE001963

    Article  Google Scholar 

  • E. Chassefière, Hydrodynamic escape of oxygen from primitive atmospheres: application to the cases of Venus and Mars. Icarus 124, 537–552 (1996)

    Article  ADS  Google Scholar 

  • D.H. Crider, D.A. Brain, M.H. Acuña et al., Mars Global Surveyor observations of solar wind magnetic field draping around Mars. Space Sci. Rev. 111, 203–221 (2004)

    Article  ADS  Google Scholar 

  • A.J. Coates, Cometary plasma energization. Ann. Geophys. 9, 158–169 (1991)

    ADS  Google Scholar 

  • E. Chassefière, F. Leblanc, B. Langlais, The combined effects of escape and magnetic field histories at Mars. Planet. Space Sci. 55(3), 343–357 (2007)

    Article  ADS  Google Scholar 

  • C.C. Chaston, L.M. Peticolas, C.W. Carlson, J.P. McFadden et al., Energy deposition by Alfveń waves into the dayside auroral oval:Cluster and FAST observations. J. Geophys. Res. 110, A02211 (2005). doi:10.1029/2004JA010483

    Article  Google Scholar 

  • M. Delva, T.L. Zhang, M. Volwerk, C.T. Russell, H.Y. Wei, Upstream proton cyclotron waves at Venus. Planet. Space Sci. 56(9), 1293–1299 (2008)

    Article  ADS  Google Scholar 

  • E.M. Dubinin, R. Lundin, W. Riedler, K. Schwingenshuh, J.G. Luhmann, C.T. Russell, L.H. Brace, Comparison of observed plasma and magnetic field structures in the wakes of Mars and Venus. J. Geophys. Res. 96, 11189 (1991)

    Article  ADS  Google Scholar 

  • E. Dubinin, R. Lundin, H. Koskinen, N. Pissarenko, Ion acceleration in the martian tail: PHOBOS observations. J. Geophys. Res. 98, 3991 (1993)

    Article  ADS  Google Scholar 

  • E. Dubinin, D. Winningham, M. Fränz, the ASSPERA-3 team, Solar wind plasma protrusion into the martian magnetosphere—ASPERA-3 observations. Icarus 182(2), 343 (2006a)

    Article  ADS  Google Scholar 

  • E. Dubinin, R. Lundin, M. Fränz, J. Woch et al., Electric fields within the martian magnetosphere and ion extraction—ASPERA-3 observations. Icarus 182(2), 337 (2006b)

    Article  ADS  Google Scholar 

  • N.J.T. Edberg, D.A. Brain, M. Lester, S.W.H. Cowley, R. Modolo, M. Fraenz, S. Barabash, Plasma boundary variability at Mars as observed by Mars Global Surveyor and Mars Express. Ann. Geophys. 27, 3537–3550 (2010)

    Article  ADS  Google Scholar 

  • R.E. Ergun, L. Andersson, W.K. Peterson, D. Brain, G.T. Delory, D.L. Mitchell, R.P. Lin, A.W. Yau, Role of plasma waves in Mars’ atmospheric loss. Geophys. Res. Lett. 33, 14 (2006). doi:10.1029/2006GL025785

    Article  Google Scholar 

  • J.R. Espley, P.A. Cloutier, D.H. Crider, D.A. Brain, M.H. Acuña, Low frequency plasma oscillations at Mars during the October 2003 solar storm. J. Geophys. Res. (2005). 2004AGUFMSA13A1120E

    Google Scholar 

  • Y. Futaana, S. Barabash, A.A. Grigorieva, M. Holmström et al., Sub solar ENA jet at Mars. Icarus 182(2), 413 (2006)

    Article  ADS  Google Scholar 

  • A. Fedorov et al., Comparative analysis of Venus and Mars magnetotails. Planet. Space Sci. 56, 812–817 (2008). doi:10.1016/j.pss.2007.12.012

    Article  ADS  Google Scholar 

  • A. Fedorov, S. Barabash, J.-A. Sauvaud, Y. Futaana et al., Venus Express measurement of ion escape rates for solar minimum. J. Geophys Res. 116, A07220 (2011). doi:10.1029/2011JA016-427

    Article  Google Scholar 

  • J. Fox, A. Hac, Photochemical escape of oxygen from Mars: a comparison of the exobase approximation to a Monte Carlo method. Icarus 204(2), 527–544 (2009)

    Article  ADS  Google Scholar 

  • K.I. Gringauz, V.V. Bezrukikh, M.I. Vergin, A.P. Rezimnov, On the electron and ion components of plasma in the antisolar part of near-martian space. J. Geophys. Res. 81, 3349–3352 (1976a)

    Article  ADS  Google Scholar 

  • K.I. Gringauz, V.V. Bezrukikh, T.K. Berus, T. Gombosi et al., Plasma observations near Venus on board the Venera 9 and 10 satellites by means of wide-angle plasma detectors, in Physics of Solar Planetary environment, vol. 2, ed. by D.J. Williams (AGU, Washington, 1976b), p. 918

    Google Scholar 

  • A. Guglielmi, R. Lundin, Ponderomotive upward acceleration of ions by ion-cyclotron and Alfvén waves over the polar regions. J. Geophys. Res. 106, 13219–13236 (2001)

    Article  ADS  Google Scholar 

  • T.I. Gombosi, D.L. De Zeeuw, R.M. Häberli, K.G. Powell, Three-dimensional multiscale MHD model of cometary plasma environments. J. Geophys. Res. 101(A7), 15233–15252 (1996)

    Article  ADS  Google Scholar 

  • H. Gunell, U.V. Amerstorfer, H. Nilsson, C. Grima, M. Koepke, M. Fränz, J.D. Winningham, R.A. Frahm, J.-A. Sauvaud, A. Fedorov, N.V. Erkaev, H.K. Biernat, M. Holmström, R. Lundin, S. Barabash, Shear driven waves in the induced magnetosphere of Mars. Plasma Phys. Control. Fusion 50, 074018 (2008). (9 pp.). doi:10.1088/0741-3335/50/7/074018

    Article  ADS  Google Scholar 

  • M. Güdel, The Sun in time: activity and environment. Living Rev. Solar Physics, 4, 1–137 (2007)

    ADS  Google Scholar 

  • W.B. Hanson, S. Sanatani, D.R. Zuccaro, The martian ionosphere as observed by the Viking retarding potential analyzer. J. Geophys. Res. 82, 4351–4363 (1977)

    Article  ADS  Google Scholar 

  • B. Hultqvist, M. Oieroset, G. Paschmann, R. Treumann (eds.), Magnetospheric plasma sources and losses. Space Sci.Rev. 88, 1–2 (1999)

    Article  ADS  Google Scholar 

  • D.S. Intriligator, H.R. Collard, J.D. Mihalov, R.C. Whitten, J.H. Wolfe, Electron observations and ion flows from the Pioneer Venus Orbiter plasma analyzer experiment. Science 205, 116–119 (1979)

    Article  ADS  Google Scholar 

  • R. Järvinen, E. Kallio, P. Jahnunen, et al., Oxygen ion escape from Venus in a global hybrid simulation: role of the ionospheric O+ ions. Ann. Geophys. 27, 4333–4348 (2009)

    Article  ADS  Google Scholar 

  • E. Kallio, P. Janhunen, Ion escape from Mars in a quasi-neutral hybrid model. J. Geophys. Res. 107, 1035 (2002). doi:10.1029/2001JA000090

    Article  Google Scholar 

  • E. Kallio, R. Järvinen, P. Janhunen, Venus solar wind interaction: asymmetries and the escape of O + ions. Planet. Space Sci. 54, 1472–1481 (2006). doi:10.1016/j.pss.2006.04.030

    Article  ADS  Google Scholar 

  • Y.N. Kulikov, H. Lammer, H.I.M. Lichtenegger, N. Terada, I. Ribas, C. Kolb, D. Langmayr, R. Lundin, E.F. Guinan, S. Barabash, H.K. Biernat, Atmospheric and water loss from early Venus. Planet. Space Sci. 54(13–14), 1425–1444 (2006)

    Article  ADS  Google Scholar 

  • H. Lammer, H.I.M. Lichtenegger, C. Kolb, I. Ribas, E.F. Guinan, R. Abart, S.J. Bauer, Loss of water from Mars: implications for the oxidation of the soil. Icarus 106, 9–25 (2003)

    Article  ADS  Google Scholar 

  • J.G. Luhmann, The solar wind interaction with Venus and Mars: cometary analogies and contrasts. Geophys. Monogr. 61, 5 (1991)

    Article  Google Scholar 

  • J.G. Luhmann, S.J. Bauer, Solar wind effects on atmospheric evolution at Venus and Mars, in Venus and Mars: Atmospheres, Ionospheres, and Solar Wind Interactions, AGU Monograph, vol. 66, pp. 417–430 (1992)

    Chapter  Google Scholar 

  • J.G. Luhmann, J.U. Kozyra, Dayside pickup oxygen ion precipitation at Venus and Mars: spatial distributions, energy deposition and consequences. J. Geophys. Res. 96, 5457 (1991)

    Article  ADS  Google Scholar 

  • J.G. Luhmann, S.A. Ledvina, J.G. Lyon, C.T. Russell, Venus O+ pickup ions: collected PVO results and expectations for Venus Express. Planet. Space Sci. 54, 1457–1471 (2006)

    Article  ADS  Google Scholar 

  • R. Lundin, E. Dubinin, Solar wind energy transfer regions inside the dayside magnetopause. I. Evidence for magnetosheath plasma penetration. Planet. Space Sci. 32, 745–755 (1984)

    Article  ADS  Google Scholar 

  • R. Lundin, E.M. Dubinin, Phobos-2 results on the ionospheric plasma escape from Mars. Adv. Space Res. 12(9), 255 (1992)

    Article  ADS  Google Scholar 

  • R. Lundin, A. Guglielmi, Ponderomotive forces in Cosmos. Space Sci. Rev. 127(1–4), 1–116 (2006). doi:10.1007/s11214-006-8314-8

    ADS  Google Scholar 

  • R. Lundin, A. Zakharov, R. Pellinen, B. Hultqvist, H. Borg, E.M. Dubinin, S. Barabasj, N. Pissarenko, H. Koskinen, I. Liede, First results of the ionospheric plasma escape from Mars. Nature 341, 609 (1989)

    Article  ADS  Google Scholar 

  • R. Lundin, S. Barabash, H. Andersson, M. Holmström et al., Solar wind induced atmospheric erosion at Mars—first results from ASPERA-3 on Mars Express. Science 305, 1933 (2004)

    Article  ADS  Google Scholar 

  • R. Lundin, D. Winningham, S. Barabash and the ASPERA-3 Team, Plasma acceleration above martian magnetic anomalies. Science 311, 980–983 (2006a)

    Article  ADS  Google Scholar 

  • R. Lundin, D. Winningham, S. Barabash et al., Auroral plasma acceleration above martian magnetic anomalies. Space Sci. Rev. 126(1–4), 333–354 (2006b)

    ADS  Google Scholar 

  • R. Lundin, H. Lammer, I. Ribas, Planetary magnetic fields and solar forcing: Implications for atmospheric evolution. Space Sci. Rev. 129(1–3), 245–278 (2007)

    Article  ADS  Google Scholar 

  • R. Lundin, S. Barabash, M. Holmström, H. Nilsson, M. Yamauchi, M. Fraenz, E.M. Dubinin, A comet-like escape of ionospheric plasma from Mars. Geophys. Res. Lett. 35, L18203 (2008a). doi:10.1029/2008GL034811

    Article  ADS  Google Scholar 

  • R. Lundin, S. Barabash, A. Fedorov, M. Holmström, H. Nilsson, J.-A. Sauvaud, M. Yamauchi, Solar forcing and planetary ion escape from Mars. Geophys. Res. Lett. 35, L09203 (2008b). doi:10.1029/2007GL032884

    Article  Google Scholar 

  • R. Lundin, S. Barabash, M. Holmström, H. Nilsson, M. Yamauchi, E.M. Dubinin, M. Fraenz, Atmospheric origin of cold ion escape from Mars. Geophys. Res. Lett. 36, L17202 (2009). doi:10.1029/2009GL039341

    Article  ADS  Google Scholar 

  • R. Lundin, S. Barabash, E. Dubinin, D. Winningham, M. Yamauchi, Low-altitude acceleration of ionospheric ions at Mars. Geophys. Res. Lett. 38, L047064 (2011) doi:10.1029/2011GL047064

    Google Scholar 

  • Y.A. Ma, A.F. Nagy, K.C. Hansen, D.L. DeZeeuw, Three-dimensional multispecies MHD studies of the solar wind interaction with Mars in the presence of crustal fields. J. Geophys. Res. 107, 1282 (2002). doi:10.1029/2002JA009293

    Article  Google Scholar 

  • C. Martinecz, A. Boesswetter, M. Fränz et al., Plasma environment of Venus: comparison of Venus Express ASPERA-4 measurements with 3-D hybrid simulations. J. Geophys. Res. 114, E00B30 (2009). doi:10.1029/2008JE003174

    Article  Google Scholar 

  • J.D. Mihalov, A. Barnes, Evidence for the acceleration of ionospheric O+ in the magnetosheath of Venus. Geophys. Res. Lett. 8, 1277–1280 (1981). doi:10.1029/GL008i012p01277

    Article  ADS  Google Scholar 

  • T.E. Moore, R. Lundin, D. Alcayde, M. Andre, S.B. Ganguli, M. Temerin, A. Yau, Source processes in the high-latitude ionosphere. Space Science Review 88, 7–84 (1999)

    Article  ADS  Google Scholar 

  • A.F. Nagy, T.E. Cravens, S.G. Smith, H.A. Taylor, H.C. Brinton, Model calculations of the dayside ionosphere of Venus—Ionic composition. J. Geophys. Res. 85, 7795–7801 (1980)

    Article  ADS  Google Scholar 

  • A.F. Nagy, D. Winterhalter, K. Sauer et al., The plasma environment of Mars. Space Sci. Rev. 111(1), 33–114 (2004)

    Article  ADS  Google Scholar 

  • H. Nilsson, E. Carlsson, D. Brain, A. Yamauchi, M. Holmström et al., Ion escape from Mars as a function of solar wind conditions: a statistical study. Icarus 206(1), 40–49 (2010)

    Article  ADS  Google Scholar 

  • G. Paschmann, S. Haaland, R. Treumann (eds.), Auroral Plasma Physics. Space Sci. Rev. 103, 1–4 (2002)

    Article  Google Scholar 

  • H. Pérez-de Tejada, Plasma flow in the Mars magnetosphere. J. Geophys. Res. 92, 4713 (1987)

    Article  ADS  Google Scholar 

  • H. Pérez-de-Tejada, Momentum transport in the solar wind erosion of the Mars ionosphere. J. Geophys. Res. 103, 31499–31508 (1998)

    Article  ADS  Google Scholar 

  • C.T. Russell, J.G. Luhmann, K. Schwingenschuh, W. Riedler, Ye. Yeroshenko, Upstream waves at Mars—PHOBOS observations. Geophys. Res. Lett. 17, 897–900 (1990)

    Article  ADS  Google Scholar 

  • Y. Soobiah, A.J. Coates, D.R. Linde, D.O. Kataria et al., Icarus 182(2), 396 (2006). doi:10.1016/j.icarus.2005.10.034

    Article  ADS  Google Scholar 

  • N. Terada, Y.N. Kulikov, H. Lammer, H.I.M. Lichtenegger, T. Tanaka, H. Shinagawa, T. Zhang, Atmosphere and water loss from early Mars under extreme solar wind and extreme ultraviolet conditions. Astrobiology 9(1), 55–70 (2009)

    Article  ADS  Google Scholar 

  • H.A. Taylor, H.C. Brinton, S.J. Bauer, R.E. Hartle, Global observations of the composition and dynamics of the ionosphere of Venus: implications for the solar wind interaction. J. Geophys. Res. 85(A13), 7765–7777 (1980)

    Article  ADS  Google Scholar 

  • J.S. Wang, E. Nielsen, Possible hydrodynamic waves in the topside ionosphere of Mars and Venus. J. Geophys. Res. 107(A4), 1039 (2002). doi:10.1029/2001JA900142

    Article  Google Scholar 

  • J.D. Winningham, R.A. Frahm, J.R. Sharber, the ASPERA-3 Team, Electron oscillations in the induced Martian magnetosphere. Icarus 182(2), 360 (2006)

    Article  ADS  Google Scholar 

  • B.E. Wood, H.-R. Müller, G. Zank, J.L. Linsky, Measured mass loss rates of solar-like stars as a function of age and activity. Astrophys. J. 574, 412–425 (2002)

    Article  ADS  Google Scholar 

  • B.E. Wood, H.-R. Müller, G.P. Zank, J.L. Linsky, S. Redfield, New mass-loss measurements from astrospheric Ly-a absorption. Astrophys. J. 628, L143–L146 (2005)

    Article  ADS  Google Scholar 

  • I. Ribas, E.F. Guinan, M. Güdel, M. Audard, Evolution of the solar activity over time and effects on planetary atmospheres. I. High-energy irradiances (1-1700 Å). Astrophys. J. 622, 680–694 (2005)

    Article  ADS  Google Scholar 

  • C.T. Russell, M.A. Saunders, J.G. Luhmann, Mass-loading and the formation of the Venus tail. Adv. Space Res. 5, 177 (1985)

    Article  ADS  Google Scholar 

  • C.T. Russell, J.G. Luhmann, R.J. Strangeway, The solar wind interaction with Venus through the eyes of the Pioneer Venus Orbiter. Planet. Space Sci. 54, 1482–1495 (2006)

    Article  ADS  Google Scholar 

  • O.L. Vaisberg, Mars-plasma environment, in Physics of Solar Planetary Environment, vol. 2, ed. by D.J. Williams (AGU, Washington, 1976), p. 845

    Google Scholar 

  • O.L. Vaisberg, S.A. Romanov, V.N. Smirnov, I.P. Karpinsky et al., Ion flux parameters in the solar wind-Venus interaction region according to Venera-9 and Venera-10 data, in Physics of Solar Planetary Environment, vol. 2, ed. by D.J. Williams (AGU, Washington, 1976), p. 904

    Google Scholar 

  • D. Vignes et al., The solar wind interaction with Mars: locations and shapes of the bow shock and the magnetic pile-up boundary from the observations of the MAG/ER experiment onboard Mars global surveyor. Geophys. Res. Lett. 27, 49 (2000)

    Article  ADS  Google Scholar 

  • A.W. Yau, W.K. Peterson, E.G. Shelley, Quantitative parametrization of energetic ionospheric ion outflow, modeling magnetospheric plasma. In: Proceedings of the First Huntsville Workshop on Magnetosphere/Ionosphere Plasma Models, Guntersville, AL, 14–16 October 1987 (A89-13779 03-46) (American Geophysical Union, Washington, 1988), pp. 211–217

    Google Scholar 

  • T.L. Zhang, J.G. Luhmann, C.T. Russell, The magnetic barrier at Venus. J. Geophys. Res. 96, 11145–11153 (1991)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rickard Lundin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lundin, R. (2011). Ion Acceleration and Outflow from Mars and Venus: An Overview. In: Szego, K. (eds) The Plasma Environment of Venus, Mars, and Titan. Space Sciences Series of ISSI, vol 37. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3290-6_9

Download citation

Publish with us

Policies and ethics