Skip to main content

Exospheres and Energetic Neutral Atoms of Mars, Venus and Titan

  • Chapter
The Plasma Environment of Venus, Mars, and Titan

Abstract

Our understanding of the upper atmosphere of unmagnetized bodies such as Mars, Venus and Titan has improved significantly in this decade. Recent observations by in situ and remote sensing instruments on board Mars Express, Venus Express and Cassini have revealed characteristics of the neutral upper atmospheres (exospheres) and of energetic neutral atoms (ENAs). The ENA environment in the vicinity of the bodies is by itself a significant study field, but ENAs are also used as a diagnostic tool for the exosphere and the interaction with the upstream plasmas. Synergy between theoretical and modeling work has also improved considerably. In this review, we summarize the recent progress of our understanding of the neutral environment in the vicinity of unmagnetized planets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • J.M. Ajello et al., Titan airglow spectra from the Cassini ultraviolet imaging spectrograph: FUV disk analysis. Geophys. Res. Lett. 35, L06102 (2008). doi:10.1029/2007GL032315

    Google Scholar 

  • A. Amsif, Etude et modélisation de la production d’atomes énergétiques neutres dans l’exosphère de Titan, Ph.D. thesis, University Toulouse III (1996)

    Google Scholar 

  • A. Amsif, J. Dandouras, E.C. Roelof, Modeling the production and the imaging of energetic neutral atoms from Titan’s exosphere. J. Geophys. Res. 102(A10), 22181–22184 (1997)

    Google Scholar 

  • B.J. Anderson, M.H. Acuna, H. Korth, M.E. Purucker, C.L. Johnson, J.A. Slavin, S.C. Solomon, R.L. McNutt, The structure of Mercury’s magnetic field from MESSENGER’s first flyby. Science 321(5885), 82–85 (2008)

    ADS  Google Scholar 

  • D.E. Anderson Jr., C.W. Hord, Mariner 6 and 7 ultraviolet spectrometer experiment: Analysis of hydrogen Lyman-alpha data. J. Geophys. Res. 76(28), 6666–6673 (1971)

    ADS  Google Scholar 

  • D.E. Anderson Jr., The Mariner 5 ultraviolet photometer experiment: Analysis of hydrogen Lyman alpha data. J. Geophys. Res. 81(7), 1213–1216 (1976)

    ADS  Google Scholar 

  • S.K. Atreya, Atmospheres and Ionospheres of the Outer Planets and Their Satellites (Springer, Berlin, 1986)

    Google Scholar 

  • H. Backes et al., Titan’s magnetic field signature during the first Cassini encounter. Science 308(5724), 992–995 (2005)

    ADS  Google Scholar 

  • N. Balakrishnan, V. Kharchenko, A. Dalgarno, Slowing of energetic O(3P) atoms in collisions with N2. J. Geophys. Res. 103(A10), 23393–23398 (1998)

    ADS  Google Scholar 

  • S. Barabash, R. Lundin, T. Zarnowiecki, S. Grzedzielski, Diagnostic of energetic neutral particles at Mars by the ASPERA-C instrument for the Mars 96 mission. Adv. Space Res. 16(4), 81–86 (1995)

    ADS  Google Scholar 

  • S. Barabash, M. Holmström, A. Lukyanov, E. Kallio, Energetic neutral atoms at Mars. IV. Imaging of planetary oxygen. J. Geophys. Res. 107(A10), 1280 (2002). doi:10.1029/2001JA000326

    Google Scholar 

  • S. Barabash et al., The analyzer of space plasmas and energetic atoms (ASPERA-3) for the Mars Express mission. Space Sci. Rev. 126(1), 113–164 (2006)

    ADS  Google Scholar 

  • S. Barabash et al., The analyser of space plasmas and energetic atoms (ASPERA-4) for the Venus Express mission. Planet. Space Sci. 55(12), 1772–1792 (2007a)

    ADS  Google Scholar 

  • S. Barabash, A. Fedorov, R. Lundin, J.-A. Sauvaud, Martian atmospheric erosion rates. Science 315(5811), 501–503 (2007b)

    ADS  Google Scholar 

  • C.F. Barnett, H.T. Hunter, M.I. Fitzpatrick, I. Alverez, C. Cisneros, R.A. Phaneuf, Collisions of H, H2, He and Li atoms and ions with atoms and molecules, in At. Data Fusion, vol. 1 (Oak Ridge Natl. Lab, Oak Ridge, 1990)

    Google Scholar 

  • C.A. Barth, W.G. Fastie, C.W. Hord, J.B. Pearce, K.K. Kelly, A.I. Stewart, G.E. Thomas, G.P. Anderson, O.F. Raper, Mariner 6: ultraviolet spectrum of Mars upper atmosphere. Science 165(3897), 1004–1005 (1969)

    ADS  Google Scholar 

  • C.A. Barth, C.W. Hord, J.B. Pearce, K.K. Kelly, G.P. Anderson, A.I. Stewart, Mariner 6 and 7 ultraviolet spectrometer experiment: upper atmosphere data. J. Geophys. Res. 76(10), 2213–2227 (1971)

    ADS  Google Scholar 

  • B. Basu, J.R. Jasperse, D.J. Strickland, R.E. Daniell Jr., Transport-theoretic model for the electron-proton-hydrogen atom aurora. I. Theory. J. Geophys. Res. 98(A12), 21517–21532 (1993)

    ADS  Google Scholar 

  • J.M. Bell et al., Simulating the one-dimensional structure of Titan’s upper atmosphere. I. Formulation of the Titan global ionosphere-thermosphere model and benchmark simulations. J. Geophys. Res. 115(E12) (2010). doi:10.1029/2010JE003636

  • J.M. Bell, J. Westlake, J. Waite, J. Hunter, Simulating the time-dependent response of Titan’s upper atmosphere to periods of magnetospheric forcing. Geophys. Res. Lett. 38(6), L06202 (2011). doi:10.1029/2010GL046420

    Google Scholar 

  • J. Bertaux, F. Montmessin, Isotopic fractionation through water vapor condensation: the deuteropause, a cold trap for deuterium in the atmosphere of Mars. J. Geophys. Res. 106(E12), 32879–32884 (2001)

    ADS  Google Scholar 

  • I.L. Bertaux, J. Blamont, M. Marcelin, V.G. Kurt, N.N. Romanova, A.S. Smirnov, Lyman-alpha observations of Venera-9 and 10. I. The non-thermal hydrogen population in the exosphere of Venus. Planet. Space Sci. 26(9), 817–831 (1978)

    ADS  Google Scholar 

  • J.L. Bertaux, J.E. Blamont, V.M. Lepine, V.G. Kurt, N.N. Romanova, A.S. Smirnov, Venera 11 and Venera 12 observations of E.U.V. emissions from the upper atmosphere of Venus. Planet. Space Sci. 29(2), 149–166 (1981)

    ADS  Google Scholar 

  • J.L. Bertaux, V.M. Lepine, V.G. Kurt, A.S. Smirnov, Altitude profile of H in the atmosphere of Venus from Lyman alpha observations of Venera 11 and Venera 12 and origin of the hot exospheric component. Icarus 52(2), 221–244 (1982)

    ADS  Google Scholar 

  • J. Bertaux et al., SPICAM on Mars Express: Observing modes and overview of UV spectrometer data and scientific results. J. Geophys. Res. 111, E10S90 (2006). doi:10.1029/2006JE002690

    Google Scholar 

  • J. Bertaux et al., SPICAV on Venus Express: Three spectrometers to study the global structure and composition of the Venus atmosphere. Planet. Space Sci. 55(12), 1673–1700 (2007)

    ADS  Google Scholar 

  • C. Bertucci et al., The magnetic memory of Titan’s ionized atmosphere. Science 321(5895), 1475–1478 (2008)

    ADS  Google Scholar 

  • G. Betz, K. Wien, Energy and angular distributions of sputtered particles. Int. J. Mass Spectrosc. Ion Proces. 140, 1–110 (1994)

    ADS  Google Scholar 

  • S.W. Bougher, S. Engel, R.G. Roble, B. Foster, Comparative terrestrial planet thermospheres. 2. Solar cycle variation of global structure and winds at equinox. J. Geophys. Res. 104(E7), 16591–16611 (1999)

    ADS  Google Scholar 

  • S.W. Bougher, S. Engel, R.G. Roble, B. Foster, Comparative terrestrial planet thermospheres. 3. Solar cycle variation of global structure and winds at solstices. J. Geophys. Res. 105(E7), 17669–17692 (2000)

    ADS  Google Scholar 

  • S. Bougher, S. Engel, D. Hinson, J. Forbes, Mars Global Surveyor radio science electron density profiles: neutral atmosphere implications. Geophys. Res. Lett. 28(16), 3091–3094 (2001)

    ADS  Google Scholar 

  • D.A. Brain, Observations of low-frequency electromagnetic plasma waves upstream from the Martian shock. J. Geophys. Res. 107(A6) (2002)

    Google Scholar 

  • C.P. Brandt, ENA imaging of planetary magnetospheres. IRF Sci. Rep. 259 (1999)

    Google Scholar 

  • P. Brandt, K. Dialynas, I. Dandouras, D.G. Mitchell, P. Garnier, S.M. Krimigis, Titan’s extended atmosphere: INCA results, in Geophysical Research Abstract, vol. 11. EGU General Assembly (2009)

    Google Scholar 

  • P.C. Brandt, K. Dialynas, I. Dandouras, D.G. Mitchell, P. Garnier, S.M. Krimigis, The distribution of Titan’s high-altitude (out to ∼50,000†km) exosphere from energetic neutral atom (ENA) measurements by Cassini/INCA. Planet. Space Sci. (2011, in press). doi:10.1016/j.pss.2011.04.014

  • S.H. Brecht, J.G. Luhmann, D.J. Larson, Simulation of the Saturnian magnetospheric interaction with Titan. J. Geophys. Res. 105(A6), 130 (2000)

    Google Scholar 

  • K. Brinkfeldt et al., First ENA observations at Mars: Solar-wind ENAs on the nightside. Icarus 182(2), 439–447 (2006)

    ADS  Google Scholar 

  • A.L. Broadfoot, S. Kumar, M.J.S. Belton, M.B. McElroy, Ultraviolet observations of Venus from Mariner 10: preliminary results. Science 183(4131), 1315–1318 (1974)

    ADS  Google Scholar 

  • A.L. Broadfoot et al., Extreme ultraviolet observations from Voyager 1 encounter with Saturn. Science 212(4491), 206–211 (1981)

    ADS  Google Scholar 

  • J. Burch, The first two years of image. Space Sci. Rev. 109, 1–24 (2003). doi:10.1023/B:SPAC.0000007510.32068.68

    ADS  Google Scholar 

  • J.W. Chamberlain, Planetary coronae and atmospheric evaporation. Planet. Space Sci. 11(8), 901–960 (1963)

    ADS  Google Scholar 

  • J.W. Chamberlain, D.M. Hunten, Theory of Planetary Atmospheres, an Introduction to Their Physics and Chemistory, 2nd edn. International Geophysics Series, vol. 36 (Academic Press, Orlando, 1987), p. 481

    Google Scholar 

  • G.M. Chanteur, E. Dubinin, R. Modolo, M. Fraenz, Capture of solar wind alpha-particles by the Martian atmosphere. Geophys. Res. Lett. 36(23), L23105 (2009). doi:10.1029/2009GL040235

    ADS  Google Scholar 

  • J.Y. Chaufray, R. Modolo, F. Leblanc, G. Chanteur, R.E. Johnson, J.G. Luhmann, Mars solar wind interaction: formation of the Martian corona and atmospheric loss to space. J. Geophys. Res. 112(E9), E09009 (2007). doi:10.1029/2007JE002915

    Google Scholar 

  • J. Chaufray, J. Bertaux, F. Leblanc, E. Quémerais, Observation of the hydrogen corona with SPICAM on Mars Express. Icarus 195(2), 598–613 (2008)

    ADS  Google Scholar 

  • J.Y. Chaufray, F. Leblanc, E. Quémerais, J.L. Bertaux, Martian oxygen density at the exobase deduced from O I 130.4-nm observations by spectroscopy for the investigation of the characteristics of the atmosphere of Mars on Mars Express. J. Geophys. Res. 114(E2), E02006 (2009). doi:10.1029/2008JE003130

    Google Scholar 

  • J.-Y. Chaufray, J.-L. Bertaux, E. Quémerais, E. Villard, F. Leblanc, Hydrogen density in the dayside Venusian exosphere derived from Lyman-alpha observations by SPICAV on Venus Express. Icarus (2011, in press). doi:10.1016/j.icarus.2011.09.027

  • F. Cipriani, F. Leblanc, J.J. Berthelier, Martian corona: nonthermal sources of hot heavy species. J. Geophys. Res. 112(E7), E07001 (2007). doi:10.1029/2006JE002818

    Google Scholar 

  • J.T. Clarke, J. Bertaux, J. Chaufray, R. Gladstone, E. Quemerais, J.K. Wilson, HST observations of the extended hydrogen corona of Mars, in AAS/Division for Planetary Sciences Meeting Abstracts, vol. 41 (2009), p. 49.11

    Google Scholar 

  • A.J. Coates, F.J. Crary, G.R. Lewis, D.T. Young, J.H. Waite Jr., E.C. Sittler Jr., Discovery of heavy negative ions in Titan’s ionosphere. Geophys. Res. Lett. 34, L22103 (2007). doi:10.1029/2007GL030978

    ADS  Google Scholar 

  • M.R. Collier, On generating kappa-like distribution functions using velocity space Lévy flights. Geophys. Res. Lett. 20(15), 1531–1534 (1993)

    ADS  Google Scholar 

  • M. Collier, Are magnetospheric suprathermal particle distributions (κ functions) inconsistent with maximum entropy considerations? Adv. Space Res. 33(11), 2108–2112 (2004)

    ADS  Google Scholar 

  • M.R. Collier, T.J. Stubbs, Neutral solar wind generated by lunar exospheric dust at the terminator. J. Geophys. Res. 114 (2009). doi:10.1029/2008JA013716

  • M.R. Collier et al., Observations of neutral atoms from the solar wind. J. Geophys. Res. 106(A11), 24893–24906 (2001). doi:10.1029/2000JA000382

    ADS  Google Scholar 

  • M.R. Collier, T.E. Moore, M.-C. Fok, B. Pilkerton, S. Boardsen, H. Khan, Low-energy neutral atom signatures of magnetopause motion in response to southward B z . J. Geophys. Res. 110(A2) (2005). doi:10.1029/2004JA010626

  • T.E. Cravens, C.N. Keller, B. Ray, Photochemical sources of non-thermal neutrals for the exosphere of Titan. Planet. Space Sci. 45(8), 889–896 (1997)

    ADS  Google Scholar 

  • T.E. Cravens et al., Titan’s ionosphere: Model comparisons with Cassini Ta data. Geophys. Res. Lett. 32(12), L12108 (2005). doi:10.1029/2005GL023249

    ADS  Google Scholar 

  • T.E. Cravens, I.P. Robertson, S.A. Ledvina, D. Mitchell, S.M. Krimigis, J.H. Waite Jr., Energetic ion precipitation at Titan. Geophys. Res. Lett. 35(3), L03103 (2008). doi:10.1029/2007GL032451

    Google Scholar 

  • D. Crider et al., Evidence of electron impact ionization in the magnetic pileup boundary of Mars. Geophys. Res. Lett. 27(1), 45–48 (2000)

    ADS  Google Scholar 

  • J. Cui, R.V. Yelle, K. Volk, Distribution and escape of molecular hydrogen in Titan’s thermosphere and exosphere. J. Geophys. Res. 113, E10004 (2008). doi:10.1029/2007JE003032

    ADS  Google Scholar 

  • J. Dandouras, A. Amsif, Production and imaging of energetic neutral atoms from Titan’s exosphere: a 3-D model. Planet. Space Sci. 47(10–11), 1355–1369 (1999)

    ADS  Google Scholar 

  • V. De La Haye et al., Cassini ion and neutral mass spectrometer data in Titan’s upper atmosphere and exosphere: observation of a suprathermal corona. J. Geophys. Res. 112, A07309 (2007a). doi:10.1029/2006JA012222

    Google Scholar 

  • V. De La Haye, J.H. Waite Jr., T. Cravens, A. Nagy, R. Johnson, S. Lebonnois, I. Robertson, Titan’s corona: the contribution of exothermic chemistry. Icarus 191(1), 236–250 (2007b)

    ADS  Google Scholar 

  • M. Delva, M. Volwerk, C. Mazelle, J.Y. Chaufray, J.L. Bertaux, T.L. Zhang, Z. Vörös, Hydrogen in the extended Venus exosphere. Geophys. Res. Lett. (2009). doi:10.1029/2008GL036164

    Google Scholar 

  • K. Dennerl, V. Burwitz, J. Englhauser, C. Lisse, S. Wolk, Discovery of X-rays from Venus with Chandra. Astron. Astrophys. 386, 319–330 (2002)

    ADS  Google Scholar 

  • K. Dennerl, Discovery of X-rays from Mars with Chandra. Astron. Astrophys. 394(3), 1119–1128 (2002)

    ADS  Google Scholar 

  • K. Dennerl, X-rays from Mars. Space Sci. Rev. 126(1), 403–433 (2006)

    ADS  Google Scholar 

  • K. Dennerl, X-rays from Venus observed with Chandra. Planet. Space Sci. 56(10), 1414–1423 (2008)

    ADS  Google Scholar 

  • T.M. Donahue, New analysis of hydrogen and deuterium escape from Venus. Icarus 141(2), 226–235 (1999)

    ADS  Google Scholar 

  • N.J.T. Edberg, H. Nilsson, A.O. Williams, M. Lester, S.E. Milan, S.W.H. Cowley, M. Fränz, S. Barabash, Y. Futaana, Pumping out the atmosphere of Mars through solar wind pressure pulses. Geophys. Res. Lett. 37, L03107 (2010). doi:10.1029/2009GL041814

    Google Scholar 

  • J.R. Espley, P.A. Cloutier, D.H. Crider, D.A. Brain, M.H. Acuña, Low-frequency plasma oscillations at Mars during the October 2003 solar storm. J. Geophys. Res. 110, A09S33 (2005). doi:10.1029/2004JA010935

    Google Scholar 

  • L.W. Esposito et al., The Cassini ultraviolet imaging spectrograph investigation. Space Sci. Rev. 115(1), 299–361 (2004)

    ADS  Google Scholar 

  • P.D. Feldman, E.B. Burgh, S.T. Durrance, A.F. Davidsen, Far-ultraviolet spectroscopy of Venus and Mars at 4 Å resolution with the Hopkins ultraviolet telescope on Astro-2. Astrophys. J. 538(1), 395–400 (2000)

    ADS  Google Scholar 

  • P. Feldman et al., Rosetta-Alice observations of exospheric hydrogen and oxygen on Mars. Icarus (2011, submitted)

    Google Scholar 

  • M.C. Fok, T.E. Moore, M.R. Collier, T. Tanaka, Neutral atom imaging of solar wind interaction with the Earth and Venus. J. Geophys. Res. 109 (2004). doi:10.1029/2003JA010094

  • J.M. Forbes, F.G. Lemoine, S.L. Bruinsma, M.D. Smith, X. Zhang, Solar flux variability of Mars’ exosphere densities and temperatures. Geophys. Res. Lett. L01201 (2008). doi:10.1029/2007GL031904

  • F. Forget, F. Montmessin, J. Bertaux, F. González-Galindo, S. Lebonnois, E. Quémerais, A. Reberac, E. Dimarellis, M.A. López-Valverde, Density and temperatures of the upper Martian atmosphere measured by stellar occultations with Mars Express SPICAM. J. Geophys. Res. 114(E1), E01004 (2009). doi:10.1029/2008JE003086

    Google Scholar 

  • J.L. Fox, The \(\mathrm{O}_{2}^{+}\) vibrational distribution in the Venusian ionosphere. Adv. Space Res. 5(9), 165–169 (1985)

    ADS  Google Scholar 

  • J.L. Fox, Effect of H2 on the martian ionosphere: implications for atmospheric evolution. J. Geophys. Res. 108(A6), 1223 (2003). doi:10.1029/2001JA000203

    Google Scholar 

  • J.L. Fox, A. Dalgarno, Ionization, luminosity, and heating of the upper atmosphere of Mars. J. Geophys. Res. 84(A12), 7315–7333 (1979)

    ADS  Google Scholar 

  • J.L. Fox, S.W. Bougher, Structure, luminosity, and dynamics of the Venus thermosphere. Space Sci. Rev. 55(1), 357–489 (1991)

    ADS  Google Scholar 

  • J.L. Fox, K.Y. Sung, Solar activity variations of the Venus thermosphere/ionosphere. J. Geophys. Res. 106(A10), 21305–21335 (2001)

    ADS  Google Scholar 

  • J.L. Fox, A.B. Hac, Photochemical escape of oxygen from Mars: A comparison of the exobase approximation to a Monte Carlo method. Icarus 204(2), 527–544 (2009)

    ADS  Google Scholar 

  • S.A. Fuselier et al., Energetic neutral atoms from the Earth’s subsolar magnetopause. Geophys. Res. Lett. 37(13) (2010). doi:10.1029/2010GL044140

  • Y. Futaana et al., First ENA observations at Mars: ENA emissions from the Martian upper atmosphere. Icarus 182(2), 424–430 (2006a)

    ADS  Google Scholar 

  • Y. Futaana et al., First ENA observations at Mars: subsolar ENA jet. Icarus 182(2), 413–423 (2006b)

    ADS  Google Scholar 

  • Y. Futaana, S. Barabash, A. Grigoriev, D. Winningham, R. Frahm, M. Yamauchi, R. Lundin, Global response of Martian plasma environment to an interplanetary structure: from ENA and plasma observations at Mars. Space Sci. Rev. 126(1), 315–332 (2006c)

    ADS  Google Scholar 

  • Y. Futaana, S. Nakano, M. Wieser, S. Barabash, Energetic neutral atom occultation: new remote sensing technique to study the lunar exosphere. J. Geophys. Res. 113, A11204 (2008a). doi:10.1029/2008JA013356

    ADS  Google Scholar 

  • Y. Futaana et al., Mars Express and Venus Express multi-point observations of geoeffective solar flare events in December 2006. Planet. Space Sci. 56(6), 873–880 (2008b)

    ADS  Google Scholar 

  • Y. Futaana, S. Barabash, M. Holmström, A. Fedorov, H. Nilsson, R. Lundin, E. Dubinin, M. Fränz, Backscattered solar wind protons by Phobos. J. Geophys. Res. 115(A10), A10213 (2010). doi:10.1029/2010JA015486

    ADS  Google Scholar 

  • A. Galli, P. Wurz, S. Barabash, A. Grigoriev, H. Gunell, R. Lundin, M. Holmstrom, A. Fedorov, Energetic hydrogen and oxygen atoms observed on the nightside of Mars. Space Sci. Rev. 126(1), 267–297 (2006a)

    ADS  Google Scholar 

  • A. Galli, P. Wurz, H. Lammer, H. Lichtenegger, R. Lundin, S. Barabash, A. Grigoriev, M. Holmstrom, H. Gunell, The hydrogen exospheric density profile measured with ASPERA-3/NPD. Space Sci. Rev. 126(1), 447–467 (2006b)

    ADS  Google Scholar 

  • A. Galli et al., First observation of energetic neutral atoms in the Venus environment. Planet. Space Sci. 56(6), 807–811 (2008a)

    ADS  Google Scholar 

  • A. Galli et al., Tailward flow of energetic neutral atoms observed at Venus. J. Geophys. Res. 113, E00B15 (2008b). doi:10.1029/2008JE003096

    Google Scholar 

  • A. Galli et al., Tailward flow of energetic neutral atoms observed at Mars. J. Geophys. Res. (2008c). doi:10.1029/2008JE003139

    Google Scholar 

  • P. Garnier, The exosphere of Titan and its interaction with the kronian magnetosphere, with the use of MIMI data onboard Cassini, Ph.D. thesis, Universite Toulouse III (2007)

    Google Scholar 

  • P. Garnier et al., The exosphere of Titan and its interaction with the kronian magnetosphere: MIMI observations and modeling. Planet. Space Sci. 55(1–2), 165–173 (2007)

    ADS  Google Scholar 

  • P. Garnier et al., The lower exosphere of Titan: energetic neutral atoms absorption and imaging. J. Geophys. Res. 113, A10216 (2008). doi:10.1029/2008JA013029

    ADS  Google Scholar 

  • P. Garnier et al., Titan’s ionosphere in the magnetosheath: Cassini RPWS results during the T32 flyby. Ann. Geophys. 27, 4257–4272 (2009)

    MathSciNet  ADS  Google Scholar 

  • P. Garnier et al., Statistical analysis of the energetic ion and ENA data for the Titan environment. Planet. Space Sci. 58, 1811–1822 (2010)

    ADS  Google Scholar 

  • J.C. Gérard, B. Hubert, J. Gustin, V.I. Shematovich, D. Bisikalo, G.R. Gladstone, L.W. Esposito, EUV spectroscopy of the Venus dayglow with UVIS on Cassini. Icarus 211(1), 70–80 (2011)

    ADS  Google Scholar 

  • F. González-Galindo, F. Forget, M.A. López-Valverde, M.A. Coll, A ground-to-exosphere Martian general circulation model. 2. Atmosphere during solstice conditions-thermospheric polar warming. J. Geophys. Res. 114(E8), E08004 (2009). doi:10.1029/2008JE003277

    Google Scholar 

  • A. Grigoriev, Y. Futaana, S. Barabash, A. Fedorov, Observations of the Martian subsolar ENA jet oscillations. Space Sci. Rev. 126(1), 299–313 (2006)

    ADS  Google Scholar 

  • M. Gruntman, Energetic neutral atom imaging of space plasmas. Rev. Sci. Instrum. 68, 3617–36561 (1997)

    ADS  Google Scholar 

  • S.L. Guberman, Mechanism for the green glow of the upper ionosphere. Science 278(5341), 1276–1278 (1997)

    ADS  Google Scholar 

  • H. Gunell et al., First ENA observations at Mars: charge exchange ENAs produced in the magnetosheath. Icarus 182(2), 431–438 (2006)

    ADS  Google Scholar 

  • M.A. Gurwell, Evolution of deuterium on Venus. Nature 378(6552), 22–23 (1995)

    ADS  Google Scholar 

  • R. Hanel et al., Infrared observations of the Saturnian system from Voyager 1. Science 212(4491), 192–200 (1981)

    ADS  Google Scholar 

  • J. Hasted, Physics of Atomic Collisions (Butterworths, London, 1964)

    Google Scholar 

  • P. Hedelt, Y. Ito, H. Keller, R. Reulke, P. Wurz, H. Lammer, H. Rauer, L. Esposito, Titan’s atomic hydrogen corona. Icarus 210(1), 424–435 (2010). doi:10.1016/j.icarus.2010.06.012

    ADS  Google Scholar 

  • G.W. Hill, Researches in the lunar theory. Am. J. Math. 1(1), 5–26 (1878)

    Google Scholar 

  • R.R. Hodges, An exospheric perspective of isotopic fractionation of hydrogen on Venus. J. Geophys. Res. 104(E4), 8463–8471 (1999)

    MathSciNet  ADS  Google Scholar 

  • R.R. Hodges, Distributions of hot oxygen for Venus and Mars. J. Geophys. Res. 105(E3), 6971–6981 (2000)

    MathSciNet  ADS  Google Scholar 

  • M. Holmström, S. Barabash, E. Kallio, X-ray imaging of the solar wind-Mars interaction. Geophys. Res. Lett. 28(7), 1287–1290 (2001)

    ADS  Google Scholar 

  • M. Holmström, S. Barabash, E. Kallio, Energetic neutral atoms at Mars. 1. Imaging of solar wind protons. J. Geophys. Res. 107, 1277–1285 (2002)

    Google Scholar 

  • J. Horwitz, Core plasma in the magnetosphere. Rev. Geophys. 25(3) (1987)

    Google Scholar 

  • K. Hosokawa, S. Taguchi, S. Suzuki, M.R. Collier, T.E. Moore, M.F. Thomsen, Estimation of magnetopause motion from low-energy neutral atom emission. J. Geophys. Res. 113, A10205 (2008)

    ADS  Google Scholar 

  • J.R. Jasperse, B. Basu, Transport theoretic solutions for auroral proton and H atom fluxes and related quantities. J. Geophys. Res. 87(A2), 811–822 (1982)

    ADS  Google Scholar 

  • R.E. Johnson, The magnetospheric plasma-driven evolution of satellite atmospheres. Astrophys. J. 609, L99–L102 (2004)

    ADS  Google Scholar 

  • R. Johnson, M. Combi, J. Fox, W.H. Ip, F. Leblanc, M. McGrath, V. Shematovich, D. Strobel, J. Waite, Exospheres and atmospheric escape. Space Sci. Rev. 139(1), 355–397 (2008)

    ADS  Google Scholar 

  • R.E. Johnson, Sputtering and heating of Titan’s upper atmosphere. Philos. Trans. R. Soc. Lond. A 367, 753–771 (2009)

    ADS  Google Scholar 

  • E. Kallio, An empirical model of the solar wind flow around Mars. J. Geophys. Res. 101(A5), 11133–11147 (1996)

    ADS  Google Scholar 

  • E. Kallio, S. Barabash, Atmospheric effects of precipitating energetic hydrogen atoms on the Martian atmosphere. J. Geophys. Res. 106(A1), 165–177 (2001)

    ADS  Google Scholar 

  • E. Kallio, P. Janhunen, Atmospheric effects of proton precipitation in the Martian atmosphere and its connection to the Mars-solar wind interaction. J. Geophys. Res. 106(A4), 5617–5634 (2001)

    ADS  Google Scholar 

  • E. Kallio, P. Janhunen, Solar wind and magnetospheric ion impact on Mercury’s surface. Geophys. Res. Lett. 30(17), 1877–1880 (2003). doi:10.1029/2003GL017842

    ADS  Google Scholar 

  • E. Kallio, I. Sillanpää, P. Janhunen, Titan in subsonic and supersonic flow. Geophys. Res. Lett. L15703 (2004). doi:10.1029/2004GL020344

  • E. Kallio et al., Energetic neutral atoms (ENA) at Mars: properties of the hydrogen atoms produced upstream of the martian bow shock and implications for ENA sounding technique around non-magnetized planets. Icarus 182(2), 448–463 (2006)

    ADS  Google Scholar 

  • G.M. Keating et al., Models of Venus neutral upper atmosphere: structure and composition. Adv. Space Res. 5(11), 117–171 (1985)

    ADS  Google Scholar 

  • G.M. Keating et al., The structure of the upper atmosphere of Mars: In situ accelerometer measurements from Mars Global Surveyor. Science 279(5357), 1672–1676 (1998)

    ADS  Google Scholar 

  • D. Kella, L. Vejby-Christensen, P.J. Johnson, H.B. Pedersen, L.H. Andersen, The source of green light emission determined from a Heavy-Ion storage ring experiment. Science 276(5318), 1530–1533 (1997)

    Google Scholar 

  • C.N. Keller, T.E. Cravens, L. Gan, A model of the ionosphere of Titan. J. Geophys. Res. 97(A8), 12117–12135 (1992)

    ADS  Google Scholar 

  • V. Kharchenko, A. Dalgarno, B. Zygelman, J. Yee, Energy transfer in collisions of oxygen atoms in the terrestrial atmosphere. J. Geophys. Res. 105(A11), 24899–24906 (2000)

    ADS  Google Scholar 

  • J. Kim, A.F. Nagy, J.L. Fox, T.E. Cravens, Solar cycle variability of hot oxygen atoms at Mars. J. Geophys. Res. 103(A12), 29339–29342 (1998)

    ADS  Google Scholar 

  • V. Krasnopolsky, On the deuterium abundance on Mars and some related problems. Icarus 148(2), 597–602 (2000)

    ADS  Google Scholar 

  • V.A. Krasnopolsky, Mars’ upper atmosphere and ionosphere at low, medium, and high solar activities: Implications for evolution of water. J. Geophys. Res. 107E(12), 5128 (2002)

    ADS  Google Scholar 

  • V.A. Krasnopolsky, Solar activity variations of thermospheric temperatures on Mars and a problem of CO in the lower atmosphere. Icarus 207(2), 638–647 (2010)

    ADS  Google Scholar 

  • V.A. Krasnopolsky, P.D. Feldman, Detection of molecular hydrogen in the atmosphere of Mars. Science 294(5548), 1914–1917 (2001)

    ADS  Google Scholar 

  • V.A. Krasnopolsky, P.D. Feldman, Far ultraviolet spectrum of Mars. Icarus 160(1), 86–94 (2002)

    ADS  Google Scholar 

  • V.A. Krasnopolsky, G.R. Gladstone, Helium on Mars: EUVE and PHOBOS data and implications for Mars’ evolution. J. Geophys. Res. 101(A7), 15765–15772 (1996)

    ADS  Google Scholar 

  • V.A. Krasnopolsky, G.R. Gladstone, Helium on Mars and Venus: EUVE observations and modeling. Icarus 176(2), 395–407 (2005)

    ADS  Google Scholar 

  • V.A. Krasnopolsky, M.J. Mumma, G.R. Gladstone, Detection of atomic deuterium in the upper atmosphere of Mars. Science 280(5369), 1576–1580 (1998)

    ADS  Google Scholar 

  • S.M. Krimigis et al., Magnetosphere imaging instrument (MIMI) on the Cassini mission to Saturn/Titan. Space Sci. Rev. 114(1), 233–329 (2004)

    ADS  Google Scholar 

  • G.P. Kuiper, Titan: a satellite with an atmosphere. Astrophys. J. 100, 378–383 (1944)

    ADS  Google Scholar 

  • F. Leblanc, J. Chaufray, J. Lilensten, O. Witasse, J. Bertaux, Martian dayglow as seen by the SPICAM UV spectrograph on Mars Express. J. Geophys. Res. 111(E9), E09S11 (2006). doi:10.1029/2005JE002664

    Google Scholar 

  • H. Lichtenegger, H. Lammer, W. Stumptner, Energetic neutral atoms at Mars. 3. Flux and energy distributions of planetary energetic H atoms. J. Geophys. Res. 107(A10), 1279 (2002). doi:10.1029/2001JA000322

    Google Scholar 

  • H. Lichtenegger, H. Lammer, Y. Kulikov, S. Kazeminejad, G. Molina-Cuberos, R. Rodrigo, B. Kazeminejad, G. Kirchengast, Effects of low energetic neutral atoms on Martian and Venusian dayside exospheric temperature estimations. Space Sci. Rev. 126(1), 469–501 (2006)

    ADS  Google Scholar 

  • H.I.M. Lichtenegger, H. Gröller, H. Lammer, Y.N. Kulikov, V.I. Shematovich, On the elusive hot oxygen corona of Venus. Geophys. Res. Lett. 36, L10204 (2009). doi:10.1029/2009GL037575

    ADS  Google Scholar 

  • G.F. Lindal, G.E. Wood, H.B. Hotz, D.N. Sweetnam, V.R. Eshleman, G.L. Tyler, The atmosphere of Titan: an analysis of the Voyager 1 radio occultation measurements. Icarus 53(2), 348–363 (1983)

    ADS  Google Scholar 

  • B.G. Lindsay, R.F. Stebbings, Charge transfer cross sections for energetic neutral atom data analysis. J. Geophys. Res. 110(A12) (2005). doi:10.1029/2005JA011298

  • J.G. Luhmann, J.U. Kozyra, Dayside pickup oxygen ion precipitation at Venus and Mars: spatial distributions, energy deposition and consequences. J. Geophys. Res. 96(A4), 5457–5467 (1991)

    ADS  Google Scholar 

  • J.G. Luhmann, C.T. Russell, K. Schwingenschuh, E. Eroshenko, A comparison of induced magnetotails of planetary bodies—Venus, Mars, and Titan. J. Geophys. Res. 96(A7), 11199–11208 (1991)

    ADS  Google Scholar 

  • J.G. Luhmann et al., Venus Express observations of atmospheric oxygen escape during the passage of several coronal mass ejections. J. Geophys. Res. 113, E00B04 (2008). doi:10.1029/2008JE003092

    Google Scholar 

  • H. Luna, M. Michael, M.B. Shah, R.E. Johnson, C.J. Latimer, J.W. McConkey, Dissociation of N2 in capture and ionization collisions with fast H+ and N+ ions and modeling of positive ion formation in the Titan atmosphere. J. Geophys. Res. 108(E4), 5033 (2003). doi:10.1029/2002JE001950

    Google Scholar 

  • R. Lundin et al., First measurements of the ionospheric plasma escape from Mars. Nature 341(6243), 609–612 (1989)

    ADS  Google Scholar 

  • R. Lundin et al., Aspera/Phobos measurements of the ion outflow from the Martian ionosphere. Geophys. Res. Lett. 17(6), 873–876 (1990)

    ADS  Google Scholar 

  • R. Lundin et al., Solar wind-induced atmospheric erosion at Mars: First results from ASPERA-3 on Mars Express. Science 305(5692), 1933–1936 (2004)

    ADS  Google Scholar 

  • R. Lundin, S. Barabash, A. Fedorov, M. Holmström, H. Nilsson, J.A. Sauvaud, M. Yamauchi, Solar forcing and planetary ion escape from Mars. Geophys. Res. Lett. 35, L09203 (2008). doi:10.1029/2007GL032884

    Google Scholar 

  • Y. Ma, A.F. Nagy, K.C. Hansen, D.L. DeZeeuw, T.I. Gombosi, K.G. Powell, Three-dimensional multispecies MHD studies of the solar wind interaction with Mars in the presence of crustal fields. J. Geophys. Res. 107(A10) (2002). doi:10.1029/2002JA009293

  • E. Mazarico, M.T. Zuber, F.G. Lemoine, D.E. Smith, Martian exospheric density using Mars Odyssey radio tracking data. J. Geophys. Res. 112(E5) (2007). doi:10.1029/2006JE002734

  • D. McComas et al., IBEX—interstellar boundary explorer. Space Sci. Rev. 146(1), 11–33 (2009). doi:10.1007/s11214-009-9499-4

    ADS  Google Scholar 

  • M.B. McElroy, M.J. Prather, J.M. Rodriguez, Escape of hydrogen from Venus. Science 215(4540), 1614–1615 (1982)

    ADS  Google Scholar 

  • F.J. Mehr, M.A. Biondi, Electron temperature dependence of recombination of O2+ and N2+ ions with electrons. Phys. Rev. 181(1), 264 (1969)

    ADS  Google Scholar 

  • A.B. Meinel, Doppler-shifted auroral hydrogen emission. Astrophys. J. 113, 50 (1951)

    ADS  Google Scholar 

  • M. Michael, R. Johnson, F. Leblanc, M. Liu, J. Luhmann, V. Shematovich, Ejection of nitrogen from Titan’s atmosphere by magnetospheric ions and pick-up ions. Icarus 175(1), 263 (2005)

    ADS  Google Scholar 

  • A. Milillo et al., Statistical analysis of the observations of the MEX/ASPERA-3 NPI in the shadow. Planet. Space Sci. 57(8–9), 1000–1007 (2009)

    ADS  Google Scholar 

  • D. Mitchell, The Mars atmosphere and volatile evolution mission, in Aerospace Conference, 2010 IEEE (2010), pp. 1–7

    Google Scholar 

  • D. Mitchell et al., High energy neutral atom (HENA) imager for the IMAGE mission. Space Sci. Rev. 91(1), 67–112 (2000)

    ADS  Google Scholar 

  • D.G. Mitchell, P.C. Brandt, E.C. Roelof, J. Dandouras, S.M. Krimigis, B.H. Mauk, Energetic neutral atom emissions from Titan interaction with Saturn’s magnetosphere. Science 308(5724), 989–992 (2005)

    ADS  Google Scholar 

  • T. Moore et al., The low-energy neutral atom imager for IMAGE. Space Sci. Rev. 91(1), 155–195 (2000)

    ADS  Google Scholar 

  • J. Moritz, Energetic protons at low equatorial altitudes (energetic protons detection below radiation belt at equatorial latitudes from Azur satellite measurements, hypothesizing exospheric and upper atmospheric charge exchange processes). Z. Geophys. 38, 701–717 (1972)

    Google Scholar 

  • I.C.F. Müller-Wodarg, R.V. Yelle, N. Borggren, J.H. Waite Jr., Waves and horizontal structures in Titan’s thermosphere. J. Geophys. Res. 111, A12315 (2006)

    ADS  Google Scholar 

  • I.C.F. Müller-Wodarg, R.V. Yelle, J. Cui, J.H. Waite, Horizontal structures and dynamics of Titan’s thermosphere. J. Geophys. Res. 113, E10005 (2008). doi:10.1029/2007JE003033

    Google Scholar 

  • A. Mura, A. Milillo, S. Orsini, E. Kallio, S. Barabash, Energetic neutral atoms at Mars. 2. Imaging of the solar wind-Phobos interaction. J. Geophys. Res. 107(A10), 1278 (2002). doi:10.1029/2001JA000328

    Google Scholar 

  • A. Mura et al., ENA detection in the dayside of Mars: ASPERA-3 NPD statistical study. Planet. Space Sci. 56(6), 840–845 (2008)

    ADS  Google Scholar 

  • A.F. Nagy, T.E. Cravens, Hot oxygen atoms in the upper atmospheres of Venus and Mars. Geophys. Res. Lett. 15(5), 433–435 (1988)

    ADS  Google Scholar 

  • A.F. Nagy, T.E. Cravens, J. Yee, A.I.F. Stewart, Hot oxygen atoms in the upper atmosphere of Venus. Geophys. Res. Lett. 8(6), 629–632 (1981)

    ADS  Google Scholar 

  • N.F. Ness, K.W. Behannon, R.P. Lepping, Y.C. Whang, K.H. Schatten, Magnetic field observations near Mercury: preliminary results from Mariner 10. Science 185(4146), 151–160 (1974). doi:10.1126/science.185.4146.151

    ADS  Google Scholar 

  • F.M. Neubauer, D.A. Gurnett, J.D. Scudder, R.E. Hartle, Titan’s magnetospheric interaction, in Saturn, ed. by T. Gehrels, M.S. Matthews (University of Arizona Press, Tuscon, 1984), pp. 760–787

    Google Scholar 

  • F.M. Neubauer et al., Titan’s near magnetotail from magnetic field and electron plasma observations and modeling: Cassini flybys TA, TB, and T3. J. Geophys. Res. 111, A10220 (2006). doi:10.1029/2006JA011676

    ADS  Google Scholar 

  • J.H. Newman, Y.S. Chen, K.A. Smith, R.F. Stebbings, Differential cross sections for scattering of 0.5-, 1.5-, and 5.0-keV hydrogen atoms by He, H2, N2, and O2. J. Geophys. Res. 91(A8), 8947–8954 (1986)

    ADS  Google Scholar 

  • A.O. Nier, M.B. Mcelroy, Composition and structure of Mars’ upper atmosphere: results from the neutral mass spectrometers on Viking 1 and 2. J. Geophys. Res. 82(28), 4341–4349 (1977)

    ADS  Google Scholar 

  • S. Noël, G.W. Prölss, Heating and radiation production by neutralized ring current particles. J. Geophys. Res. 98(A10), 325 (1993)

    Google Scholar 

  • S. Orsini, L.G. Blomberg, D. Delcourt, R. Grard, S. Massetti, K. Seki, J. Slavin, Magnetosphere-exosphere-surface coupling at Mercury. Space Sci. Rev. 132, 551–573 (2007)

    ADS  Google Scholar 

  • T. Owen, J.P. Maillard, C. de Bergh, B.L. Lutz, Deuterium on Mars: the abundance of HDO and the value of D/H. Science 240(4860), 1767 (1988)

    ADS  Google Scholar 

  • L.J. Paxton, D.E. Anderson Jr., A.I.F. Stewart, Analysis of pioneer Venus orbiter ultraviolet spectrometer Lyman α data from near the subsolar region. J. Geophys. Res. 93(A3), 1766–1772 (1988)

    ADS  Google Scholar 

  • A. Petrignani, F. Hellberg, R.D. Thomas, M. Larsson, P.C. Cosby, W.J. van der Zande, Electron energy-dependent product state distributions in the dissociative recombination of \(\mathrm{O}_{2}^{+}\). J. Chem. Phys. 122(23), 234,311-8 (2005a)

    Google Scholar 

  • A. Petrignani, W.J. van der Zande, P.C. Cosby, F. Hellberg, R.D. Thomas, M. Larsson, Vibrationally resolved rate coefficients and branching fractions in the dissociative recombination of \(\mathrm{O}_{2}^{+}\). J. Chem. Phys. 122(1), 014,302-11 (2005b)

    Google Scholar 

  • S.M. Petrinec et al., Neutral atom imaging of the magnetospheric cusps. J. Geophys. Res. 116(A7) (2011). doi:10.1029/2010JA016357

  • R. Peverall et al., Dissociative recombination and excitation of \(\mathrm{O}_{2}^{+}\): cross sections, product yields and implications for studies of ionospheric airglows. J. Chem. Phys. 114(15), 6679–6689 (2001)

    ADS  Google Scholar 

  • C. Pollock et al., Medium energy neutral atom (MENA) imager for the IMAGE mission. Space Sci. Rev. 91(1), 113–154 (2000)

    MathSciNet  ADS  Google Scholar 

  • M.H. Rees, Physics and Chemistry of the Upper Atmosphere (Cambridge University Press, Cambridge, 1989)

    Google Scholar 

  • E. Richter, H.J. Fahr, H.U. Nass, Satellite particle exospheres of planets: application to Earth. Planet. Space Sci. 27(9), 1163–1173 (1979)

    ADS  Google Scholar 

  • J. Rodriguez, M. Prather, M. McElroy, Hydrogen on Venus: exospheric distribution and escape. Planet. Space Sci. 32(10), 1235–1255 (1984)

    ADS  Google Scholar 

  • E.C. Roelof, Energetic neutral atom image of a storm-time ring current. Geophys. Res. Lett. 14(6), 652–655 (1987)

    ADS  Google Scholar 

  • E.C. Roelof, Theory of “optically-thick” ENAS emission from Titan’s exosphere, in AGU Fall Meeting (2005)

    Google Scholar 

  • E. Roelof, A. Skinner, Extraction of ion distributions from magnetospheric ENA and EUV images. Space Sci. Rev. 91(1), 437–459 (2000)

    ADS  Google Scholar 

  • E. Roelof, D. Williams, The terrestrial ring current-from in situ measurements to global images using energetic neutral atoms. Johns Hopkins APL Tech. Dig. 9, 144–163 (1988)

    ADS  Google Scholar 

  • E.C. Roelof, D.G. Mitchell, D.J. Williams, Energetic neutral atoms (E∼ 50 keV) from the ring current: IMP 7/8 and ISEE 1. J. Geophys. Res. 90(11), 10991–11008 (1985)

    ADS  Google Scholar 

  • A.M. Rymer, H.T. Smith, A. Wellbrock, A.J. Coates, D.T. Young, Discrete classification and electron energy spectra of Titan’s varied magnetospheric environment. Geophys. Res. Lett. 36, L15109 (2009). doi:10.1029/2009GL039427

    ADS  Google Scholar 

  • Y. Saito et al., Solar wind proton reflection at the lunar surface: low energy ion measurement by MAP-PACE onboard SELENE (KAGUYA). Geophys. Res. Lett. 35, L24205 (2008). doi:10.1029/2008GL036077

    ADS  Google Scholar 

  • A. Schaufelberger, P. Wurz, H. Lammer, Y.N. Kulikov, Is hydrodynamic escape from Titan possible? Planet. Space Sci. (2011, in press). doi:10.1016/j.pss.2011.03.011

  • F.D. Schowengerdt, J.T. Park, Energy-loss spectra and collision cross sections for impact of 20–120-keV positive ions on molecular nitrogen. Phys. Rev. A 1(3), 848–855 (1970)

    ADS  Google Scholar 

  • C.H. Sheehan, J. St.-Maurice, Dissociative recombination of \(\mathrm{N}_{2}^{+}\), \(\mathrm{O}_{2}^{+}\), and NO+: rate coefficients for ground state and vibrationally excited ions. J. Geophys. Res. 109, A03302 (2004). doi:10.1029/2003JA010132

    Google Scholar 

  • D.E. Shemansky, A.I.F. Stewart, R.A. West, L.W. Esposito, J.T. Hallett, X. Liu, The Cassini UVIS stellar probe of the Titan atmosphere. Science 308(5724), 978–982 (2005)

    ADS  Google Scholar 

  • B.D. Shizgal, Escape of h and d from Mars and Venus by energization with hot oxygen. J. Geophys. Res. 104(A7), 14833–14846 (1999)

    ADS  Google Scholar 

  • C. Simon, O. Witasse, F. Leblanc, G. Gronoff, J. Bertaux, Dayglow on Mars: kinetic modelling with SPICAM UV limb data. Planet. Space Sci. 57(8–9), 1008–1021 (2009)

    ADS  Google Scholar 

  • E.C. Sittler, R.E. Hartle, C. Bertucci, A. Coates, T. Cravens, I. Dandouras, D. Shemansky, Energy deposition processes in Titan’s upper atmosphere and its induced magnetosphere, in Titan from Cassini-Huygens (Springer, Berlin, 2009), pp. 393–453

    Google Scholar 

  • G.R. Smith, D.F. Strobel, A.L. Broadfoot, B.R. Sandel, D.E. Shemansky, J.B. Holberg, Titan’s upper atmosphere: composition and temperature from the EUV solar occultation results. J. Geophys. Res. 87(A3), 1351–1359 (1982)

    ADS  Google Scholar 

  • H.T. Smith, D.G. Mitchell, R.E. Johnson, C.P. Paranicas, Investigation of energetic proton penetration in Titan’s atmosphere using the Cassini INCA instrument. Planet. Space Sci. 57(13), 1538–1546 (2009)

    ADS  Google Scholar 

  • S. Snowden, M. Collier, K. Kuntz, XMM-Newton observation of solar wind charge exchange emission. Astrophys. J. 610, 1182–1190 (2004)

    ADS  Google Scholar 

  • S.A. Stern, The lunar atmosphere: History, status, current problems, and context. Rev. Geophys. 37(4), 453–491 (1999)

    ADS  Google Scholar 

  • A.I.F. Stewart, M.J. Alexander, R.R. Meier, L.J. Paxton, S.W. Bougher, C.G. Fesen, Atomic oxygen in the martian thermosphere. J. Geophys. Res. 97(A1), 91–102 (1992)

    ADS  Google Scholar 

  • D.J. Strickland, G.E. Thomas, P.R. Sparks, Mariner 6 and 7 ultraviolet spectrometer experiment: Analysis of the O I 1304- and 1356-A emissions. J. Geophys. Res. 77(22), 4052–4068 (1972)

    ADS  Google Scholar 

  • D.J. Strickland, A.I. Stewart, C.A. Barth, C.W. Hord, A.L. Lane, Mariner 9 ultraviolet spectrometer experiment: Mars atomic oxygen 1304-A emission. J. Geophys. Res. 78(22), 4547–4559 (1973)

    ADS  Google Scholar 

  • D.F. Strobel, Titan’s hydrodynamically escaping atmosphere. Icarus 193(2), 588–594 (2008)

    ADS  Google Scholar 

  • D.F. Strobel, Titan’s hydrodynamically escaping atmosphere: escape rates and the structure of the exobase region. Icarus 202(2), 632–641 (2009)

    ADS  Google Scholar 

  • P. Takacs, A. Broadfoot, G. Smith, S. Kumar, Mariner 10 observations of hydrogen Lyman alpha emission from the Venus exosphere: evidence of complex structure. Planet. Space Sci. 28(7), 687–701 (1980)

    ADS  Google Scholar 

  • T. Tanaka, K. Murawski, Three-dimensional MHD simulation of the solar wind interaction with the ionosphere of Venus: results of two-component reacting plasma simulation. J. Geophys. Res. 102(A9), 19805–19821 (1997)

    ADS  Google Scholar 

  • N. Terada, S. Machida, H. Shinagawa, Global hybrid simulation of the Kelvin-Helmholts instability at the Venus ionosphere. J. Geophys. Res. 107(A12), 1471 (2002)

    Google Scholar 

  • D. Toublanc, J.P. Parisot, J. Brillet, D. Gautier, F. Raulin, C.P. McKay, Photochemical modeling of Titan’s atmosphere. Icarus 113(1), 2–26 (1995)

    ADS  Google Scholar 

  • O.J. Tucker, R. Johnson, Thermally driven atmospheric escape: Monte Carlo simulations for Titan’s atmosphere. Planet. Space Sci. 57(14–15), 1889–1894 (2009)

    ADS  Google Scholar 

  • C. Tully, R.E. Johnson, Low energy collisions between ground-state oxygen atoms. Planet. Space Sci. 49(6), 533–537 (2001)

    ADS  Google Scholar 

  • A. Valeille, M.R. Combi, S.W. Bougher, V. Tenishev, A.F. Nagy, Three-dimensional study of Mars upper thermosphere/ionosphere and hot oxygen corona. 2. Solar cycle, seasonal variations, and evolution over history. J. Geophys. Res. 114(E11), E11006 (2009). doi:10.1029/2009JE003389

    ADS  Google Scholar 

  • A. Valeille, M.R. Combi, V. Tenishev, S.W. Bougher, A.F. Nagy, A study of suprathermal oxygen atoms in Mars upper thermosphere and exosphere over the range of limiting conditions. Icarus 206(1), 18–27 (2010)

    ADS  Google Scholar 

  • V.M. Vasyliunas, A survey of low-energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3. J. Geophys. Res. 73(9), 2839–2884 (1968)

    ADS  Google Scholar 

  • R.J. Vervack, B.R. Sandel, D.F. Strobel, New perspectives on Titan’s upper atmosphere from a reanalysis of the Voyager 1 UVS solar occultations. Icarus 170(1), 91–112 (2004)

    ADS  Google Scholar 

  • M. Volwerk, M. Delva, Y. Futaana, A. Retino, Z. Voros, T.L. Zhang, W. Baumjohann, S. Barabash, Substorm activity in Venus’s magnetotail. Ann. Geophys. 27, 2321–2330 (2009)

    ADS  Google Scholar 

  • U. von Zahn, D. Kankowsky, K. Mauersberger, A.O. Nier, D.M. Hunten, Venus thermosphere: in situ composition measurements, the temperature profile, and the homopause altitude. Science 203(4382), 768–770 (1979)

    ADS  Google Scholar 

  • U. von Zahn, K.H. Fricke, D.M. Hunten, D. Krankowsky, K. Mauersberger, A.O. Nier, The upper atmosphere of Venus during morning conditions. J. Geophys. Res. 85(A13), 7829–7840 (1980)

    ADS  Google Scholar 

  • J.H. Waite et al., The Cassini ion and neutral mass spectrometer (INMS) investigation. Space Sci. Rev. 114(1), 113–231 (2004)

    ADS  Google Scholar 

  • J.H. Waite et al., Ion neutral mass spectrometer results from the first flyby of Titan. Science 308(5724), 982–986 (2005)

    ADS  Google Scholar 

  • J.H. Waite, D.T. Young, T.E. Cravens, A.J. Coates, F.J. Crary, B. Magee, J. Westlake, The process of tholin formation in Titan’s upper atmosphere. Science 316(5826), 870–875 (2007)

    ADS  Google Scholar 

  • L. Wang, D. Fritts, R. Tolson, Nonmigrating tides inferred from the Mars Odyssey and Mars Global Surveyor aerobraking data. Geophys. Res. Lett. 33, L23201 (2006). doi:10.1029/2006GL027753

    ADS  Google Scholar 

  • B. Wargelin, M. Markevitch, M. Juda, V. Kharchenko, R. Edgar, A. Dalgarno, Chandra observations of the “dark” moon and geocoronal solar wind charge transfer. Astrophys. J. 607, 596–610 (2004)

    ADS  Google Scholar 

  • J.H. Westlake, J.M. Bell, J.H. Waite Jr., R.E. Johnson, J.G. Luhmann, K.E. Mandt, B.A. Magee, A.M. Rymer, Titan’s thermospheric response to various plasma environments. J. Geophys. Res. 116(A3) (2011) doi:10.1029/2010JA016251

  • M. Wieser et al., Extremely high reflection of solar wind protons as neutral hydrogen atoms from regolith in space. Planet. Space Sci. 57, 2132–2134 (2009)

    ADS  Google Scholar 

  • J. Winningham et al., Electron oscillations in the induced Martian magnetosphere. Icarus 182(2), 360–370 (2006)

    ADS  Google Scholar 

  • P. Withers, S. Bougher, G. Keating, The effects of topographically-controlled thermal tides in the martian upper atmosphere as seen by the MGS accelerometer. Icarus 164(1), 14–32 (2003)

    ADS  Google Scholar 

  • V. Wulms, J. Saur, D.F. Strobel, S. Simon, D.G. Mitchell, Energetic neutral atoms from Titan: Particle simulations in draped magnetic and electric fields. J. Geophys. Res. 115, A06310 (2010). doi:1029/2009JA014893

    Google Scholar 

  • P. Wurz, Detection of energetic neutral particles, in The Outer Heliosphere: Beyond the Planets, ed. by K. Scherer, H. Fichtner, E. Marsch, pp. 251–288 (Copernicus Gesellschaft e. V., Katlenburg-Lindau, 2000)

    Google Scholar 

  • P. Wurz, U. Rohner, J.A. Whitby, C. Kolb, H. Lammer, P. Dobnikar, J.A. Martín-Fernández, The lunar exosphere: the sputtering contribution. Icarus 191(2), 486–496 (2007)

    ADS  Google Scholar 

  • P. Wurz, J. Whitby, U. Rohner, J. Martín-Fernández, H. Lammer, C. Kolb, Self-consistent modelling of Mercury’s exosphere by sputtering, micrometeorite impact and photon-stimulated desorption. Planet. Space Sci. 58(12), 1599–1616 (2010). doi:10.1016/j.pss.2010.08.003

    ADS  Google Scholar 

  • R.V. Yelle, N. Borggren, V. de la Haye, W. Kasprzak, H. Niemann, I. Müller-Wodarg, J. Waite, The vertical structure of Titan’s upper atmosphere from Cassini ion neutral mass spectrometer measurements. Icarus 182(2), 567–576 (2006)

    ADS  Google Scholar 

  • R. Yelle, H. Lammer, W.-H. Ip, Aeronomy of extra-solar giant planets. Space Sci. Rev. 139(1), 437–451 (2008)

    ADS  Google Scholar 

  • D.T. Young et al., Composition and dynamics of plasma in Saturn’s magnetosphere. Science 307(5713), 1262–1266 (2005)

    ADS  Google Scholar 

  • Y.L. Yung, M. Allen, J.P. Pinto, Photochemistry of the atmosphere of Titan—comparison between model and observations. Astrophys. J. Suppl. Ser. 55, 465–506 (1984)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshifumi Futaana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Futaana, Y. et al. (2011). Exospheres and Energetic Neutral Atoms of Mars, Venus and Titan. In: Szego, K. (eds) The Plasma Environment of Venus, Mars, and Titan. Space Sciences Series of ISSI, vol 37. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3290-6_7

Download citation

Publish with us

Policies and ethics