Single-Cell Analysis in Microdroplets

  • Michele Zagnoni
  • Jonathan M. Cooper
Part of the Integrated Analytical Systems book series (ANASYS)


The development of microfluidics has steadily increased in the past 20 years and has yielded integrated high-throughput analytical techniques at the microscale, providing novel lab-on-a-chip (LOC) systems to be used for biological and chemical applications [1–5].


Enhance Green Fluorescent Protein Microfluidic Device Encapsulate Cell Outer Phase Droplet Microfluidics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Weibel DB, DiLuzio WR, Whitesides GM (2007) Microfabrication meets microbiology. Nat Rev Microbiol 5(3):209–218Google Scholar
  2. 2.
    Weibel DB, Whitesides GM (2006) Applications of microfluidics in chemical biology. Curr Opin Chem Biol 10(6):584–591Google Scholar
  3. 3.
    Mark D, Haeberle S, Roth G, von Stetten F, Zengerle R (2010) Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem Soc Rev 39(3):1153–1182Google Scholar
  4. 4.
    Atencia J, Beebe DJ (2005) Controlled microfluidic interfaces. Nature 437(7059):648–655Google Scholar
  5. 5.
    Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77(3):977–1026Google Scholar
  6. 6.
    Teh SY, Lin R, Hung LH, Lee AP (2008) Droplet microfluidics. Lab Chip 8(2):198–220Google Scholar
  7. 7.
    Fair RB (2007) Digital microfluidics: is a true lab-on-a-chip possible? Microfluid Nanofluid 3(3):245–281Google Scholar
  8. 8.
    Theberge AB, Courtois F, Schaerli Y, Fischlechner M, Abell C, Hollfelder F, Huck WTS (2010) Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology. Angew Chem Int Ed 49(34):5846–5868Google Scholar
  9. 9.
    Schmid A, Kortmann H, Dittrich PS, Blank LM (2010) Chemical and biological single cell analysis. Curr Opin Biotechnol 21(1):12–20Google Scholar
  10. 10.
    Alberts B (2008) Molecular biology of the cell, 5th edn. Garland Science, New York, p xxxiii, 1268, 40, 49, 1Google Scholar
  11. 11.
    Gunther A, Jensen KF (2006) Multiphase microfluidics: from flow characteristics to chemical and materials synthesis. Lab Chip 6(12):1487–1503Google Scholar
  12. 12.
    Baroud CN, Gallaire F, Dangla R (2010) Dynamics of microfluidic droplets. Lab Chip 10(16):2032–2045Google Scholar
  13. 13.
    Christopher GF, Anna SL (2007) Microfluidic methods for generating continuous droplet streams. J Phys D: Appl Phys 40(19):R319–R336Google Scholar
  14. 14.
    Boyd J, Sherman P, Parkinso C (1972) Factors affecting emulsion stability, and Hlb concept. J Colloid Interface Sci 41(2):359Google Scholar
  15. 15.
    Kabalnov A, Weers J (1996) Macroemulsion stability within the Winsor III region: theory versus experiment. Langmuir 12(8):1931–1935Google Scholar
  16. 16.
    Leal-Calderon F, Schmitt V, Bibette J. SpringerLink (online service) Emulsion science basic principles. Connect to e-bookGoogle Scholar
  17. 17.
    Gelbart WM, Ben-Shaul A, Roux D (1994) Micelles, membranes, microemulsions, and monolayers. Springer, New York, p 608Google Scholar
  18. 18.
    Becher P (2001) Emulsions: theory and practice, 3rd edn. Oxford University Press, New York, p viii, 513Google Scholar
  19. 19.
    Becker H, Locascio LE (2002) Polymer microfluidic devices. Talanta 56(2):267–287Google Scholar
  20. 20.
    Seo M, Paquet C, Nie ZH, Xu SQ, Kumacheva E (2007) Microfluidic consecutive flow-focusing droplet generators. Soft Matter 3(8):986–992Google Scholar
  21. 21.
    Li W, Nie ZH, Zhang H, Paquet C, Seo M, Garstecki P, Kumacheva E (2007) Screening of the effect of surface energy of microchannels on microfluidic emulsification. Langmuir 23(15):8010–8014Google Scholar
  22. 22.
    Abate AR, Lee D, Do T, Holtze C, Weitz DA (2008) Glass coating for PDMS microfluidic channels by sol–gel methods. Lab Chip 8(4):516–518Google Scholar
  23. 23.
    Abate AR, Krummel AT, Lee D, Marquez M, Holtze C, Weitz DA (2008) Photoreactive coating for high-contrast spatial patterning of microfluidic device wettability. Lab Chip 8(12):2157–2160Google Scholar
  24. 24.
    Chae SK, Lee CH, Lee SH, Kim TS, Kang JY (2009) Oil droplet generation in PDMS microchannel using an amphiphilic continuous phase. Lab Chip 9(13):1957–1961Google Scholar
  25. 25.
    Bauer WAC, Fischlechner M, Abell C, Huck WTS (2010) Hydrophilic PDMS microchannels for high-throughput formation of oil-in-water microdroplets and water-in-oil-in-water double emulsions. Lab Chip 10(14):1814–1819Google Scholar
  26. 26.
    Darhuber AA, Troian SM (2005) Principles of microfluidic actuation by modulation of surface stresses. Ann Rev Fluid Mech 37:425–455Google Scholar
  27. 27.
    Lee GB, Lin CH, Lee KH, Lin YF (2005) On the surface modification of microchannels for microcapillary electrophoresis chips. Electrophoresis 26(24):4616–4624Google Scholar
  28. 28.
    Koster S, Angile FE, Duan H, Agresti JJ, Wintner A, Schmitz C, Rowat AC, Merten CA, Pisignano D, Griffiths AD, Weitz DA (2008) Drop-based microfluidic devices for encapsulation of single cells. Lab Chip 8(7):1110–1115Google Scholar
  29. 29.
    Clausell-Tormos J, Lieber D, Baret JC, El-Harrak A, Miller OJ, Frenz L, Blouwolff J, Humphry KJ, Koster S, Duan H, Holtze C, Weitz DA, Griffiths AD, Merten CA (2008) Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms. Chem Biol 15(5):427–437Google Scholar
  30. 30.
    Chabert M, Viovy JL (2008) Microfluidic high-throughput encapsulation and hydrodynamic self-sorting of single cells. Proc Natl Acad Sci U S A 105(9):3191–3196Google Scholar
  31. 31.
    He MY, Edgar JS, Jeffries GDM, Lorenz RM, Shelby JP, Chiu DT (2005) Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets. Anal Chem 77(6):1539–1544Google Scholar
  32. 32.
    Abate AR, Chen CH, Agresti JJ, Weitz DA (2009) Beating Poisson encapsulation statistics using close-packed ordering. Lab Chip 9(18):2628–2631Google Scholar
  33. 33.
    Edd JF, Di Carlo D, Humphry KJ, Koster S, Irimia D, Weitz DA, Toner M (2008) Controlled encapsulation of single-cells into monodisperse picolitre drops. Lab Chip 8(8):1262–1264Google Scholar
  34. 34.
    Di Carlo D, Irimia D, Tompkins RG, Toner M (2007) Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc Natl Acad Sci U S A 104(48):18892–18897Google Scholar
  35. 35.
    Tadros TF (1984) Surfactants. Academic, London, p xii, 342Google Scholar
  36. 36.
    Rosen MJ (1987) National Science Foundation (U.S.), Surfactants in emerging technologies. Dekker, New York, p x, 215Google Scholar
  37. 37.
    Bai YP, He XM, Liu DS, Patil SN, Bratton D, Huebner A, Hollfelder F, Abell C, Huck WTS (2010) A double droplet trap system for studying mass transport across a droplet-droplet interface. Lab Chip 10(10):1281–1285Google Scholar
  38. 38.
    Holtze C, Rowat AC, Agresti JJ, Hutchison JB, Angile FE, Schmitz CHJ, Koster S, Duan H, Humphry KJ, Scanga RA, Johnson JS, Pisignano D, Weitz DA (2008) Biocompatible surfactants for water-in-fluorocarbon emulsions. Lab Chip 8(10):1632–1639Google Scholar
  39. 39.
    Kreutz JE, Li L, Roach LS, Hatakeyama T, Ismagilov RF (2009) Laterally mobile, functionalized self-assembled monolayers at the fluorous-aqueous interface in a plug-based microfluidic system: characterization and testing with membrane protein crystallization. J Am Chem Soc 131(17):6042Google Scholar
  40. 40.
    Baret JC, Kleinschmidt F, El Harrak A, Griffiths AD (2009) Kinetic aspects of emulsion stabilization by surfactants: a microfluidic analysis. Langmuir 25(11):6088–6093Google Scholar
  41. 41.
    Roach LS, Song H, Ismagilov RF (2005) Controlling nonspecific protein adsorption in a plug-based microfluidic system by controlling interfacial chemistry using fluorous-phase surfactants. Anal Chem 77(3):785–796Google Scholar
  42. 42.
    Lee J, Pozrikidis C (2006) Effect of surfactants on the deformation of drops and bubbles in Navier–Stokes flow. Comput Fluids 35(1):43–60Google Scholar
  43. 43.
    Stone HA, Leal LG (1990) The effects of surfactants on drop deformation and breakup. J Fluid Mech 220:161–186Google Scholar
  44. 44.
    Wang K, Lu YC, Xu JH, Luo GS (2009) Determination of dynamic interfacial tension and its effect on droplet formation in the T-shaped microdispersion process. Langmuir 25(4):2153–2158Google Scholar
  45. 45.
    Liu Y, Jung SY, Collier CP (2009) Shear-driven redistribution of surfactant affects enzyme activity in well-mixed femtoliter droplets. Anal Chem 81(12):4922–4928Google Scholar
  46. 46.
    Lee JN, Park C, Whitesides GM (2003) Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal Chem 75(23):6544–6554Google Scholar
  47. 47.
    Shim JU, Cristobal G, Link DR, Thorsen T, Jia YW, Piattelli K, Fraden S (2007) Control and measurement of the phase behavior of aqueous solutions using microfluidics. J Am Chem Soc 129(28):8825–8835Google Scholar
  48. 48.
    Huebner A, Bratton D, Whyte G, Yang M, de Mello AJ, Abell C, Hollfelder F (2009) Static microdroplet arrays: a microfluidic device for droplet trapping, incubation and release for enzymatic and cell-based assays. Lab Chip 9(5):692–698Google Scholar
  49. 49.
    Mazutis L, Araghi AF, Miller OJ, Baret JC, Frenz L, Janoshazi A, Taly V, Miller BJ, Hutchison JB, Link D, Griffiths AD, Ryckelynck M (2009) Droplet-based microfluidic systems for high-throughput single DNA molecule isothermal amplification and analysis. Anal Chem 81(12):4813–4821Google Scholar
  50. 50.
    Hsiung SK, Chen CT, Lee GB (2006) Micro-droplet formation utilizing microfluidic flow focusing and controllable moving-wall chopping techniques. J Micromech Microeng 16(11):2403–2410Google Scholar
  51. 51.
    Cramer C, Fischer P, Windhab EJ (2004) Drop formation in a co-flowing ambient fluid. Chem Eng Sci 59(15):3045–3058Google Scholar
  52. 52.
    Abate AR, Poitzsch A, Hwang Y, Lee J, Czerwinska J, Weitz DA (2009) Impact of inlet channel geometry on microfluidic drop formation. Phys Rev E 80(2):026310Google Scholar
  53. 53.
    Abate AR, Romanowsky MB, Agresti JJ, Weitz DA (2009) Valve-based flow focusing for drop formation. Appl Phys Lett 94(2):23503Google Scholar
  54. 54.
    Zhang DF, Stone HA (1997) Drop formation in viscous flows at a vertical capillary tube. Phys Fluids 9(8):2234–2242Google Scholar
  55. 55.
    Stone HA (1994) Dynamics of drop deformation and breakup in viscous fluids. Ann Rev Fluid Mech 26:65–102Google Scholar
  56. 56.
    Gupta A, Murshed SMS, Kumar R (2009) Droplet formation and stability of flows in a microfluidic T-junction. Appl Phys Lett 94(16):164107Google Scholar
  57. 57.
    Lin YH, Lee CH, Lee GB (2008) Droplet formation utilizing controllable moving-wall structures for double-emulsion applications. J Microelectromech Syst 17(3):573–581Google Scholar
  58. 58.
    Wang W, Yang C, Li CM (2009) Efficient on-demand compound droplet formation: from microfluidics to microdroplets as miniaturized laboratories. Small 5(10):1149–1152Google Scholar
  59. 59.
    Zheng B, Tice JD, Ismagilov RF (2004) Formation of arrayed droplets of soft lithography and two-phase fluid flow, and application in protein crystallization. Adv Mater 16(15):1365–1368Google Scholar
  60. 60.
    Anna SL, Bontoux N, Stone HA (2003) Formation of dispersions using “flow focusing” in microchannels. Appl Phys Lett 82(3):364–366Google Scholar
  61. 61.
    Tice JD, Song H, Lyon AD, Ismagilov RF (2003) Formation of droplets and mixing in multiphase microfluidics at low values of the Reynolds and the capillary numbers. Langmuir 19(22):9127–9133Google Scholar
  62. 62.
    Ota S, Yoshizawa S, Takeuchi S (2009) Microfluidic formation of monodisperse, cell-sized, and unilamellar vesicles. Angew Chem Int Ed 48(35):6533–6537Google Scholar
  63. 63.
    Schmitz CHJ, Rowat AC, Koster S, Weitz DA (2009) Dropspots: a picoliter array in a microfluidic device. Lab Chip 9(1):44–49Google Scholar
  64. 64.
    Trivedi V, Doshi A, Kurup GK, Ereifej E, Vandevord PJ, Basu AS (2010) A modular approach for the generation, storage, mixing, and detection of droplet libraries for high throughput screening. Lab Chip 10(18):2433–2442Google Scholar
  65. 65.
    Boukellal H, Selimovic S, Jia YW, Cristobal G, Fraden S (2009) Simple, robust storage of drops and fluids in a microfluidic device. Lab Chip 9(2):331–338Google Scholar
  66. 66.
    Christopher GF, Bergstein J, End NB, Poon M, Nguyen C, Anna SL (2009) Coalescence and splitting of confined droplets at microfluidic junctions. Lab Chip 9(8):1102–1109Google Scholar
  67. 67.
    Link DR, Anna SL, Weitz DA, Stone HA (2004) Geometrically mediated breakup of drops in microfluidic devices. Phys Rev Lett 92(5):054503Google Scholar
  68. 68.
    Ahn K, Kerbage C, Hunt TP, Westervelt RM, Link DR, Weitz DA (2006) Dielectrophoretic manipulation of drops for high-speed microfluidic sorting devices. Appl Phys Lett 88(2):024104Google Scholar
  69. 69.
    Niu XZ, Zhang MY, Peng SL, Wen WJ, Sheng P (2007) Real-time detection, control, and sorting of microfluidic droplets. Biomicrofluidics 1(4):044107Google Scholar
  70. 70.
    Baret JC, Miller OJ, Taly V, Ryckelynck M, El-Harrak A, Frenz L, Rick C, Samuels ML, Hutchison JB, Agresti JJ, Link DR, Weitz DA, Griffiths AD (2009) Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity. Lab Chip 9(13):1850–1858Google Scholar
  71. 71.
    Tan YC, Ho YL, Lee AP (2007) Droplet coalescence by geometrically mediated flow in microfluidic channels. Microfluid Nanofluid 3(4):495–499Google Scholar
  72. 72.
    Wang W, Yang C, Li CM (2009) On-demand microfluidic droplet trapping and fusion for on-chip static droplet assays. Lab Chip 9(11):1504–1506Google Scholar
  73. 73.
    Mazutis L, Baret JC, Griffiths AD (2009) A fast and efficient microfluidic system for highly selective one-to-one droplet fusion. Lab Chip 9(18):2665–2672Google Scholar
  74. 74.
    Hung LH, Choi KM, Tseng WY, Tan YC, Shea KJ, Lee AP (2006) Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for CdS nanoparticle synthesis. Lab Chip 6(2):174–178Google Scholar
  75. 75.
    Fidalgo LM, Abell C, Huck WTS (2007) Surface-induced droplet fusion in microfluidic devices. Lab Chip 7(8):984–986Google Scholar
  76. 76.
    Niu X, Gulati S, Edel JB, de Mello AJ (2008) Pillar-induced droplet merging in microfluidic circuits. Lab Chip 8(11):1837–1841Google Scholar
  77. 77.
    Zagnoni M, Baroud CN, Cooper JM (2009) Electrically initiated upstream coalescence cascade of droplets in a microfluidic flow. Phys Rev E 80(4):046303Google Scholar
  78. 78.
    Zagnoni M, Cooper JM (2009) On-chip electrocoalescence of microdroplets as a function of voltage, frequency and droplet size. Lab Chip 9(18):2652–2658Google Scholar
  79. 79.
    Priest C, Herminghaus S, Seemann R (2006) Controlled electrocoalescence in microfluidics: targeting a single lamella. Appl Phys Lett 89(13):134101Google Scholar
  80. 80.
    Ahn K, Agresti J, Chong H, Marquez M, Weitz DA (2006) Electrocoalescence of drops synchronized by size-dependent flow in microfluidic channels. Appl Phys Lett 88(26):264105Google Scholar
  81. 81.
    Bremond N, Thiam AR, Bibette J (2008) Decompressing emulsion droplets favors coalescence. Phys Rev Lett 100(2):024501Google Scholar
  82. 82.
    Zagnoni M, Le Lain G, Cooper JM (2010) Electrocoalescence mechanisms of microdroplets using localized electric fields in microfluidic channels. Langmuir 26(18):14443–14449Google Scholar
  83. 83.
    Tan WH, Takeuchi S (2007) A trap-and-release integrated microfluidic system for dynamic microarray applications. Proc Natl Acad Sci U S A 104(4):1146–1151Google Scholar
  84. 84.
    Shi WW, Qin JH, Ye NN, Lin BC (2008) Droplet-based microfluidic system for individual Caenorhabditis elegans assay. Lab Chip 8(9):1432–1435Google Scholar
  85. 85.
    Zagnoni M, Cooper JM (2010) A microdroplet-based shift register. Lab Chip. doi: 10.1039/C0LC00219D
  86. 86.
    Yap YF, Tan SH, Nguyen NT, Murshed SMS, Wong TN, Yobas L (2009) Thermally mediated control of liquid microdroplets at a bifurcation. J Phys D: Appl Phys 42(6):065503Google Scholar
  87. 87.
    Franke T, Braunmuller S, Schmid L, Wixforth A, Weitz DA (2010) Surface acoustic wave actuated cell sorting (SAWACS). Lab Chip 10(6):789–794Google Scholar
  88. 88.
    Franke T, Abate AR, Weitz DA, Wixforth A (2009) Surface acoustic wave (SAW) directed droplet flow in microfluidics for PDMS devices. Lab Chip 9(18):2625–2627Google Scholar
  89. 89.
    Zhang K, Liang QL, Ma S, Mu XA, Hu P, Wang YM, Luo GA (2009) On-chip manipulation of continuous picoliter-volume superparamagnetic droplets using a magnetic force. Lab Chip 9(20):2992–2999Google Scholar
  90. 90.
    Baroud CN, de Saint Vincent MR, Delville JP (2007) An optical toolbox for total control of droplet microfluidics. Lab Chip 7(8):1029–1033Google Scholar
  91. 91.
    Baroud CN, Delville JP, Gallaire F, Wunenburger R (2007) Thermocapillary valve for droplet production and sorting. Phys Rev E 75(4):046302Google Scholar
  92. 92.
    Dixit SS, Kim H, Vasilyev A, Eid A, Faris GW (2010) Light-driven formation and rupture of droplet bilayers. Langmuir 26(9):6193–6200Google Scholar
  93. 93.
    Jeffries GDM, Kuo JS, Chiu DT (2007) Dynamic modulation of chemical concentration in an aqueous droplet. Angew Chem Int Ed 46(8):1326–1328Google Scholar
  94. 94.
    Fidalgo LM, Whyte G, Bratton D, Kaminski CF, Abell C, Huck WTS (2008) From microdroplets to microfluidics: selective emulsion separation in microfluidic devices. Angew Chem Int Ed 47(11):2042–2045Google Scholar
  95. 95.
    Courtois F, Olguin LF, Whyte G, Theberge AB, Huck WTS, Hollfelder F, Abell C (2009) Controlling the retention of small molecules in emulsion microdroplets for use in cell-based assays. Anal Chem 81(8):3008–3016Google Scholar
  96. 96.
    Liau A, Karnik R, Majumdar A, Cate JHD (2005) Mixing crowded biological solutions in milliseconds. Anal Chem 77(23):7618–7625Google Scholar
  97. 97.
    Damean N, Olguin LF, Hollfelder F, Abell C, Huck WTS (2009) Simultaneous measurement of reactions in microdroplets filled by concentration gradients. Lab Chip 9(12):1707–1713Google Scholar
  98. 98.
    Huebner A, Srisa-Art M, Holt D, Abell C, Hollfelder F, Demello AJ, Edel JB (2007) Quantitative detection of protein expression in single cells using droplet microfluidics. Chem Commun 12:1218–1220Google Scholar
  99. 99.
    Solvas XCI, Srisa-Art M, Demello AJ, Edel JB (2010) Mapping of fluidic mixing in microdroplets with 1 mu s time resolution using fluorescence lifetime imaging. Anal Chem 82(9):3950–3956Google Scholar
  100. 100.
    Srisa-Art M, Kang DK, Hong J, Park H, Leatherbarrow RJ, Edel JB, Chang SI, de Mello AJ (2009) Analysis of protein-protein interactions by using droplet-based microfluidics. Chembiochem 10(10):1605–1611Google Scholar
  101. 101.
    Srisa-Art M, deMello AJ, Edel JB (2008) Fluorescence lifetime imaging of mixing dynamics in continuous-flow microdroplet reactors. Phys Rev Lett 101(1):14502Google Scholar
  102. 102.
    Srisa-Art M, Dyson EC, Demello AJ, Edel JB (2008) Monitoring of real-time streptavidin-biotin binding kinetics using droplet microfluidics. Anal Chem 80(18):7063–7067Google Scholar
  103. 103.
    Boedicker JQ, Vincent ME, Ismagilov RF (2009) Microfluidic confinement of single cells of bacteria in small volumes initiates high-density behavior of quorum sensing and growth and reveals its variability. Angew Chem Int Ed 48(32):5908–5911Google Scholar
  104. 104.
    Boedicker JQ, Li L, Kline TR, Ismagilov RF (2008) Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics. Lab Chip 8(8):1265–1272Google Scholar
  105. 105.
    Koster S, Evilevitch A, Jeembaeva M, Weitz DA (2009) Influence of internal capsid pressure on viral infection by phage lambda. Biophys J 97(6):1525–1529Google Scholar
  106. 106.
    Choi CH, Jung JH, Rhee YW, Kim DP, Shim SE, Lee CS (2007) Generation of monodisperse alginate microbeads and in situ encapsulation of cell in microfluidic device. Biomed Microdevices 9(6):855–862Google Scholar
  107. 107.
    Luo CX, Yang XJ, Fu O, Sun MH, Ouyang Q, Chen Y, Ji H (2006) Picoliter-volume aqueous droplets in oil: electrochemical detection and yeast electroporation. Electrophoresis 27(10):1977–1983Google Scholar
  108. 108.
    Tan WH, Takeuchi S (2007) Monodisperse alginate hydrogel microbeads for cell encapsulation. Adv Mater 19(18):2696Google Scholar
  109. 109.
    Martino C, Zagnoni M, Sandison ME, Chanasakulniyom M, Pitt AR, Cooper JM (2011) Intracellular protein determination using droplet-based immunoassays. Anal Chem 83(13):5361–5368Google Scholar
  110. 110.
    Huebner A, Olguin LF, Bratton D, Whyte G, Huck WTS, de Mello AJ, Edel JB, Abell C, Hollfelder F (2008) Development of quantitative cell-based enzyme assays in microdroplets. Anal Chem 80(10):3890–3896Google Scholar
  111. 111.
    Joensson HN, Samuels ML, Brouzes ER, Medkova M, Uhlen M, Link DR, Andersson-Svahn H (2009) Detection and analysis of low-abundance cell-surface biomarkers using enzymatic amplification in microfluidic droplets. Angew Chem Int Ed 48(14):2518–2521Google Scholar
  112. 112.
    Shim JU, Olguin LF, Whyte G, Scott D, Babtie A, Abell C, Huck WTS, Hollfelder F (2009) Simultaneous determination of gene expression and enzymatic activity in individual bacterial cells in microdroplet compartments. J Am Chem Soc 131(42):15251–15256Google Scholar
  113. 113.
    Zhan YH, Wang J, Bao N, Lu C (2009) Electroporation of cells in microfluidic droplets. Anal Chem 81(5):2027–2031Google Scholar
  114. 114.
    Kim HJ, Boedicker JQ, Choi JW, Ismagilov RF (2008) Defined spatial structure stabilizes a synthetic multispecies bacterial community. Proc Natl Acad Sci U S A 105(47):18188–18193Google Scholar
  115. 115.
    Shah RK, Kim JW, Agresti JJ, Weitz DA, Chu LY (2008) Fabrication of monodisperse thermosensitive microgels and gel capsules in microfluidic devices. Soft Matter 4(12):2303–2309Google Scholar
  116. 116.
    Shah RK, Kim JW, Weitz DA (2010) Monodisperse stimuli-responsive colloidosomes by self-assembly of microgels in droplets. Langmuir 26(3):1561–1565Google Scholar
  117. 117.
    Kim C, Lee KS, Kim YE, Lee KJ, Lee SH, Kim TS, Kang JY (2009) Rapid exchange of oil-phase in microencapsulation chip to enhance cell viability. Lab Chip 9(9):1294–1297Google Scholar
  118. 118.
    Workman VL, Dunnett SB, Kille P, Palmer DD (2008) On-chip alginate microencapsulation of functional cells. Macromol Rapid Commun 29(2):165–170Google Scholar
  119. 119.
    Workman VL, Dunnett SB, Kille P, Palmer DD (2007) Microfluidic chip-based synthesis of alginate microspheres for encapsulation of immortalized human cells. Biomicrofluidics 1(1):014105Google Scholar
  120. 120.
    Williams R, Peisajovich SG, Miller OJ, Magdassi S, Tawfik DS, Griffiths AD (2006) Amplification of complex gene libraries by emulsion PCR. Nat Methods 3(7):545–550Google Scholar
  121. 121.
    Kumaresan P, Yang CJ, Cronier SA, Blazei RG, Mathies RA (2008) High-throughput single copy DNA amplification and cell analysis in engineered nanoliter droplets. Anal Chem 80(10):3522–3529Google Scholar
  122. 122.
    Kojima T, Takei Y, Ohtsuka M, Kawarasaki Y, Yamane T, Nakano H (2005) PCR amplification from single DNA molecules on magnetic beads in emulsion: application for high-throughput screening of transcription factor targets. Nucleic Acids Res 33(17):e150Google Scholar
  123. 123.
    Thorsen T, Roberts RW, Arnold FH, Quake SR (2001) Dynamic pattern formation in a vesicle-generating microfluidic device. Phys Rev Lett 86(18):4163–4166Google Scholar
  124. 124.
    Dittrich PS, Jahnz M, Schwille P (2005) A new embedded process for compartmentalized cell-free protein expression and on-line detection in microfluidic devices. Chembiochem 6(5):811Google Scholar
  125. 125.
    Stanley CE, Elvira KS, Niu XZ, Gee AD, Ces O, Edel JB, de Mello AJ (2010) A microfluidic approach for high-throughput droplet interface bilayer (DIB) formation. Chem Commun 46(10):1620–1622Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Centre for Microsystems and PhotonicsUniversity of StrathclydeGlasgowUK
  2. 2.School of EngineeringUniversity of GlasgowGlasgowUK

Personalised recommendations