Skip to main content

Droplet-Based Microfluidics as a Biomimetic Principle: From PCR-Based Virus Diagnostics to a General Concept for Handling of Biomolecular Information

  • Chapter
  • First Online:
Book cover Microdroplet Technology

Part of the book series: Integrated Analytical Systems ((ANASYS))

  • 1782 Accesses

Abstract

The micro fluid segment technique is particular suited for the handling and characterization of cells and biomolecules in a micro system environment. The continuous-flow PCR is a typical example for the use of these advantages. It can be applied, for example, for the proof of the expression of genes of virulent viruses from infected human cells. This was shown by the detection of transcripts of HPV and measles viruses. Beside the PCR-based diagnostics, the fluid segment technique has the potential of a general answer to the challenges of information extraction from cellular and biomolecular systems. Hierarchical structured and ordered liquid phases can be generated by micro fluidic techniques. They allow the addressing and separate handling of single cells, small ensembles of molecules or even single molecules and could also become a powerful instrument for information conversion at the molecular level and for the automated construction of molecular architectures with high variability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Skeggs LT (1957) Effect of ammonium chloride and urea infusions on ammonium levels and acidity of gastric juice. Am J Clin Pathol 28:311–322

    CAS  Google Scholar 

  2. Susic D, Scheibe P (1971) Neuer enzymatischer Farbtest zur Harnsäure-Bestimmung am Technicon-AutoAnalyzer. Z Anal Chem 257:130–132

    Article  CAS  Google Scholar 

  3. Hsieh YS, Crouch SR (1995) Air-segmented flow injection: a hybrid technique for automated, low dispersion determinations. Anal Chim Acta 303:231–239

    Article  CAS  Google Scholar 

  4. Ismagilov RF (2003) Integrierte Mikrofluidsysteme. Angew Chem 115:4262–4264

    Article  Google Scholar 

  5. Huebner A, Sharma S, Sharma S, SrisArt M, Hollfelder F, Edel JB, DeMello AJ (2008) Microdroplets: a sea of applications? Lab Chip 8:1244–1254

    Article  CAS  Google Scholar 

  6. Köhler JM, Henkel Th, Grodrian A, Kirner Th, Roth M, Martin K, Metze J (2004) Digital reaction technology by micro segmented flow – components, concepts and applications. Chem Eng J 101:201–216

    Article  Google Scholar 

  7. Song H, Chen DL, Ismagilov RF (2006) Reactions in droplets in microfluidic channels. Angew Chem Int Ed 45:7336–7356

    Article  CAS  Google Scholar 

  8. Adzima BJ, Velankar SS (2006) Pressure drops for droplet flows in microfluidic channels. J Micromech Miroeng 16:1504–1510

    Article  Google Scholar 

  9. Gross GA, Thyagarajan V, Kielpinski M, Henkel Th, Köhler JM (2008) Viscosity-dependent enhancement of fluid resistance in water/glycerol micro fluid segments. Microfluid nanofluid 5:281–287

    Article  CAS  Google Scholar 

  10. Malsch D, Gleichmann N, Kielpinski M, Mayer G, Henkel T (2008) Effects of fluid and interface interaction on droplet internal flow in all-glass microchannels. Proc. ICNM 2008, (Darmstadt 2008) No 62328

    Google Scholar 

  11. Vanapalli SA, Banpurkar AG, VandenEnde D, Duits MHG, Mugele F (2009) Hydrodynamic resistance of single confined moving droplets in rectangular microchannels. Lab Chip 9:982–990

    Article  CAS  Google Scholar 

  12. Burns JR, Ramshaw C (2001) The intensification of rapid reactions in multiphase systems using slug flow in capillaries. Lab Chip 1:10–15

    Article  CAS  Google Scholar 

  13. Günther A, Jensen KF (2006) Multiphase microfluidics: from flow characteristics to materials and chemical synthesis. Lab Chip 6:1487–1503

    Article  Google Scholar 

  14. Poe SL, Cummings MA, Haaf MP, McQuade DT (2006) Solving the clogging problem: precipiate-forming reactions in flow. Angew Chem 118:1574–1578

    Article  Google Scholar 

  15. Gross GA, Hamann C, Günther PM, Köhler JM (2007) Formation of polymer and nanoparticle droped polymer minirods by use of the microsegmented flow principle. Chem Eng Technol 3:341–346

    Article  Google Scholar 

  16. Li W, Greener J, Voicu D, Kumacheva E (2009) Multiple modular microfluidic (M3) reactors for the synthesis of polymer particles. Lab Chip 9:2715–2721

    Article  CAS  Google Scholar 

  17. Donnet M, Jongen N, Lemaitre J, Bowen P, Mat J (2000) New morphology of calcium oxalate trihydrate precipitated in a segmented flow tubular reactor. Science 19:749–750

    CAS  Google Scholar 

  18. Jongen N, Donnet M, Bowen P et al (2003) Development of a continuous segmented flow tubular reactor and the “scale-out” concept – in search of perfect powders. Chem Eng Technol 26:303–305

    Article  CAS  Google Scholar 

  19. Shestopalov I, Tice JD, Ismagilov RF (2004) Multi-step synthesis of nanoparticles performed on milisecon time scale in a microfluidic droplet-based system. Lab Chip 4:316–321

    Article  CAS  Google Scholar 

  20. Chan EM, Alivisatos PA, Mathies RA (2005) High-temperature microfluidic synthesis of CdSe nanocrystals in nanoliter droplets. J Am Chem Soc 127:13854–13861

    Article  CAS  Google Scholar 

  21. Li S, Günther PM, Köhler JM (2009) Micro segmented flow technique for continuous synthesis of different kinds of ZnO nanoparticles in aqueous and DMSO solution. J Chem Eng Jpn 42:338–345

    Article  CAS  Google Scholar 

  22. Um E, Lee D-S, Pyo H-B, Park J-K (2008) Continuous generation of hydrogel beads and encapsulation of biological materials using a microfluidic droplet-merging channel. Microfluid nanofluid 5:541–549

    Article  Google Scholar 

  23. Joensson HN, Samuels ML, Brouzes ER, Medkova M, Uhlén M, Link DR, Andersson-Svahn H (2009) Detection and analysis of low-abundance cell-surface biomarkers using enzymatic amplification in microfluidc droplets. Angew Chem Int Ed 48:2518–2521

    Article  CAS  Google Scholar 

  24. Martin K, Henkel T, Baier V et al (2003) Generation of larger numbers separated microbial populations by cultivation in segmented-flow microdevices. Lab Chip 3:202–207

    Article  CAS  Google Scholar 

  25. Boedicker JQ, Li L, Kline TR, Ismagilov RF (2008) Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics. Lab Chip 8:1265–1272

    Article  CAS  Google Scholar 

  26. Clausell-Tornos J, Lieber D, Baret J-Ch et al (2008) Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms. Chem Biol 15:427–437

    Article  Google Scholar 

  27. Hufnagel H, Huebner A, Gülch C, Güse K, Abel Ch, Hollfelder F (2009) An integrated cell culture lab on a chip: modular microdevices for cultivation of mammalian cells and delivery into microfluidic microdroplets. Lab Chip 9:1576–1582

    Article  CAS  Google Scholar 

  28. Köhler JM, Henkel Th (2005) Chip devices for miniaturized biotechnology. Appl Micro and biotechnol 69:113–125

    Article  Google Scholar 

  29. Funfak A, Brösing A, Brand M, Köhler JM (2007) Micro fluid segment technique for screening and development studies on Danio rerio embryos. Lab Chip 7:1132–1138

    Article  CAS  Google Scholar 

  30. Shi W, Qin J, Ye N, Lin B (2008) Droplet-based microfluidic system for individual Caenorhabditis. Lab Chip 8:1432–1435

    Article  CAS  Google Scholar 

  31. Chronis N (2010) Worm chips: microtools for C. elegans biology. Lab Chip 10:432–437

    Article  CAS  Google Scholar 

  32. Crane MM, Chung K, Stirman J, Lu H (2010) Microfluidics-enabled phenotyping, imaging, and screening of multicellular organisms. Lab Chip 10:1509–1517

    Article  CAS  Google Scholar 

  33. Funfak A, Hartung R, Cao J, Martin K, Wiesmüller K-H, Wolfbeis OS, Köhler JM (2009) Highly resolved dose-response functions for drug-modulated bacteria cultivation obtained by fluorometric and photometric flow-through sensing in microsegmented flow. Sensor Actuat B 142:66–72

    Article  Google Scholar 

  34. Köhler JM, Dillner U, Mokansky A, Poser S, Schulz T (1998) Micro channel reactors for fast thermocycling. Proc. IMRET II, AIChE Spring Meeting, New Orleans, 1998, 9–12 March, pp 241–247

    Google Scholar 

  35. Curcio M, Roeraade J (2003) Continuous segmented-flow polymerase chain reaction for high-throughput miniaturized DNA amplification. Anal Chem 75:1–7

    Article  CAS  Google Scholar 

  36. Reichert A, Felbel J, Kielpinski M, Urban M, Steinbrecht B, Henkel Th (2008) Micro flow-through thermocycler with simple meandering channel with symmetric temperature zones for disposable PCR-devices in microscope slide format. J Bionic Eng 5:291–298

    Article  Google Scholar 

  37. Hartung R, Brösing A, Sczcepankiewisz G et al (2009) Application of an asymmetric helical tube reactor for fast indentification of gene transcripts of pathogenic viruses by micro flow-through PCR. J Biomed Microdev 11:685–692

    Article  CAS  Google Scholar 

  38. Vasylevska GS, Borisov SM, Krause C, Wolfbeis OS (2006) Indicator-loaded permeation-selective microbeads for use in fiber optic simultaneous sensing of pH and dissolved oxygen. Chem Mater 18:4609–4616

    Article  CAS  Google Scholar 

  39. Kocinova AS, Nagl S, Arain S et al (2008) Multiplex bacterial growth monitoring in 24-well microplates using a dual optical sensor for dissolved oxygen and pH. Biotechnol Bioeng 100:430–438

    Article  Google Scholar 

  40. Funfak A, Cao J, Wolfbeis OS, Martin K, Köhler JM (2009) Monitoring cell cultivation in microfluidic segments by optical pH sensing with micro flow-through fluorometer using dye-doped polymer particles. Mikrochim Acta 164:279–286

    Article  CAS  Google Scholar 

  41. Northrup MA, Ching MT, White RM, Watson RT (1993) DNA amplification in a microfabricated reaction chamber. Proc Transducers 93(7):924–926

    Google Scholar 

  42. Wooley AD, Hadley D, Landre P, DeMello AJ, Mathhies RA, Northrup MA (1996) Functional integration of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device. Anal Chem 24:380

    Google Scholar 

  43. Wilding P, Shoffner MA, Kricka LJ (1815) PCR in a silicon microstructure. Clin Chem 1994:40

    Google Scholar 

  44. Schneegaß I, Köhler JM (2001) Flow-through polymerase chain reaction in chip thermocyclers. Rev Mol Biotechnol 82:101–121

    Article  Google Scholar 

  45. Poser S, Schulz T, Dillner U et al (1997) Chip elements for fast thermocycling. Sensor Actuat A 62:672

    Article  Google Scholar 

  46. Kopp MU, DeMello AJ, Manz A (1998) Chemical amplification: continuous-flow PCR on a chip. Science 280:1046–1048

    Article  CAS  Google Scholar 

  47. Auroux P-A, Koc Y, DeMello A, Manz A, Day PJR (2004) Miniaturised nucleic acid analysis. Lab Chip 4:534–546

    Article  CAS  Google Scholar 

  48. Fukuba T, Yamamoto T, Naganuma T, Fujii T (2004) Microfabricated flow-through device for DNA amplification-towards in situ gene analysis. Chem Eng J 101:151–156

    Article  CAS  Google Scholar 

  49. Felbel J, Reichert A, Kielpinski M et al (2008) Reverse transcription-polymerase chain reaction (RT-PCR) in flow-through micro-reactors: thermal and fluidic concepts. Chem Eng J 135S:298

    Article  Google Scholar 

  50. Gulliksen A, Solli LA, Drese KS, Sörenson O, Karlsen F, Rogne H, Hoving E, Sirevag R (2005) Parallel nanoliter detection of cancer markers using polymer microchips. Lab Chip 5:416–420

    Article  CAS  Google Scholar 

  51. Marcus JS, Anderson WF, Quake SR (2006) Parallel picoliter Pt_PCR assays using microfluidics. Anal Chem 78:956–958

    Article  CAS  Google Scholar 

  52. Williams R, Peisajovich SG, Miller OJ, Magdassi S, Tawfik DS, Griffith AD (2006) Amplification of complex gene libraries by emulsion PCR. Nat Methods 3:545–550

    Article  CAS  Google Scholar 

  53. Zhang C, Xing D, Xu J (2007) Continuous-Flow PCR microfluidics for rapid DNA amplification using thin film heater with low thermal mass. Anal Lett 40:1672–1685

    Article  CAS  Google Scholar 

  54. Felbel J, Bieber I, Pipper J, Köhler JM (2004) Investigations on the compatibility of chemically oxidized dilicon (SiOx)-surfaces for applications towards chip-based polymerase chain reaction. Chem Eng J 101:333

    Article  CAS  Google Scholar 

  55. Halbach M, Koschel K (1979) Impairment of hormone dependent signal transfer by chronic SSPE virus infection. J Gen Virol 42:615

    Article  CAS  Google Scholar 

  56. Liu W, Kim HJ, Lucchetta EM, Du W, Ismagilov RF (2009) Isolation, incubation, and parallel functional testing and identification by FISH of rare microbial single-copy cells from multi-species mixtures using the combination of chemistrode and stochastic confinement. Lab Chip 9:2153–2162

    Article  CAS  Google Scholar 

  57. Stachowiak J, Richmond DL, Li TH, Liu AP, Parekh SH, Fletcher DA (2008) Unilamellar vesicle formation and encapsulation by microfluidic jetting. Proc Natl Acad Sci U S A 105:4687–4702

    Article  Google Scholar 

  58. Schemberg J, Grodrian A, Römer R, Cahill BP, Gastrock G, Lemke K (2010) Application of segmented flow for quality control of food using microfluidic tools. Phys Status Solidi A 207:904–912

    Article  CAS  Google Scholar 

  59. Chokkalingam V, Weidenhof B, Krämer M, Maier WF, Herminghaus S, Seemann R (2010) Optimized droplet-based microfluidic for sol-gel reactions. Lab Chip 10:1700–1705

    Article  CAS  Google Scholar 

  60. Mazutis L, Baret J-Ch, Treacy P et al (2009) Multi-step microfluidic droplet processing: kinetic analysis of an in vitro translated enzyme. Lab Chip 9:2902–2908

    Article  CAS  Google Scholar 

  61. Henkel T, Bermig T, Kielpinski M, Grodrian A, Metze J, Köhler JM (2004) Chip modules for generation and manipulation of fluid segments for micro serial flow processes. Chem Eng J 101:439–445

    Article  CAS  Google Scholar 

  62. Park S-Y, Teitell MA, Chou EPY (2010) Single-sided continuous optoelectrowetting (SCOEW) for droplet manipulation with light patterns. Lab Chip 10:1655–1661

    Article  CAS  Google Scholar 

  63. Mazutis L, Baret J-Ch, Griffiths AD (2009) A fast and efficient microfluidic system for highly selective one to one droplet fusion. Lab Chip 9:2665–2672

    Article  CAS  Google Scholar 

  64. Baret J-C, Taly V, Ryckelynck M, Merten ChA, Griffith AD (2009) Droplets and emulsions: very high-throughput screening in biology. Med Sci 25:627–632

    Google Scholar 

  65. Wang W, Yang Ch, Liu Y, Li ChM (2010) On-demand droplet release for droplet-based microfluidic system. Lab Chip 10:559–562

    Article  Google Scholar 

  66. Nisisako T, Okushima S, Torii T (2005) Controlled formulation of monodisperse double emulsions in a multiple-phase microfluidic system. Soft Matter 1:23–27

    Article  CAS  Google Scholar 

  67. Zhu J, Hayward RC (2008) Hierarchically structured microparticles formed by interfacial instabilities of emulsion droplets containing amphiphilic block copolymers. Angew Chem Int Ed 47:2113–2116

    Article  CAS  Google Scholar 

Download references

Acknowledgment

I am very grateful for cooperation and for any support by A. Groß, M. Günther, S. Schneider, T. Henkel, M. Kielpinski, J. Metze and A. Grodrian in segmented flow technique in general, in microfluidic virus diagnostics by R. Hartung, G. Sczcepankiewicz and N. Häfner. The financial support of the federal ministry for education and research (BMBF, 16SV-3701) and the state of Thuringia (project Zellex) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Michael Köhler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Köhler, J.M. (2012). Droplet-Based Microfluidics as a Biomimetic Principle: From PCR-Based Virus Diagnostics to a General Concept for Handling of Biomolecular Information. In: Day, P., Manz, A., Zhang, Y. (eds) Microdroplet Technology. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3265-4_7

Download citation

Publish with us

Policies and ethics