Skip to main content

The Dropletisation of Bio-Reactions

  • Chapter
  • First Online:
Microdroplet Technology

Part of the book series: Integrated Analytical Systems ((ANASYS))

  • 1722 Accesses

Abstract

Molecular diagnostics is a continually evolving scientific discipline, which is based on the study of medical symptoms and conditions, and is applied in every aspect of healthcare delivery [1] and is inextricably linked to prognosis and therapy. Increasingly the output from molecular diagnostics testing is related to specific therapy, and clinical medicine is being transformed by molecular pathology that will make predictive and personalised medicine possible. To maximise impact, modern molecular diagnostics is highly translational, sharing different aspects of clinical practice with disciplines such as point of care instrumentation developments and microfluidics, combined with biophysics and computational fluid dynamics [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Molinaro RJ (2011) Cases on the rise: current diagnosis guidelines and research efforts for a cure. MLO Med Lab Obs 43(2):8, 10, 12 passim; quiz 16–17

    Google Scholar 

  2. Erickson D et al (2004) Electrokinetically controlled DNA hybridization microfluidic chip enabling rapid target analysis. Anal Chem 76(24):7269–7277

    Article  CAS  Google Scholar 

  3. Ogino S et al (2011) Molecular pathological epidemiology of colorectal neoplasia: an emerging transdisciplinary and interdisciplinary field. Gut 60(3):397–411

    Article  Google Scholar 

  4. Coupland P (2010) Microfluidics for the upstream pipeline of DNA sequencing—a worthy application? Lab Chip 10(5):544–547

    Article  CAS  Google Scholar 

  5. Napoli M, Eijkel JC, Pennathur S (2010) Nanofluidic technology for biomolecule applications: a critical review. Lab Chip 10(8):957–985

    Article  CAS  Google Scholar 

  6. Imaad SM et al (2011) Microparticle and cell counting with digital microfluidic compact disc using standard CD drive. Lab Chip 11(8):1448–1456

    Article  CAS  Google Scholar 

  7. Tamburini BA et al (2010) Gene expression profiling identifies inflammation and angiogenesis as distinguishing features of canine hemangiosarcoma. BMC Cancer 10:619

    Article  CAS  Google Scholar 

  8. Bengtsson M et al (2005) Gene expression profiling in single cells from the pancreatic islets of Langerhans reveals lognormal distribution of mRNA levels. Genome Res 15(10):1388–1392

    Article  CAS  Google Scholar 

  9. Kamme F et al (2003) Single-cell microarray analysis in hippocampus CA1: demonstration and validation of cellular heterogeneity. J Neurosci 23(9):3607–3615

    CAS  Google Scholar 

  10. Abe T et al (2011) Point-of-care testing system enabling 30 min detection of influenza genes. Lab Chip 11(6):1166–1167

    Article  CAS  Google Scholar 

  11. Li X, Chen Y, Li PC (2011) A simple and fast microfluidic approach of same-single-cell analysis (SASCA) for the study of multidrug resistance modulation in cancer cells. Lab Chip 11(7):1378–1384

    Article  CAS  Google Scholar 

  12. Peham JR et al (2011) Long target droplet polymerase chain reaction with a microfluidic device for high-throughput detection of pathogenic bacteria at clinical sensitivity. Biomed Microdevices 13(3):463–473

    Article  CAS  Google Scholar 

  13. Warren L et al (2006) Transcription factor profiling in individual hematopoietic progenitors by digital RT-PCR. Proc Natl Acad Sci U S A 103(47):17807–17812

    Article  CAS  Google Scholar 

  14. Petriv OI et al (2010) Comprehensive microRNA expression profiling of the hematopoietic hierarchy. Proc Natl Acad Sci U S A 107(35):15443–15448

    Article  CAS  Google Scholar 

  15. Frimat JP et al (2011) A microfluidic array with cellular valving for single cell co-culture. Lab Chip 11(2):231–237

    Article  CAS  Google Scholar 

  16. Okochi M et al (2010) Droplet-based gene expression analysis using a device with magnetic force-based-droplet-handling system. J Biosci Bioeng 109(2):193–197

    Article  CAS  Google Scholar 

  17. Marcy Y et al (2007) Nanoliter reactors improve multiple displacement amplification of genomes from single cells. PLoS Genet 3(9):1702–1708

    Article  CAS  Google Scholar 

  18. Marcy Y et al (2007) Dissecting biological “dark matter” with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. Proc Natl Acad Sci U S A 104(29):11889–11894

    Article  CAS  Google Scholar 

  19. Wilding P, Shoffner MA, Kricka LJ (1994) PCR in a silicon microstructure. Clin Chem 40(9):1815–1818

    CAS  Google Scholar 

  20. Chien LJ et al (2009) A micro circulating PCR chip using a suction-type membrane for fluidic transport. Biomed Microdevices 11(2):359–367

    Article  Google Scholar 

  21. Crews N, Wittwer C, Gale B (2008) Continuous-flow thermal gradient PCR. Biomed Microdevices 10(2):187–195

    Article  CAS  Google Scholar 

  22. Frey O et al (2007) Autonomous microfluidic multi-channel chip for real-time PCR with integrated liquid handling. Biomed Microdevices 9(5):711–718

    Article  CAS  Google Scholar 

  23. Sun Y, Kwok YC, Nguyen NT (2007) A circular ferrofluid driven microchip for rapid polymerase chain reaction. Lab Chip 7(8):1012–1017

    Article  CAS  Google Scholar 

  24. Sugumar D et al (2010) Amplification of SPPS150 and Salmonella typhi DNA with a high throughput oscillating flow polymerase chain reaction device. Biomicrofluidics 4(2):024103

    Article  Google Scholar 

  25. Markey AL, Mohr S, Day PJ (2010) High-throughput droplet PCR. Methods 50(4):277–281

    Article  CAS  Google Scholar 

  26. Gonzalez A et al (2007) Gene transcript amplification from cell lysates in continuous-flow microfluidic devices. Biomed Microdevices 9(5):729–736

    Article  CAS  Google Scholar 

  27. Kiss MM et al (2008) High-throughput quantitative polymerase chain reaction in picoliter droplets. Anal Chem 80(23):8975–8981

    Article  CAS  Google Scholar 

  28. Mohr S et al (2007) Numerical and experimental study of a droplet-based PCR chip. Microfluid Nanofluid 3(5):611–621

    Article  CAS  Google Scholar 

  29. Ohashi T et al (2007) A simple device using magnetic transportation for droplet-based PCR. Biomed Microdevices 9(5):695–702

    Article  CAS  Google Scholar 

  30. Schaerli Y et al (2009) Continuous-flow polymerase chain reaction of single-copy DNA in microfluidic microdroplets. Anal Chem 81(1):302–306

    Article  CAS  Google Scholar 

  31. Kuncova-Kallio J, Kallio PJ (2006) PDMS and its suitability for analytical microfluidic devices. Conf Proc IEEE Eng Med Biol Soc 1:2486–2489

    Google Scholar 

  32. Kricka LJ, Wilding P (2003) Microchip PCR. Anal Bioanal Chem 377(5):820–825

    Article  CAS  Google Scholar 

  33. Shoffner MA et al (1996) Chip PCR. I. Surface passivation of microfabricated silicon-glass chips for PCR. Nucleic Acids Res 24(2):375–379

    Article  CAS  Google Scholar 

  34. Wang W et al (2006) Silicon inhibition effects on the polymerase chain reaction: a real-time detection approach. J Biomed Mater Res A 77(1):28–34

    Google Scholar 

  35. Brouzes E et al (2009) Droplet microfluidic technology for single-cell high-throughput screening. Proc Natl Acad Sci U S A 106(34):14195–14200

    Article  CAS  Google Scholar 

  36. Um E, Lee SG, Park JK (2010) Random breakup of microdroplets for single-cell encapsulation. Appl Phys Lett 97(15):153703

    Article  Google Scholar 

  37. Zimmerlin L, Donnenberg VS, Donnenberg AD (2011) Rare event detection and analysis in flow cytometry: bone marrow mesenchymal stem cells, breast cancer stem/progenitor cells in malignant effusions, and pericytes in disaggregated adipose tissue. Methods Mol Biol 699:251–273

    Article  CAS  Google Scholar 

  38. Chen CL et al (2011) Separation and detection of rare cells in a microfluidic disk via negative selection. Lab Chip 11(3):474–483

    Article  CAS  Google Scholar 

  39. Manz A, Graber N, Widmer HM (1990) Miniaturized total chemical-analysis systems—a novel concept for chemical sensing. Sens Actuators B Chem 1(1–6):244–248

    Article  Google Scholar 

  40. Brivio M, Verboom W, Reinhoudt DN (2006) Miniaturized continuous flow reaction vessels: influence on chemical reactions. Lab Chip 6(3):329–344

    Article  CAS  Google Scholar 

  41. Link DR et al (2004) Geometrically mediated breakup of drops in microfluidic devices. Phys Rev Lett 92(5):054503

    Article  CAS  Google Scholar 

  42. Link DR et al (2006) Electric control of droplets in microfluidic devices. Angew Chem Int Ed Engl 45(16):2556–2560

    Article  CAS  Google Scholar 

  43. Song H, Tice JD, Ismagilov RF (2003) A microfluidic system for controlling reaction networks in time. Angew Chem Int Ed Engl 42(7):768–772

    Article  CAS  Google Scholar 

  44. Chabert M, Dorfman KD, Viovy JL (2005) Droplet fusion by alternating current (AC) field electrocoalescence in microchannels. Electrophoresis 26(19):3706–3715

    Article  CAS  Google Scholar 

  45. Christopher GF et al (2009) Coalescence and splitting of confined droplets at microfluidic junctions. Lab Chip 9(8):1102–1109

    Article  CAS  Google Scholar 

  46. Mazutis L, Baret JC, Griffiths AD (2009) A fast and efficient microfluidic system for highly selective one-to-one droplet fusion. Lab Chip 9(18):2665–2672

    Article  CAS  Google Scholar 

  47. Tan YC et al (2004) Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting. Lab Chip 4(4):292–298

    Article  CAS  Google Scholar 

  48. Tan WH, Takeuchi S (2006) Timing controllable electrofusion device for aqueous droplet-based microreactors. Lab Chip 6(6):757–763

    Article  CAS  Google Scholar 

  49. Ahn K et al (2006) Dielectrophoretic manipulation of drops for high-speed microfluidic sorting devices. Appl Phys Lett 88(2):024104

    Article  Google Scholar 

  50. Baret JC et al (2009) Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity. Lab Chip 9(13):1850–1858

    Article  CAS  Google Scholar 

  51. Kawano T et al (2005) On-chip sorting system using charged droplets. Micro Total Anal Syst 1(296):144–146

    Google Scholar 

  52. Beer NR, Rose KA, Kennedy IM (2009) Monodisperse droplet generation and rapid trapping for single molecule detection and reaction kinetics measurement. Lab Chip 9(6):841–844

    Article  CAS  Google Scholar 

  53. Sgro AE, Allen PB, Chiu DT (2007) Thermoelectric manipulation of aqueous droplets in microfluidic devices. Anal Chem 79(13):4845–4851

    Article  CAS  Google Scholar 

  54. Shi W et al (2008) Droplet-based microfluidic system for individual Caenorhabditis elegans assay. Lab Chip 8(9):1432–1435

    Article  CAS  Google Scholar 

  55. Stan CA et al (2009) A microfluidic apparatus for the study of ice nucleation in supercooled water drops. Lab Chip 9(16):2293–2305

    Article  CAS  Google Scholar 

  56. Wang W, Yang C, Li CM (2009) On-demand microfluidic droplet trapping and fusion for on-chip static droplet assays. Lab Chip 9(11):1504–1506

    Article  CAS  Google Scholar 

  57. Myers S, Baker A (2001) Drug discovery—an operating model for a new era. Nat Biotechnol 19(8):727–730

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Day .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Karimiani, E., Markey, A., Day, P. (2012). The Dropletisation of Bio-Reactions. In: Day, P., Manz, A., Zhang, Y. (eds) Microdroplet Technology. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3265-4_6

Download citation

Publish with us

Policies and ethics