Skip to main content

The Brain and the Lymphatic System

  • Chapter
  • First Online:
Book cover Immunology of the Lymphatic System

Abstract

The brain lacks a local lymphatic system, primarily due to the closed environment of the skull which sets strict requirements for control of fluid balance and intracranial pressure. Proper fluid and pressure balance are maintained in the brain through the unique systems of cerebrospinal and interstitial fluid as well as a tight coupling between these systems and the surrounding lymphatic drainage pathways, primarily in the cervical lymph nodes. In this chapter, we will review the physiology of cerebrospinal and interstitial fluid, provide an overview of their primary production and drainage mechanisms, and discuss the still-debated issue of the interconnections of these systems and their relevance to human physiology. We present the current evidence pointing to the importance of the extracranial lymphatic system as one of the key drainage pathways for cerebrospinal fluid from the brain, and conclude with the implications of these interconnected pathways to the ongoing revision for the concept of immune privilege of the brain.

Abstract

The most important function of the lymphatic system is to remove extravasated proteins from the tissues, as these cannot be effectively absorbed back into the blood capillaries. Consequently, most of the organs and tissues of the body containing blood vessels also contain lymphatics. The brain is a major exception to this rule, lacking a local lymphatic drainage system. As we will show, there are a number of important reasons for this distinction, mostly relating to the strict volume and pressure maintenance requirements, the tight control maintained by the blood–brain barrier (BBB), as well as the so-called immune privilege of the brain. At the same time, we will also show that the lymphatic system in the head and neck (primarily the cervical lymph nodes) still play an important role in fluid drainage and immune function of the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott NJ (2004) Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem Int 45(4):545–552

    PubMed  CAS  Google Scholar 

  • Abbott NJ, Bundgaard M, Cserr HF (1985) Tightness of the blood–brain barrier and evidence for brain interstitial fluid flow in the cuttlefish, Sepia officinalis. J Physiol 368:213–226

    PubMed  CAS  Google Scholar 

  • Arnold W, Ilberg CV (1973) The connections of the cerebrospinal fluid (CSF) with the lymphatic system of the head and neck. In: Mayall RC, Witte MH (eds) Progress in lymphology IV. Plenum Press, Tucson, AZ, pp 57–58

    Google Scholar 

  • Badaut J, Lasbennes F, Magistretti PJ, Regli L (2002) Aquaporins in brain: distribution, physiology, and pathophysiology. J Cereb Blood Flow Metab 22(4):367–378

    PubMed  CAS  Google Scholar 

  • Baledent O, Gondry-Jouet C, Meyer ME et al (2004) Relationship between cerebrospinal fluid and blood dynamics in healthy volunteers and patients with communicating hydrocephalus. Invest Radiol 39(1):45–55

    PubMed  Google Scholar 

  • Bergsneider M, Egnor MR, Johnston M et al (2006) What we don’t (but should) know about hydrocephalus. J Neurosurg 104(3 suppl):157–159

    PubMed  Google Scholar 

  • Bering EA Jr, Sato O (1963) Hydrocephalus: changes in formation and absorption of cerebrospinal fluid within the cerebral ventricles. J Neurosurg 20:1050–1063

    PubMed  Google Scholar 

  • Bhadelia RA, Bogdan AR, Wolpert SM (1995) Analysis of cerebrospinal fluid flow waveforms with gated phase-contrast MR velocity measurements. AJNR Am J Neuroradiol 16(2):389–400

    PubMed  CAS  Google Scholar 

  • Bloch O, Manley GT (2007) The role of aquaporin-4 in cerebral water transport and edema. Neurosurg Focus 22(5):E3

    PubMed  Google Scholar 

  • Boulton M, Flessner M, Armstrong D, Hay J, Johnston M (1998) Determination of volumetric cerebrospinal fluid absorption into extracranial lymphatics in sheep. Am J Physiol 274(1 Pt 2):R88–R96

    PubMed  CAS  Google Scholar 

  • Boulton M, Flessner M, Armstrong D, Mohamed R, Hay J, Johnston M (1999) Contribution of extracranial lymphatics and arachnoid villi to the clearance of a CSF tracer in the rat. Am J Physiol 276(3 Pt 2):R818–R823

    PubMed  CAS  Google Scholar 

  • Bozanovic-Sosic R, Mollanji R, Johnston MG (2001) Spinal and cranial contributions to total cerebrospinal fluid transport. Am J Physiol Regul Integr Comp Physiol 281(3):R909–R916

    PubMed  CAS  Google Scholar 

  • Bradbury MW (1984) The structure and function of the blood–brain barrier. Fed Proc 43(2):186–190

    PubMed  CAS  Google Scholar 

  • Bradbury MW (1985) The blood–brain barrier. Transport across the cerebral endothelium. Circ Res 57(2):213–222

    PubMed  CAS  Google Scholar 

  • Bradbury MWB, Cserr HF (1985) Drainage of cerebral interstitial fluid and of cerebrospinal fluid into lymphatics. In: Johnston MG (ed) Experimental biology of the lymphatic circulation. Elsevier Science Publishers, Amsterdam, pp 355–394

    Google Scholar 

  • Bradbury MW, Cserr HF, Westrop RJ (1981) Drainage of cerebral interstitial fluid into deep cervical lymph of the rabbit. Am J Physiol 240(4):F329–F336

    PubMed  CAS  Google Scholar 

  • Bradley WG Jr, Scalzo D, Queralt J, Nitz WN, Atkinson DJ, Wong P (1996) Normal-pressure hydrocephalus: evaluation with cerebrospinal fluid flow measurements at MR imaging. Radiology 198(2):523–529

    PubMed  Google Scholar 

  • Brinker T, Botel C, Samii M (1994a) A species comparing radiological study on the absorption of cerebrospinal fluid into the cervical lymphatic system. In: Nagai H, Kamiya K, Ishii K (eds) Intracranial pressure IX. Springer, Tokyo, pp 559–560

    Google Scholar 

  • Brinker T, Botel C, Rothkotter HJ, Walter GF, Samii M (1994b) The perineural pathway of cerebrospinal fluid absorption into the cervical lymphatic system. Morphological findings in rats, cats, dogs and monkeys. In: Nagai H, Kamiya K, Ishii K (eds) Intracranial pressure IX. Springer, Tokyo, pp 132–135

    Google Scholar 

  • Brinker T, Ludemann W, Berens von Rautenfeld D, Samii M (1997) Dynamic properties of lymphatic pathways for the absorption of cerebrospinal fluid. Acta Neuropathol 94(5):493–498

    PubMed  CAS  Google Scholar 

  • Bulat M, Klarica M (2011) Recent insights into a new hydrodynamics of the cerebrospinal fluid. Brain Res Rev 65(2):99–112

    PubMed  Google Scholar 

  • Carare RO, Bernardes-Silva M, Newman TA et al (2008) Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol Appl Neurobiol 34(2):131–144

    PubMed  CAS  Google Scholar 

  • Casley-Smith JR, Clodius L, Foldi-Borcsok E, Gruntzig J, Foldi M (1978) The effects of chronic cervical lymphostasis on regions drained by lymphatics and by prelymphatics. J Pathol 124(1):13–17

    PubMed  CAS  Google Scholar 

  • Caversaccio M, Peschel O, Arnold W (1996) The drainage of cerebrospinal fluid into the lymphatic system of the neck in humans. ORL J Otorhinolaryngol Relat Spec 58(3):164–166

    PubMed  CAS  Google Scholar 

  • Ce J (1995) Ventricles and cerebrospinal fluid. In: Conn PM (ed) Neuroscience in medicine. J.B. Lippincott Company, Philadelphia, pp 171–196

    Google Scholar 

  • Csanda E, Obal F, Obal FJ (1983) Central nervous system and lymphatic system. In: Foldi M, Casley-Smith JR (eds) Lymphangiology. Schattauer, New York, pp 475–508

    Google Scholar 

  • Cserr HF, Ostrach LH (1974) Bulk flow of interstitial fluid after intracranial injection of blue dextran 2000. Exp Neurol 45(1):50–60

    PubMed  CAS  Google Scholar 

  • Cserr HF, Harling-Berg CJ, Knopf PM (1992a) Drainage of brain extracellular fluid into blood and deep cervical lymph and its immunological significance. Brain Pathol 2(4):269–276

    PubMed  CAS  Google Scholar 

  • Cserr HF, DePasquale M, Harling-Berg CJ, Park JT, Knopf PM (1992b) Afferent and efferent arms of the humoral immune response to CSF-administered albumins in a rat model with normal blood–brain barrier permeability. J Neuroimmunol 41(2):195–202

    PubMed  CAS  Google Scholar 

  • Cutler RW, Page L, Galicich J, Watters GV (1968) Formation and absorption of cerebrospinal fluid in man. Brain 91(4):707–720

    PubMed  CAS  Google Scholar 

  • Davson H, Welch K, Segal MB (1987) Physiology and pathophysiology of the cerebrospinal fluid. Churchill Livingstone, Edinburgh

    Google Scholar 

  • Dolan H, Crain B, Troncoso J, Resnick SM, Zonderman AB, Obrien RJ (2010) Atherosclerosis, dementia, and Alzheimer disease in the Baltimore Longitudinal Study of Aging cohort. Ann Neurol 68(2):231–240

    PubMed  Google Scholar 

  • Duong DH, O’Malley S, Sekhar LN, Wright DG (2000) Postoperative hydrocephalus in cranial base surgery. Skull Base Surg 10(4):197–200

    PubMed  CAS  Google Scholar 

  • Egnor M, Zheng L, Rosiello A, Gutman F, Davis R (2002) A model of pulsations in communicating hydrocephalus. Pediatr Neurosurg 36(6):281–303

    PubMed  Google Scholar 

  • Eller M, Williams DR (2009) Biological fluid biomarkers in neurodegenerative parkinsonism. Nat Rev Neurol 5(10):561–570

    PubMed  CAS  Google Scholar 

  • Engelhardt B (2008) The blood-central nervous system barriers actively control immune cell entry into the central nervous system. Curr Pharm Des 14(16):1555–1565

    PubMed  CAS  Google Scholar 

  • Engelhardt B, Ransohoff RM (2005) The ins and outs of T-lymphocyte trafficking to the CNS: anatomical sites and molecular mechanisms. Trends Immunol 26(9):485–495

    PubMed  CAS  Google Scholar 

  • Erlich SS, McComb JG, Hyman S, Weiss MH (1986) Ultrastructural morphology of the olfactory pathway for cerebrospinal fluid drainage in the rabbit. J Neurosurg 64(3):466–473

    PubMed  CAS  Google Scholar 

  • Fenstermacher JD (1984) Volume regulation of the central nervous system. In: Staub NC, Taylor AE (eds) Edema. Raven, New York, NY, pp 383–404

    Google Scholar 

  • Foldi M (1975) Letter: lymphatic drainage of the brain. Lancet 2(7941):930

    PubMed  CAS  Google Scholar 

  • Foldi M (1996) The brain and the lymphatic system (I). Lymphology 29(1):1–9

    PubMed  CAS  Google Scholar 

  • Foldi M, Gellert A, Kozma M, Poberai M, Zoltan OT, Csanda E (1966) New contributions to the anatomical connections of the brain and the lymphatic system. Acta Anat (Basel) 64(4):498–505

    PubMed  CAS  Google Scholar 

  • Fox RJ, Walji AH, Mielke B, Petruk KC, Aronyk KE (1996) Anatomic details of intradural channels in the parasagittal dura: a possible pathway for flow of cerebrospinal fluid. Neurosurgery 39(1):84–90; discussion 90–91

    PubMed  CAS  Google Scholar 

  • Frankfort SV, Tulner LR, van Campen JP, Verbeek MM, Jansen RW, Beijnen JH (2008) Amyloid beta protein and tau in cerebrospinal fluid and plasma as biomarkers for dementia: a review of recent literature. Curr Clin Pharmacol 3(2):123–131

    PubMed  CAS  Google Scholar 

  • Galea I, Bechmann I, Perry VH (2007) What is immune privilege (not)? Trends Immunol 28(1):12–18

    PubMed  CAS  Google Scholar 

  • Geer CP, Grossman SA (1997) Interstitial fluid flow along white matter tracts: a potentially important mechanism for the dissemination of primary brain tumors. J Neurooncol 32(3):193–201

    PubMed  CAS  Google Scholar 

  • Glimcher SA, Holman DW, Lubow M, Grzybowski DM (2008) Ex vivo model of cerebrospinal fluid outflow across human arachnoid granulations. Invest Ophthalmol Vis Sci 49(11):4721–4728

    PubMed  Google Scholar 

  • Gomez DG, Chambers AA, Di Benedetto AT, Potts DG (1974) The spinal cerebrospinal fluid absorptive pathways. Neuroradiology 8(2):61–66

    PubMed  CAS  Google Scholar 

  • Gomez DG, DiBenedetto AT, Pavese AM, Firpo A, Hershan DB, Potts DG (1982) Development of arachnoid villi and granulations in man. Acta Anat (Basel) 111(3):247–258

    PubMed  CAS  Google Scholar 

  • Gomez DG, Fenstermacher JD, Manzo RP, Johnson D, Potts DG (1985) Cerebrospinal fluid absorption in the rabbit: olfactory pathways. Acta Otolaryngol 100(5–6):429–436

    PubMed  CAS  Google Scholar 

  • Greitz D (1993) Cerebrospinal fluid circulation and associated intracranial dynamics. A radiologic investigation using MR imaging and radionuclide cisternography. Acta Radiol Suppl 386:1–23

    PubMed  CAS  Google Scholar 

  • Grzybowski DM, Holman DW, Katz SE, Lubow M (2006) In vitro model of cerebrospinal fluid outflow through human arachnoid granulations. Invest Ophthalmol Vis Sci 47(8):3664–3672

    PubMed  Google Scholar 

  • Hammock MK, Milhorat TH (1976) The cerebrospinal fluid: current concepts of its formation. Ann Clin Lab Sci 6(1):22–26

    PubMed  CAS  Google Scholar 

  • Harling-Berg C, Knopf PM, Merriam J, Cserr HF (1989) Role of cervical lymph nodes in the systemic humoral immune response to human serum albumin microinfused into rat cerebrospinal fluid. J Neuroimmunol 25(2–3):185–193

    PubMed  CAS  Google Scholar 

  • Harling-Berg CJ, Knopf PM, Cserr HF (1991) Myelin basic protein infused into cerebrospinal fluid suppresses experimental autoimmune encephalomyelitis. J Neuroimmunol 35(1–3):45–51

    PubMed  CAS  Google Scholar 

  • Harnish PP, Samuel K (1988) Reduced cerebrospinal fluid production in the rat and rabbit by diatrizoate. Ventriculocisternal perfusion. Invest Radiol 23(7):534–536

    PubMed  CAS  Google Scholar 

  • Hatterer E, Davoust N, Didier-Bazes M et al (2006) How to drain without lymphatics? Dendritic cells migrate from the cerebrospinal fluid to the B-cell follicles of cervical lymph nodes. Blood 107(2):806–812

    PubMed  CAS  Google Scholar 

  • Hatterer E, Touret M, Belin MF, Honnorat J, Nataf S (2008) Cerebrospinal fluid dendritic cells infiltrate the brain parenchyma and target the cervical lymph nodes under neuroinflammatory conditions. PLoS One 3(10):e3321

    PubMed  Google Scholar 

  • Heisey SR, Held D, Pappenheimer JR (1962) Bulk flow and diffusion in the cerebrospinal fluid system of the goat. Am J Physiol 203:775–781

    PubMed  CAS  Google Scholar 

  • Hickey WF (1991) Migration of hematogenous cells through the blood–brain barrier and the initiation of CNS inflammation. Brain Pathol 1(2):97–105

    PubMed  CAS  Google Scholar 

  • His W (1865) Über ein perivasculäres Kanalsystem in den nervösen Central-Organen und über dessen Beziehungen zum Lymphsystem. Zeitschrift für Wissenschaft Zoologie 15:127–141

    Google Scholar 

  • Johanson C (2008) Choroid plexus-CSF circulatory dynamics: impact on brain growth, metabolism and repair. In: Conn PM (ed) Neuroscience in medicine. Springer, Boston, pp 173–200

    Google Scholar 

  • Johanson CE, Duncan JA III, Klinge PM, Brinker T, Stopa EG, Silverberg GD (2008) Multiplicity of cerebrospinal fluid functions: new challenges in health and disease. Cerebrospinal Fluid Res 5:10

    PubMed  Google Scholar 

  • Johnston M (2003) The importance of lymphatics in cerebrospinal fluid transport. Lymphat Res Biol 1(1):41–44; discussion 5

    PubMed  Google Scholar 

  • Johnston M, Papaiconomou C (2002) Cerebrospinal fluid transport: a lymphatic perspective. News Physiol Sci 17:227–230

    PubMed  CAS  Google Scholar 

  • Johnston M, Zakharov A, Papaiconomou C, Salmasi G, Armstrong D (2004) Evidence of connections between cerebrospinal fluid and nasal lymphatic vessels in humans, non-human primates and other mammalian species. Cerebrospinal Fluid Res 1(1):2

    PubMed  Google Scholar 

  • Johnston M, Zakharov A, Koh L, Armstrong D (2005) Subarachnoid injection of Microfil reveals connections between cerebrospinal fluid and nasal lymphatics in the non-human primate. Neuropathol Appl Neurobiol 31(6):632–640

    PubMed  CAS  Google Scholar 

  • Kida S, Pantazis A, Weller RO (1993) CSF drains directly from the subarachnoid space into nasal lymphatics in the rat. Anatomy, histology and immunological significance. Neuropathol Appl Neurobiol 19(6):480–488

    PubMed  CAS  Google Scholar 

  • Kida S, Okamoto Y, Higashi S et al (1994) Morphological aspects of interstitial fluid drainage from the rat brain. In: Nagai H, Kamiya K, Ishii K (eds) Intracranial pressure IX. Springer, Toyko, pp 136–139

    Google Scholar 

  • Kida S, Weller RO, Zhang ET, Phillips MJ, Iannotti F (1995) Anatomical pathways for lymphatic drainage of the brain and their pathological significance. Neuropathol Appl Neurobiol 21(3):181–184

    PubMed  CAS  Google Scholar 

  • Kido DK, Gomez DG, Pavese AM Jr, Potts DG (1976) Human spinal arachnoid villi and ­granulations. Neuroradiology 11(5):221–228

    PubMed  CAS  Google Scholar 

  • Kleine TO, Benes L (2006) Immune surveillance of the human central nervous system (CNS): different migration pathways of immune cells through the blood–brain barrier and blood-­cerebrospinal fluid barrier in healthy persons. Cytometry A 69(3):147–151

    PubMed  Google Scholar 

  • Kobayashi H, Minami S, Itoh S et al (2001) Aquaporin subtypes in rat cerebral microvessels. Neurosci Lett 297(3):163–166

    PubMed  CAS  Google Scholar 

  • Koh L, Zakharov A, Johnston M (2005) Integration of the subarachnoid space and lymphatics: is it time to embrace a new concept of cerebrospinal fluid absorption? Cerebrospinal Fluid Res 2:6

    PubMed  Google Scholar 

  • Koh L, Zakharov A, Nagra G, Armstrong D, Friendship R, Johnston M (2006) Development of cerebrospinal fluid absorption sites in the pig and rat: connections between the subarachnoid space and lymphatic vessels in the olfactory turbinates. Anat Embryol (Berl) 211(4):335–344

    PubMed  Google Scholar 

  • Koh L, Nagra G, Johnston M (2007) Properties of the lymphatic cerebrospinal fluid transport system in the rat: impact of elevated intracranial pressure. J Vasc Res 44(5):423–432

    PubMed  Google Scholar 

  • Leinonen V, Menon LG, Carroll RS et al (2011) Cerebrospinal fluid biomarkers in idiopathic normal pressure hydrocephalus. Int J Alzheimers Dis 2011:312526

    PubMed  Google Scholar 

  • Love JA, Leslie RA (1984) The effects of raised ICP on lymph flow in the cervical lymphatic trunks in cats. J Neurosurg 60(3):577–581

    PubMed  CAS  Google Scholar 

  • Lowhagen P, Johansson BB, Nordborg C (1994) The nasal route of cerebrospinal fluid drainage in man. A light-microscope study. Neuropathol Appl Neurobiol 20(6):543–550

    PubMed  CAS  Google Scholar 

  • Luetmer PH, Huston J, Friedman JA et al (2002) Measurement of cerebrospinal fluid flow at the cerebral aqueduct by use of phase-contrast magnetic resonance imaging: technique validation and utility in diagnosing idiopathic normal pressure hydrocephalus. Neurosurgery 50(3):534–543; discussion 43–44

    PubMed  Google Scholar 

  • MacAulay N, Zeuthen T (2010) Water transport between CNS compartments: contributions of aquaporins and cotransporters. Neuroscience 168(4):941–956

    PubMed  CAS  Google Scholar 

  • Manley GT, Fujimura M, Ma T et al (2000) Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med 6(2):159–163

    PubMed  CAS  Google Scholar 

  • Mao X, Enno TL, Del Bigio MR (2006) Aquaporin 4 changes in rat brain with severe hydrocephalus. Eur J Neurosci 23(11):2929–2936

    PubMed  Google Scholar 

  • Marmarou A, Shulman K, LaMorgese J (1975) Compartmental analysis of compliance and outflow resistance of the cerebrospinal fluid system. J Neurosurg 43(5):523–534

    PubMed  CAS  Google Scholar 

  • McAllister JP II, Miller JM (2006) Aquaporin 4 and hydrocephalus. J Neurosurg 105(6 suppl):457–458; discussion 8

    PubMed  Google Scholar 

  • McComb JG, Hyman S (1990) Lymphatic drainage of cerebrospinal fluid in the primate. In: Johansson BB, Owman C, Widner H (eds) Pathophysiology of the blood brain barrier. Elsevier, Amsterdam, pp 421–438

    Google Scholar 

  • McComb JG, Davson H, Hyman S, Weiss MH (1982) Cerebrospinal fluid drainage as influenced by ventricular pressure in the rabbit. J Neurosurg 56(6):790–797

    PubMed  CAS  Google Scholar 

  • McComb JG, Hyman S, Weiss MH (1984) Lymphatic drainage of cerebrospinal fluid in the cat. In: Shapiro K, Marmarou A, Portnoy H (eds) Hydrocephalus. Raven, New York, pp 83–98

    Google Scholar 

  • Milhorat TH (1987) Cerebrospinal fluid and the Brain Edemas. Neuroscience Society of New York, New York, p 39–73

    Google Scholar 

  • Moinuddin SM, Tada T (2000) Study of cerebrospinal fluid flow dynamics in TGF-beta 1 induced chronic hydrocephalic mice. Neurol Res 22(2):215–222

    PubMed  CAS  Google Scholar 

  • Mollanji R, Bozanovic-Sosic R, Silver I et al (2001a) Intracranial pressure accommodation is impaired by blocking pathways leading to extracranial lymphatics. Am J Physiol Regul Integr Comp Physiol 280(5):R1573–R1581

    PubMed  CAS  Google Scholar 

  • Mollanji R, Papaiconomou C, Boulton M, Midha R, Johnston M (2001b) Comparison of cerebrospinal fluid transport in fetal and adult sheep. Am J Physiol Regul Integr Comp Physiol 281(4):R1215–R1223

    PubMed  CAS  Google Scholar 

  • Mollanji R, Bozanovic-Sosic R, Zakharov A, Makarian L, Johnston MG (2002) Blocking cerebrospinal fluid absorption through the cribriform plate increases resting intracranial pressure. Am J Physiol Regul Integr Comp Physiol 282(6):R1593–R1599

    PubMed  CAS  Google Scholar 

  • Mollenhauer B, Trenkwalder C (2009) Neurochemical biomarkers in the differential diagnosis of movement disorders. Mov Disord 24(10):1411–1426

    PubMed  Google Scholar 

  • Nagelhus EA, Mathiisen TM, Ottersen OP (2004) Aquaporin-4 in the central nervous system: cellular and subcellular distribution and coexpression with KIR4.1. Neuroscience 129(4):905–913

    PubMed  CAS  Google Scholar 

  • Nagra G, Johnston MG (2007) Impact of ageing on lymphatic cerebrospinal fluid absorption in the rat. Neuropathol Appl Neurobiol 33(6):684–691

    PubMed  CAS  Google Scholar 

  • Nagra G, Koh L, Zakharov A, Armstrong D, Johnston M (2006) Quantification of cerebrospinal fluid transport across the cribriform plate into lymphatics in rats. Am J Physiol Regul Integr Comp Physiol 291(5):R1383–R1389

    PubMed  CAS  Google Scholar 

  • Nagra G, Li J, McAllister JP II, Miller J, Wagshul M, Johnston M (2008) Impaired lymphatic cerebrospinal fluid absorption in a rat model of kaolin-induced communicating hydrocephalus. Am J Physiol Regul Integr Comp Physiol 294(5):R1752–R1759

    PubMed  CAS  Google Scholar 

  • Nagra G, Wagshul ME, Rashid S, Li J, McAllister JP II, Johnston M (2010) Elevated CSF outflow resistance associated with impaired lymphatic CSF absorption in a rat model of kaolin-induced communicating hydrocephalus. Cerebrospinal Fluid Res 7(1):4

    PubMed  Google Scholar 

  • Naidich TP, Altman NR, Gonzalez-Arias SM (1993) Phase contrast cine magnetic resonance imaging: normal cerebrospinal fluid oscillation and applications to hydrocephalus. Neurosurg Clin N Am 4(4):677–705

    PubMed  CAS  Google Scholar 

  • Naruse I, Ueta E (2002) Hydrocephalus manifestation in the genetic polydactyly/arhinencephaly mouse (Pdn/Pdn). Congenit Anom (Kyoto) 42(1):27–31

    PubMed  Google Scholar 

  • Nitz WR, Bradley WG Jr, Watanabe AS et al (1992) Flow dynamics of cerebrospinal fluid: assessment with phase-contrast velocity MR imaging performed with retrospective cardiac gating. Radiology 183(2):395–405

    PubMed  CAS  Google Scholar 

  • Ohtani O, Ohtani Y, Li RX (2001) Phylogeny and ontogeny of the lymphatic stomata connecting the pleural and peritoneal cavities with the lymphatic system—a review. Ital J Anat Embryol 106(2 suppl 1):251–259

    PubMed  CAS  Google Scholar 

  • Oi S, Di Rocco C (2006) Proposal of “evolution theory in cerebrospinal fluid dynamics” and minor pathway hydrocephalus in developing immature brain. Childs Nerv Syst 22(7):662–669

    PubMed  Google Scholar 

  • Osaka K, Handa H, Matsumoto S, Yasuda M (1980) Development of the cerebrospinal fluid pathway in the normal and abnormal human embryos. Childs Brain 6(1):26–38

    PubMed  CAS  Google Scholar 

  • Owler BK, Pitham T, Wang D (2010) Aquaporins: relevance to cerebrospinal fluid physiology and therapeutic potential in hydrocephalus. Cerebrospinal Fluid Res 7:15

    PubMed  Google Scholar 

  • Papaiconomou C, Bozanovic-Sosic R, Zakharov A, Johnston M (2002) Does neonatal cerebrospinal fluid absorption occur via arachnoid projections or extracranial lymphatics? Am J Physiol Regul Integr Comp Physiol 283(4):R869–R876

    PubMed  CAS  Google Scholar 

  • Papaiconomou C, Zakharov A, Azizi N, Djenic J, Johnston M (2004) Reassessment of the pathways responsible for cerebrospinal fluid absorption in the neonate. Childs Nerv Syst 20(1):29–36

    PubMed  CAS  Google Scholar 

  • Phillips MJ, Needham M, Weller RO (1997) Role of cervical lymph nodes in autoimmune encephalomyelitis in the Lewis rat. J Pathol 182(4):457–464

    PubMed  CAS  Google Scholar 

  • Poca MA, Sahuquillo J, Busto M et al (2002) Agreement between CSF flow dynamics in MRI and ICP monitoring in the diagnosis of normal pressure hydrocephalus. Sensitivity and specificity of CSF dynamics to predict outcome. Acta Neurochir Suppl 81:7–10

    PubMed  CAS  Google Scholar 

  • Pollay M (2010) The function and structure of the cerebrospinal fluid outflow system. Cerebrospinal Fluid Res 7:9

    PubMed  Google Scholar 

  • Pollay M, Welch K (1962) The function and structure of canine arachnoid villi. J Surg Res 2:307–311

    PubMed  CAS  Google Scholar 

  • Preston JE (2001) Ageing choroid plexus-cerebrospinal fluid system. Microsc Res Tech 52(1):31–37

    PubMed  CAS  Google Scholar 

  • Preston SD, Steart PV, Wilkinson A, Nicoll JA, Weller RO (2003) Capillary and arterial cerebral amyloid angiopathy in Alzheimer’s disease: defining the perivascular route for the elimination of amyloid beta from the human brain. Neuropathol Appl Neurobiol 29(2):106–117

    PubMed  CAS  Google Scholar 

  • Ransohoff RM, Kivisakk P, Kidd G (2003) Three or more routes for leukocyte migration into the central nervous system. Nat Rev Immunol 3(7):569–581

    PubMed  CAS  Google Scholar 

  • Rennels ML, Gregory TF, Blaumanis OR, Fujimoto K, Grady PA (1985) Evidence for a ‘paravascular’ fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Res 326(1):47–63

    PubMed  CAS  Google Scholar 

  • Rennels ML, Blaumanis OR, Grady PA (1990) Rapid solute transport throughout the brain via paravascular fluid pathways. Adv Neurol 52:431–439

    PubMed  CAS  Google Scholar 

  • Romo-Gonzalez T, Chavarria A, Perez HJ (2012) Central nervous system: a modified immune surveillance circuit? Brain Behav Immun 26(6):823–829

    PubMed  CAS  Google Scholar 

  • Rubin RC, Henderson ES, Ommaya AK, Walker MD, Rall DP (1966) The production of cerebrospinal fluid in man and its modification by acetazolamide. J Neurosurg 25(4):430–436

    PubMed  CAS  Google Scholar 

  • Rudert M, Tillmann B (1993) Lymph and blood supply of the human intervertebral disc. Cadaver study of correlations to discitis. Acta Orthop Scand 64(1):37–40

    PubMed  CAS  Google Scholar 

  • Schley D, Carare-Nnadi R, Please CP, Perry VH, Weller RO (2006) Mechanisms to explain the reverse perivascular transport of solutes out of the brain. J Theor Biol 238(4):962–974

    PubMed  CAS  Google Scholar 

  • Seabrook TJ, Johnston M, Hay JB (1998) Cerebral spinal fluid lymphocytes are part of the normal recirculating lymphocyte pool. J Neuroimmunol 91(1–2):100–107

    PubMed  CAS  Google Scholar 

  • Shinohara H, Kominami R, Taniguchi Y, Yasutaka S (2003) The distribution and morphology of lymphatic vessels on the peritoneal surface of the adult human diaphragm, as revealed by an ink-absorption method. Okajimas Folia Anat Jpn 79(6):175–183

    PubMed  Google Scholar 

  • Silver I, Li B, Szalai J, Johnston M (1999) Relationship between intracranial pressure and cervical lymphatic pressure and flow rates in sheep. Am J Physiol 277(6 Pt 2):R1712–R1717

    PubMed  CAS  Google Scholar 

  • Silver I, Kim C, Mollanji R, Johnston M (2002) Cerebrospinal fluid outflow resistance in sheep: impact of blocking cerebrospinal fluid transport through the cribriform plate. Neuropathol Appl Neurobiol 28(1):67–74

    PubMed  CAS  Google Scholar 

  • Silverberg GD, Huhn S, Jaffe RA et al (2002) Downregulation of cerebrospinal fluid production in patients with chronic hydrocephalus. J Neurosurg 97(6):1271–1275

    PubMed  Google Scholar 

  • Spector R, Johanson CE (1989) The mammalian choroid plexus. Sci Am 261(5):68–74

    PubMed  CAS  Google Scholar 

  • Szentistvanyi I, Patlak CS, Ellis RA, Cserr HF (1984) Drainage of interstitial fluid from different regions of rat brain. Am J Physiol 246(6 Pt 2):F835–F844

    PubMed  CAS  Google Scholar 

  • Verkman AS, Binder DK, Bloch O, Auguste K, Papadopoulos MC (2006) Three distinct roles of aquaporin-4 in brain function revealed by knockout mice. Biochim Biophys Acta 1758(8):1085–1093

    PubMed  CAS  Google Scholar 

  • Vladic A, Klarica M, Bulat M (2009) Dynamics of distribution of 3H-inulin between the cerebrospinal fluid compartments. Brain Res 1248:127–135

    PubMed  CAS  Google Scholar 

  • Wagshul ME, Eide PK, Madsen JR (2011) The pulsating brain: a review of experimental and clinical studies of intracranial pulsatility. Fluids Barriers CNS 8(1):5

    PubMed  Google Scholar 

  • Weed LH (1914) Studies on cerebro-spinal fluid. No. II: the theories of drainage of cerebro-spinal fluid with an analysis of the methods of investigation. J Med Res 31(1):21–49

    PubMed  CAS  Google Scholar 

  • Wekerle H (1993) T-cell autoimmunity in the central nervous system. Intervirology 35(1–4):95–100

    PubMed  CAS  Google Scholar 

  • Welch K, Friedman V (1960) The cerebrospinal fluid valves. Brain 83:454–469

    PubMed  CAS  Google Scholar 

  • Welch K, Pollay M (1961) Perfusion of particles through arachnoid villi of the monkey. Am J Physiol 201:651–654

    PubMed  CAS  Google Scholar 

  • Welch K, Pollay M (1963) The spinal arachnoid villi of the monkeys Cercopithecus aethiops sabaeus and Macaca irus. Anat Rec 145:43–48

    PubMed  CAS  Google Scholar 

  • Weller RO (1998) Pathology of cerebrospinal fluid and interstitial fluid of the CNS: significance for Alzheimer disease, prion disorders and multiple sclerosis. J Neuropathol Exp Neurol 57(10):885–894

    PubMed  CAS  Google Scholar 

  • Weller RO, Kida S, Zhang ET (1992) Pathways of fluid drainage from the brain—morphological aspects and immunological significance in rat and man. Brain Pathol 2(4):277–284

    PubMed  CAS  Google Scholar 

  • Weller RO, Engelhardt B, Phillips MJ (1996) Lymphocyte targeting of the central nervous system: a review of afferent and efferent CNS-immune pathways. Brain Pathol 6(3):275–288

    PubMed  CAS  Google Scholar 

  • Weller RO, Subash M, Preston SD, Mazanti I, Carare RO (2008) Perivascular drainage of amyloid-­beta peptides from the brain and its failure in cerebral amyloid angiopathy and Alzheimer’s disease. Brain Pathol 18(2):253–266

    PubMed  CAS  Google Scholar 

  • Weller RO, Djuanda E, Yow HY, Carare RO (2009a) Lymphatic drainage of the brain and the pathophysiology of neurological disease. Acta Neuropathol 117(1):1–14

    PubMed  CAS  Google Scholar 

  • Weller RO, Preston SD, Subash M, Carare RO (2009b) Cerebral amyloid angiopathy in the aetiology and immunotherapy of Alzheimer disease. Alzheimers Res Ther 1(2):6

    PubMed  Google Scholar 

  • Weller RO, Galea I, Carare RO, Minagar A (2010) Pathophysiology of the lymphatic drainage of the central nervous system: implications for pathogenesis and therapy of multiple sclerosis. Pathophysiology 17(4):295–306

    PubMed  CAS  Google Scholar 

  • Widner H, Moller G, Johansson BB (1988) Immune response in deep cervical lymph nodes and spleen in the mouse after antigen deposition in different intracerebral sites. Scand J Immunol 28(5):563–571

    PubMed  CAS  Google Scholar 

  • Yamada S, DePasquale M, Patlak CS, Cserr HF (1991) Albumin outflow into deep cervical lymph from different regions of rabbit brain. Am J Physiol 261(4 Pt 2):H1197–H1204

    PubMed  CAS  Google Scholar 

  • Zakharov A, Papaiconomou C, Djenic J, Midha R, Johnston M (2003) Lymphatic cerebrospinal fluid absorption pathways in neonatal sheep revealed by subarachnoid injection of Microfil. Neuropathol Appl Neurobiol 29(6):563–573

    PubMed  CAS  Google Scholar 

  • Zakharov A, Papaiconomou C, Johnston M (2004a) Lymphatic vessels gain access to cerebrospinal fluid through unique association with olfactory nerves. Lymphat Res Biol 2(3):139–146

    PubMed  Google Scholar 

  • Zakharov A, Papaiconomou C, Koh L, Djenic J, Bozanovic-Sosic R, Johnston M (2004b) Integrating the roles of extracranial lymphatics and intracranial veins in cerebrospinal fluid absorption in sheep. Microvasc Res 67(1):96–104

    PubMed  CAS  Google Scholar 

  • Zhang ET, Richards HK, Kida S, Weller RO (1992) Directional and compartmentalised drainage of interstitial fluid and cerebrospinal fluid from the rat brain. Acta Neuropathol 83(3):233–239

    PubMed  CAS  Google Scholar 

  • Zlokovic BV, Segal MB, Davson H, Lipovac MN, Hyman S, McComb JG (1990) Circulating neuroactive peptides and the blood–brain and blood-cerebrospinal fluid barriers. Endocrinol Exp 24(1–2):9–17

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark E. Wagshul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wagshul, M.E., Johnston, M. (2013). The Brain and the Lymphatic System. In: Santambrogio, L. (eds) Immunology of the Lymphatic System. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3235-7_8

Download citation

Publish with us

Policies and ethics