Skip to main content

Lymphangiogenesis

  • Chapter
  • First Online:
Immunology of the Lymphatic System

Abstract

Lymphatic vessels are intimately involved in the maintenance of tissue homeostasis, immune cell trafficking, and transport of dietary lipids. During embryonic development, growth of new lymphatic vessels or lymphangiogenesis occurs from preexisting blood vessels in a tightly regulated manner, which then undergoes remodeling and maturation to form the extensive lymphatic network. However, aberrant lymphangiogenesis is also associated with a number of pathological conditions, such as inflammatory diseases, allograft rejection, and cancer metastasis, while insufficient lymphangiogenesis underlies the debilitating condition of lymphedema. This chapter aims to provide an overview of the different cellular mechanisms and key molecular players involved in the regulation and progression of normal lymphatic vascular development (or physiological lymphangiogenesis) and pathological lymphangiogenesis. Understanding the mechanisms of lymphatic vascular development or its role in these pathological processes is a prerequisite for the efficient development of key therapeutic interventions for lymphatic-associated diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abtahian F, Guerriero A, Sebzda E, Lu MM, Zhou R, Mocsai A, Myers EE, Huang B, Jackson DG, Ferrari VA, Tybulewicz V, Lowell CA, Lepore JJ, Koretzky GA, Kahn ML (2003) Regulation of blood and lymphatic vascular separation by signaling proteins SLP-76 and Syk. Science 299:247–251

    PubMed  CAS  Google Scholar 

  • Achen MG, Jeltsch M, Kukk E, Makinen T, Vitali A, Wilks AF, Alitalo K, Stacker SA (1998) Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Proc Natl Acad Sci USA 95:548–553

    PubMed  CAS  Google Scholar 

  • Achen MG, McColl BK, Stacker SA (2005) Focus on lymphangiogenesis in tumor metastasis. Cancer Cell 7:121–127

    PubMed  CAS  Google Scholar 

  • Adams RH, Wilkinson GA, Weiss C, Diella F, Gale NW, Deutsch U, Risau W, Klein R (1999) Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev 13:295–306

    PubMed  CAS  Google Scholar 

  • Alajati A, Laib AM, Weber H, Boos AM, Bartol A, Ikenberg K, Korff T, Zentgraf H, Obodozie C, Graeser R, Christian S, Finkenzeller G, Stark GB, Heroult M, Augustin HG (2008) Spheroid-­based engineering of a human vasculature in mice. Nat Methods 5:439–445

    PubMed  CAS  Google Scholar 

  • Albrecht I, Christofori G (2011) Molecular mechanisms of lymphangiogenesis in development and cancer. Int J Dev Biol 55:483–494

    PubMed  CAS  Google Scholar 

  • Alders M, Hogan BM, Gjini E, Salehi F, Al-Gazali L, Hennekam EA, Holmberg EE, Mannens MM, Mulder MF, Offerhaus GJ, Prescott TE, Schroor EJ, Verheij JB, Witte M, Zwijnenburg PJ, Vikkula M, Schulte-Merker S, Hennekam RC (2009) Mutations in CCBE1 cause generalized lymph vessel dysplasia in humans. Nat Genet 41:1272–1274

    PubMed  CAS  Google Scholar 

  • Alitalo K (2011) The lymphatic vasculature in disease. Nat Med 17:1371–1380

    PubMed  CAS  Google Scholar 

  • Alitalo K, Tammela T, Petrova TV (2005) Lymphangiogenesis in development and human disease. Nature 438:946–953

    PubMed  CAS  Google Scholar 

  • Al-Rawi MA, Watkins G, Mansel RE, Jiang WG (2005) The effects of interleukin-7 on the ­lymphangiogenic properties of human endothelial cells. Int J Oncol 27:721–730

    PubMed  CAS  Google Scholar 

  • Angeli V, Randolph GJ (2006) Inflammation, lymphatic function, and dendritic cell migration. Lymphat Res Biol 4:217–228

    PubMed  CAS  Google Scholar 

  • Au AC, Hernandez PA, Lieber E, Nadroo AM, Shen YM, Kelley KA, Gelb BD, Diaz GA (2010) Protein tyrosine phosphatase PTPN14 is a regulator of lymphatic function and choanal development in humans. Am J Hum Genet 87:436–444

    PubMed  CAS  Google Scholar 

  • Auguste P, Javerzat S, Bikfalvi A (2003) Regulation of vascular development by fibroblast growth factors. Cell Tissue Res 314:157–166

    PubMed  CAS  Google Scholar 

  • Backhed F, Crawford PA, O’Donnell D, Gordon JI (2007) Postnatal lymphatic partitioning from the blood vasculature in the small intestine requires fasting-induced adipose factor. Proc Natl Acad Sci USA 104:606–611

    PubMed  Google Scholar 

  • Baker A, Kim H, Semple JL, Dumont D, Shoichet M, Tobbia D, Johnston M (2010) Experimental assessment of pro-lymphangiogenic growth factors in the treatment of post-surgical lymphedema following lymphadenectomy. Breast Cancer Res 12:R70

    PubMed  Google Scholar 

  • Baldwin ME, Halford MM, Roufail S, Williams RA, Hibbs ML, Grail D, Kubo H, Stacker SA, Achen MG (2005) Vascular endothelial growth factor D is dispensable for development of the lymphatic system. Mol Cell Biol 25:2441–2449

    PubMed  CAS  Google Scholar 

  • Baluk P, Tammela T, Ator E, Lyubynska N, Achen MG, Hicklin DJ, Jeltsch M, Petrova TV, Pytowski B, Stacker SA, Yla-Herttuala S, Jackson DG, Alitalo K, McDonald DM (2005) Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation. J Clin Invest 115:247–257

    PubMed  CAS  Google Scholar 

  • Baluk P, Fuxe J, Hashizume H, Romano T, Lashnits E, Butz S, Vestweber D, Corada M, Molendini C, Dejana E, McDonald DM (2007) Functionally specialized junctions between endothelial cells of lymphatic vessels. J Exp Med 204:2349–2362

    PubMed  CAS  Google Scholar 

  • Bazigou E, Xie S, Chen C, Weston A, Miura N, Sorokin L, Adams R, Muro AF, Sheppard D, Makinen T (2009) Integrin-alpha9 is required for fibronectin matrix assembly during lymphatic valve morphogenesis. Dev Cell 17:175–186

    PubMed  CAS  Google Scholar 

  • Bennuru S, Nutman TB (2009) Lymphangiogenesis and lymphatic remodeling induced by filarial parasites: implications for pathogenesis. PLoS Pathog 5:e1000688

    PubMed  Google Scholar 

  • Bjorndahl M, Cao R, Nissen LJ, Clasper S, Johnson LA, Xue Y, Zhou Z, Jackson D, Hansen AJ, Cao Y (2005a) Insulin-like growth factors 1 and 2 induce lymphangiogenesis in vivo. Proc Natl Acad Sci USA 102:15593–15598

    PubMed  Google Scholar 

  • Bjorndahl MA, Cao R, Burton JB, Brakenhielm E, Religa P, Galter D, Wu L, Cao Y (2005b) Vascular endothelial growth factor-a promotes peritumoral lymphangiogenesis and lymphatic metastasis. Cancer Res 65:9261–9268

    PubMed  Google Scholar 

  • Bollinger A, Isenring G, Franzeck UK, Brunner U (1983) Aplasia of superficial lymphatic capillaries in hereditary and connatal lymphedema (Milroy’s disease). Lymphology 16:27–30

    PubMed  CAS  Google Scholar 

  • Breiteneder-Geleff S, Soleiman A, Kowalski H, Horvat R, Amann G, Kriehuber E, Diem K, Weninger W, Tschachler E, Alitalo K, Kerjaschki D (1999) Angiosarcomas express mixed endothelial phenotypes of blood and lymphatic capillaries: podoplanin as a specific marker for lymphatic endothelium. Am J Pathol 154:385–394

    PubMed  CAS  Google Scholar 

  • Bruyere F, Noel A (2010) Lymphangiogenesis: in vitro and in vivo models. FASEB J 24:8–21

    PubMed  Google Scholar 

  • Bruyere F, Melen-Lamalle L, Blacher S, Roland G, Thiry M, Moons L, Frankenne F, Carmeliet P, Alitalo K, Libert C, Sleeman JP, Foidart JM, Noel A (2008) Modeling lymphangiogenesis in a three-dimensional culture system. Nat Methods 5:431–437

    PubMed  CAS  Google Scholar 

  • Byzova TV, Goldman CK, Jankau J, Chen J, Cabrera G, Achen MG, Stacker SA, Carnevale KA, Siemionow M, Deitcher SR, DiCorleto PE (2002) Adenovirus encoding vascular endothelial growth factor-D induces tissue-specific vascular patterns in vivo. Blood 99:4434–4442

    PubMed  CAS  Google Scholar 

  • Cao R, Bjorndahl MA, Religa P, Clasper S, Garvin S, Galter D, Meister B, Ikomi F, Tritsaris K, Dissing S, Ohhashi T, Jackson DG, Cao Y (2004) PDGF-BB induces intratumoral lymphangiogenesis and promotes lymphatic metastasis. Cancer Cell 6:333–345

    PubMed  CAS  Google Scholar 

  • Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, Fahrig M, Vandenhoeck A, Harpal K, Eberhardt C, Declercq C, Pawling J, Moons L, Collen D, Risau W, Nagy A (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380:435–439

    PubMed  CAS  Google Scholar 

  • Casley-Smith JR (1974) The lymphatic system in inflammation. In: Zweifach BW, Grant L, Mcclusky RT (eds) The inflammatory process. Academic, New York, pp 161–204

    Google Scholar 

  • Caunt M, Mak J, Liang WC, Stawicki S, Pan Q, Tong RK, Kowalski J, Ho C, Reslan HB, Ross J, Berry L, Kasman I, Zlot C, Cheng Z, Le Couter J, Filvaroff EH, Plowman G, Peale F, French D, Carano R, Koch AW, Wu Y, Watts RJ, Tessier-Lavigne M, Bagri A (2008) Blocking neuropilin-­2 function inhibits tumor cell metastasis. Cancer Cell 13:331–342

    PubMed  CAS  Google Scholar 

  • Chen Z, Varney ML, Backora MW, Cowan K, Solheim JC, Talmadge JE, Singh RK (2005) Down-­regulation of vascular endothelial cell growth factor-C expression using small interfering RNA vectors in mammary tumors inhibits tumor lymphangiogenesis and spontaneous metastasis and enhances survival. Cancer Res 65:9004–9011

    PubMed  CAS  Google Scholar 

  • Chen L, Hamrah P, Cursiefen C, Zhang Q, Pytowski B, Streilein JW, Dana MR (2007) Vascular endothelial growth factor receptor-3 mediates induction of corneal alloimmunity. 2004. Ocul Immunol Inflamm 15:275–278

    PubMed  CAS  Google Scholar 

  • Clasper S, Royston D, Baban D, Cao Y, Ewers S, Butz S, Vestweber D, Jackson DG (2008) A novel gene expression profile in lymphatics associated with tumor growth and nodal metastasis. Cancer Res 68:7293–7303

    PubMed  CAS  Google Scholar 

  • Connell FC, Ostergaard P, Carver C, Brice G, Williams N, Mansour S, Mortimer PS, Jeffery S (2009) Analysis of the coding regions of VEGFR3 and VEGFC in Milroy disease and other primary lymphoedemas. Hum Genet 124:625–631

    PubMed  CAS  Google Scholar 

  • Crnic I, Strittmatter K, Cavallaro U, Kopfstein L, Jussila L, Alitalo K, Christofori G (2004) Loss of neural cell adhesion molecule induces tumor metastasis by up-regulating lymphangiogenesis. Cancer Res 64:8630–8638

    PubMed  CAS  Google Scholar 

  • Cueni LN, Detmar M (2008) The lymphatic system in health and disease. Lymphat Res Biol 6:109–122

    PubMed  Google Scholar 

  • Dagenais SL, Hartsough RL, Erickson RP, Witte MH, Butler MG, Glover TW (2004) Foxc2 is expressed in developing lymphatic vessels and other tissues associated with lymphedema-­distichiasis syndrome. Gene Expr Patterns 4:611–619

    PubMed  CAS  Google Scholar 

  • Danussi C, Spessotto P, Petrucco A, Wassermann B, Sabatelli P, Montesi M, Doliana R, Bressan G, Colombatti A (2008) Emilin1 deficiency causes structural and functional defects of lymphatic vasculature. Mol Cell Biol 28:4026–4039

    PubMed  CAS  Google Scholar 

  • Dejana E, Orsenigo F, Molendini C, Baluk P, McDonald DM (2009) Organization and signaling of endothelial cell-to-cell junctions in various regions of the blood and lymphatic vascular trees. Cell Tissue Res 335:17–25

    PubMed  Google Scholar 

  • Dellinger M, Hunter R, Bernas M, Gale N, Yancopoulos G, Erickson R, Witte M (2008) Defective remodeling and maturation of the lymphatic vasculature in angiopoietin-2 deficient mice. Dev Biol 319:309–320

    PubMed  CAS  Google Scholar 

  • Dreyer G, Noroes J, Figueredo-Silva J, Piessens WF (2000) Pathogenesis of lymphatic disease in bancroftian filariasis: a clinical perspective. Parasitol Today 16:544–548

    PubMed  CAS  Google Scholar 

  • Dumont DJ, Jussila L, Taipale J, Lymboussaki A, Mustonen T, Pajusola K, Breitman M, Alitalo K (1998) Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science 282:946–949

    PubMed  CAS  Google Scholar 

  • Duong T, Koopman P, Francois M (2012) Tumor lymphangiogenesis as a potential therapeutic target. J Oncol 2012:204946

    PubMed  Google Scholar 

  • Enholm B, Karpanen T, Jeltsch M, Kubo H, Stenback F, Prevo R, Jackson DG, Yla-Herttuala S, Alitalo K (2001) Adenoviral expression of vascular endothelial growth factor-C induces lymphangiogenesis in the skin. Circ Res 88:623–629

    PubMed  CAS  Google Scholar 

  • Fang J, Dagenais SL, Erickson RP, Arlt MF, Glynn MW, Gorski JL, Seaver LH, Glover TW (2000) Mutations in FOXC2 (MFH-1), a forkhead family transcription factor, are responsible for the hereditary lymphedema-distichiasis syndrome. Am J Hum Genet 67:1382–1388

    PubMed  CAS  Google Scholar 

  • Ferrell RE, Baty CJ, Kimak MA, Karlsson JM, Lawrence EC, Franke-Snyder M, Meriney SD, Feingold E, Finegold DN (2010) GJC2 missense mutations cause human lymphedema. Am J Hum Genet 86:943–948

    PubMed  CAS  Google Scholar 

  • Finegold DN, Kimak MA, Lawrence EC, Levinson KL, Cherniske EM, Pober BR, Dunlap JW, Ferrell RE (2001) Truncating mutations in FOXC2 cause multiple lymphedema syndromes. Hum Mol Genet 10:1185–1189

    PubMed  CAS  Google Scholar 

  • Fischer C, Jonckx B, Mazzone M, Zacchigna S, Loges S, Pattarini L, Chorianopoulos E, Liesenborghs L, Koch M, De Mol M, Autiero M, Wyns S, Plaisance S, Moons L, van Rooijen N, Giacca M, Stassen JM, Dewerchin M, Collen D, Carmeliet P (2007) Anti-PlGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without affecting healthy vessels. Cell 131:463–475

    PubMed  CAS  Google Scholar 

  • Flister MJ, Wilber A, Hall KL, Iwata C, Miyazono K, Nisato RE, Pepper MS, Zawieja DC, Ran S (2010) Inflammation induces lymphangiogenesis through up-regulation of VEGFR-3 mediated by NF-kappaB and Prox1. Blood 115:418–429

    PubMed  CAS  Google Scholar 

  • Foskett AM, Ezekiel UR, Trzeciakowski JP, Zawieja DC, Muthuchamy M (2011) Hypoxia and extracellular matrix proteins influence angiogenesis and lymphangiogenesis in mouse embryoid bodies. Front Physiol 2:103

    PubMed  CAS  Google Scholar 

  • Francois M, Caprini A, Hosking B, Orsenigo F, Wilhelm D, Browne C, Paavonen K, Karnezis T, Shayan R, Downes M, Davidson T, Tutt D, Cheah KS, Stacker SA, Muscat GE, Achen MG, Dejana E, Koopman P (2008) Sox18 induces development of the lymphatic vasculature in mice. Nature 456:643–647

    PubMed  CAS  Google Scholar 

  • Gale NW, Baluk P, Pan L, Kwan M, Holash J, DeChiara TM, McDonald DM, Yancopoulos GD (2001) Ephrin-B2 selectively marks arterial vessels and neovascularization sites in the adult, with expression in both endothelial and smooth-muscle cells. Dev Biol 230:151–160

    PubMed  CAS  Google Scholar 

  • Gale NW, Thurston G, Hackett SF, Renard R, Wang Q, McClain J, Martin C, Witte C, Witte MH, Jackson D, Suri C, Campochiaro PA, Wiegand SJ, Yancopoulos GD (2002) Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by angiopoietin-1. Dev Cell 3:411–423

    PubMed  CAS  Google Scholar 

  • Gale NW, Prevo R, Espinosa J, Ferguson DJ, Dominguez MG, Yancopoulos GD, Thurston G, Jackson DG (2007) Normal lymphatic development and function in mice deficient for the lymphatic hyaluronan receptor LYVE-1. Mol Cell Biol 27:595–604

    PubMed  CAS  Google Scholar 

  • Ganta VC, Cromer W, Mills GL, Traylor J, Jennings M, Daley S, Clark B, Mathis JM, Bernas M, Boktor M, Jordan P, Witte M, Alexander JS (2010) Angiopoietin-2 in experimental colitis. Inflamm Bowel Dis 16:1029–1039

    PubMed  Google Scholar 

  • Gashev AA (2002) Physiologic aspects of lymphatic contractile function: current perspectives. Ann N Y Acad Sci 979:178–187; discussion 188–196

    Google Scholar 

  • Gashev AA, Li J, Muthuchamy M, Zawieja DC (2012) Adenovirus-mediated gene transfection in the isolated lymphatic vessels. Methods Mol Biol 843:199–204

    PubMed  CAS  Google Scholar 

  • Glasgow CG, Steagall WK, Taveira-Dasilva A, Pacheco-Rodriguez G, Cai X, El-Chemaly S, Moses M, Darling T, Moss J (2010) Lymphangioleiomyomatosis (LAM): molecular insights lead to targeted therapies. Respir Med 104(suppl 1):S45–S58

    PubMed  Google Scholar 

  • Gnepp DR (1976) The bicuspid nature of the valves of the peripheral collecting lymphatic vessels of the dog. Lymphology 9:75–77

    PubMed  CAS  Google Scholar 

  • Gnepp DR (1984) Lymphatics. In: Staub NC, Taylor AE (eds) Edema. Raven Press, New York, NY, pp 263–298

    Google Scholar 

  • Gnepp DR, Chandler W (1985) Tissue culture of human and canine thoracic duct endothelium. In Vitro Cell Dev Biol 21:200–206

    PubMed  CAS  Google Scholar 

  • Gnepp DR, Green FH (1980) Scanning electron microscopic study of canine lymphatic vessels and their valves. Lymphology 13:91–99

    PubMed  CAS  Google Scholar 

  • Groger M, Loewe R, Holnthoner W, Embacher R, Pillinger M, Herron GS, Wolff K, Petzelbauer P (2004) IL-3 induces expression of lymphatic markers Prox-1 and podoplanin in human endothelial cells. J Immunol 173:7161–7169

    PubMed  Google Scholar 

  • Hamada K, Oike Y, Takakura N, Ito Y, Jussila L, Dumont DJ, Alitalo K, Suda T (2000) VEGF-C signaling pathways through VEGFR-2 and VEGFR-3 in vasculoangiogenesis and hematopoiesis. Blood 96:3793–3800

    PubMed  CAS  Google Scholar 

  • Harrell MI, Iritani BM, Ruddell A (2007) Tumor-induced sentinel lymph node lymphangiogenesis and increased lymph flow precede melanoma metastasis. Am J Pathol 170:774–786

    PubMed  Google Scholar 

  • Harvey NL, Srinivasan RS, Dillard ME, Johnson NC, Witte MH, Boyd K, Sleeman MW, Oliver G (2005) Lymphatic vascular defects promoted by Prox1 haploinsufficiency cause adult-onset obesity. Nat Genet 37:1072–1081

    PubMed  CAS  Google Scholar 

  • Hayes H, Kossmann E, Wilson E, Meininger C, Zawieja D (2003) Development and characterization of endothelial cells from rat microlymphatics. Lymphat Res Biol 1:101–119

    PubMed  CAS  Google Scholar 

  • He Y, Kozaki K, Karpanen T, Koshikawa K, Yla-Herttuala S, Takahashi T, Alitalo K (2002) Suppression of tumor lymphangiogenesis and lymph node metastasis by blocking vascular endothelial growth factor receptor 3 signaling. J Natl Cancer Inst 94:819–825

    PubMed  CAS  Google Scholar 

  • Helm CL, Fleury ME, Zisch AH, Boschetti F, Swartz MA (2005) Synergy between interstitial flow and VEGF directs capillary morphogenesis in vitro through a gradient amplification mechanism. Proc Natl Acad Sci USA 102:15779–15784

    PubMed  CAS  Google Scholar 

  • Helm CL, Zisch A, Swartz MA (2007) Engineered blood and lymphatic capillaries in 3-D VEGF-fibrin-­collagen matrices with interstitial flow. Biotechnol Bioeng 96:167–176

    PubMed  CAS  Google Scholar 

  • Hirakawa S, Hong YK, Harvey N, Schacht V, Matsuda K, Libermann T, Detmar M (2003) Identification of vascular lineage-specific genes by transcriptional profiling of isolated blood vascular and lymphatic endothelial cells. Am J Pathol 162:575–586

    PubMed  CAS  Google Scholar 

  • Hirakawa S, Brown LF, Kodama S, Paavonen K, Alitalo K, Detmar M (2007) VEGF-C-induced lymphangiogenesis in sentinel lymph nodes promotes tumor metastasis to distant sites. Blood 109:1010–1017

    PubMed  CAS  Google Scholar 

  • Hirashima M, Sano K, Morisada T, Murakami K, Rossant J, Suda T (2008) Lymphatic vessel assembly is impaired in Aspp1-deficient mouse embryos. Dev Biol 316:149–159

    PubMed  CAS  Google Scholar 

  • Hong YK, Harvey N, Noh YH, Schacht V, Hirakawa S, Detmar M, Oliver G (2002) Prox1 is a master control gene in the program specifying lymphatic endothelial cell fate. Dev Dyn 225:351–357

    PubMed  CAS  Google Scholar 

  • Hong YK, Foreman K, Shin JW, Hirakawa S, Curry CL, Sage DR, Libermann T, Dezube BJ, Fingeroth JD, Detmar M (2004) Lymphatic reprogramming of blood vascular endothelium by Kaposi sarcoma-associated herpesvirus. Nat Genet 36:683–685

    PubMed  CAS  Google Scholar 

  • Huggenberger R, Siddiqui SS, Brander D, Ullmann S, Zimmermann K, Antsiferova M, Werner S, Alitalo K, Detmar M (2011) An important role of lymphatic vessel activation in limiting acute inflammation. Blood 117:4667–4678

    PubMed  CAS  Google Scholar 

  • Huntington GS, McClure CFW (1910) The anatomy and development of the jugular lymph sac in the domestic cat (Felis domestica). Am J Anat 10:177–311

    Google Scholar 

  • Ichise H, Ichise T, Ohtani O, Yoshida N (2009) Phospholipase Cgamma2 is necessary for separation of blood and lymphatic vasculature in mice. Development 136:191–195

    PubMed  CAS  Google Scholar 

  • Irigoyen M, Anso E, Martinez E, Garayoa M, Martinez-Irujo JJ, Rouzaut A (2007) Hypoxia alters the adhesive properties of lymphatic endothelial cells. A transcriptional and functional study. Biochim Biophys Acta 1773:880–890

    PubMed  CAS  Google Scholar 

  • Irjala H, Alanen K, Grenman R, Heikkila P, Joensuu H, Jalkanen S (2003) Mannose receptor (MR) and common lymphatic endothelial and vascular endothelial receptor (CLEVER)-1 direct the binding of cancer cells to the lymph vessel endothelium. Cancer Res 63:4671–4676

    PubMed  CAS  Google Scholar 

  • Irrthum A, Devriendt K, Chitayat D, Matthijs G, Glade C, Steijlen PM, Fryns JP, Van Steensel MA, Vikkula M (2003) Mutations in the transcription factor gene SOX18 underlie recessive and dominant forms of hypotrichosis-lymphedema-telangiectasia. Am J Hum Genet 72:1470–1478

    PubMed  CAS  Google Scholar 

  • Isogai S, Hitomi J, Yaniv K, Weinstein BM (2009) Zebrafish as a new animal model to study lymphangiogenesis. Anat Sci Int 84:102–111

    PubMed  Google Scholar 

  • Issa A, Le TX, Shoushtari AN, Shields JD, Swartz MA (2009) Vascular endothelial growth factor-­C and C-C chemokine receptor 7 in tumor cell-lymphatic cross-talk promote invasive phenotype. Cancer Res 69:349–357

    PubMed  CAS  Google Scholar 

  • Iwata C, Kano MR, Komuro A, Oka M, Kiyono K, Johansson E, Morishita Y, Yashiro M, Hirakawa K, Kaminishi M, Miyazono K (2007) Inhibition of cyclooxygenase-2 suppresses lymph node metastasis via reduction of lymphangiogenesis. Cancer Res 67:10181–10189

    PubMed  CAS  Google Scholar 

  • Jeltsch M, Kaipainen A, Joukov V, Meng X, Lakso M, Rauvala H, Swartz M, Fukumura D, Jain RK, Alitalo K (1997) Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science 276:1423–1425

    PubMed  CAS  Google Scholar 

  • Jiang S, Bailey AS, Goldman DC, Swain JR, Wong MH, Streeter PR, Fleming WH (2008) Hematopoietic stem cells contribute to lymphatic endothelium. PLoS One 3:e3812

    PubMed  Google Scholar 

  • Johnson LA, Clasper S, Holt AP, Lalor PF, Baban D, Jackson DG (2006) An inflammation-induced mechanism for leukocyte transmigration across lymphatic vessel endothelium. J Exp Med 203:2763–2777

    PubMed  CAS  Google Scholar 

  • Joukov V, Pajusola K, Kaipainen A, Chilov D, Lahtinen I, Kukk E, Saksela O, Kalkkinen N, Alitalo K (1996) A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J 15:1751

    PubMed  CAS  Google Scholar 

  • Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9:239–252

    PubMed  CAS  Google Scholar 

  • Jurisic G, Detmar M (2009) Lymphatic endothelium in health and disease. Cell Tissue Res 335:97–108

    PubMed  CAS  Google Scholar 

  • Kaipainen A, Korhonen J, Mustonen T, van Hinsbergh VW, Fang GH, Dumont D, Breitman M, Alitalo K (1995) Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc Natl Acad Sci USA 92:3566–3570

    PubMed  CAS  Google Scholar 

  • Kajiya K, Detmar M (2006) An important role of lymphatic vessels in the control of UVB-induced edema formation and inflammation. J Invest Dermatol 126:919–921

    PubMed  CAS  Google Scholar 

  • Kajiya K, Hirakawa S, Ma B, Drinnenberg I, Detmar M (2005) Hepatocyte growth factor promotes lymphatic vessel formation and function. EMBO J 24:2885–2895

    PubMed  CAS  Google Scholar 

  • Kajiya K, Hirakawa S, Detmar M (2006) Vascular endothelial growth factor-A mediates ultraviolet B-induced impairment of lymphatic vessel function. Am J Pathol 169:1496–1503

    PubMed  CAS  Google Scholar 

  • Kajiya K, Sawane M, Huggenberger R, Detmar M (2009) Activation of the VEGFR-3 pathway by VEGF-C attenuates UVB-induced edema formation and skin inflammation by promoting lymphangiogenesis. J Invest Dermatol 129:1292–1298

    PubMed  CAS  Google Scholar 

  • Kanady JD, Dellinger MT, Munger SJ, Witte MH, Simon AM (2011) Connexin37 and Connexin43 deficiencies in mice disrupt lymphatic valve development and result in lymphatic disorders including lymphedema and chylothorax. Dev Biol 354:253–266

    PubMed  CAS  Google Scholar 

  • Kang S, Lee SP, Kim KE, Kim HZ, Memet S, Koh GY (2009) Toll-like receptor 4 in lymphatic endothelial cells contributes to LPS-induced lymphangiogenesis by chemotactic recruitment of macrophages. Blood 113:2605–2613

    PubMed  CAS  Google Scholar 

  • Karkkainen MJ, Ferrell RE, Lawrence EC, Kimak MA, Levinson KL, McTigue MA, Alitalo K, Finegold DN (2000) Missense mutations interfere with VEGFR-3 signalling in primary lymphoedema. Nat Genet 25:153–159

    PubMed  CAS  Google Scholar 

  • Karkkainen MJ, Saaristo A, Jussila L, Karila KA, Lawrence EC, Pajusola K, Bueler H, Eichmann A, Kauppinen R, Kettunen MI, Yla-Herttuala S, Finegold DN, Ferrell RE, Alitalo K (2001) A model for gene therapy of human hereditary lymphedema. Proc Natl Acad Sci USA 98:12677–12682

    PubMed  CAS  Google Scholar 

  • Karkkainen MJ, Haiko P, Sainio K, Partanen J, Taipale J, Petrova TV, Jeltsch M, Jackson DG, Talikka M, Rauvala H, Betsholtz C, Alitalo K (2004) Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol 5:74–80

    PubMed  CAS  Google Scholar 

  • Karpanen T, Alitalo K (2008) Molecular biology and pathology of lymphangiogenesis. Annu Rev Pathol 3:367–397

    PubMed  CAS  Google Scholar 

  • Kawai Y, Hosaka K, Kaidoh M, Minami T, Kodama T, Ohhashi T (2008) Heterogeneity in immunohistochemical, genomic, and biological properties of human lymphatic endothelial cells between initial and collecting lymph vessels. Lymphat Res Biol 6:15–27

    PubMed  CAS  Google Scholar 

  • Kerjaschki D (2005) The crucial role of macrophages in lymphangiogenesis. J Clin Invest 115:2316–2319

    PubMed  CAS  Google Scholar 

  • Kerjaschki D, Huttary N, Raab I, Regele H, Bojarski-Nagy K, Bartel G, Krober SM, Greinix H, Rosenmaier A, Karlhofer F, Wick N, Mazal PR (2006) Lymphatic endothelial progenitor cells contribute to de novo lymphangiogenesis in human renal transplants. Nat Med 12:230–234

    PubMed  CAS  Google Scholar 

  • Kim KE, Koh YJ, Jeon BH, Jang C, Han J, Kataru RP, Schwendener RA, Kim JM, Koh GY (2009) Role of CD11b+ macrophages in intraperitoneal lipopolysaccharide-induced aberrant lymphangiogenesis and lymphatic function in the diaphragm. Am J Pathol 175:1733–1745

    PubMed  CAS  Google Scholar 

  • Kreuger J, Nilsson I, Kerjaschki D, Petrova T, Alitalo K, Claesson-Welsh L (2006) Early lymph vessel development from embryonic stem cells. Arterioscler Thromb Vasc Biol 26:1073–1078

    PubMed  CAS  Google Scholar 

  • Kriehuber E, Breiteneder-Geleff S, Groeger M, Soleiman A, Schoppmann SF, Stingl G, Kerjaschki D, Maurer D (2001) Isolation and characterization of dermal lymphatic and blood endothelial cells reveal stable and functionally specialized cell lineages. J Exp Med 194:797–808

    PubMed  CAS  Google Scholar 

  • Kubo H, Cao R, Brakenhielm E, Makinen T, Cao Y, Alitalo K (2002) Blockade of vascular endothelial growth factor receptor-3 signaling inhibits fibroblast growth factor-2-induced lymphangiogenesis in mouse cornea. Proc Natl Acad Sci USA 99:8868–8873

    PubMed  CAS  Google Scholar 

  • Kuchler AM, Gjini E, Peterson-Maduro J, Cancilla B, Wolburg H, Schulte-Merker S (2006) Development of the zebrafish lymphatic system requires VEGFC signaling. Curr Biol 16:1244–1248

    PubMed  Google Scholar 

  • Lahteenvuo M, Honkonen K, Tervala T, Tammela T, Suominen E, Lahteenvuo J, Kholova I, Alitalo K, Yla-Herttuala S, Saaristo A (2011) Growth factor therapy and autologous lymph node transfer in lymphedema. Circulation 123:613–620

    PubMed  Google Scholar 

  • Leak LV, Burke JF (1966) Fine structure of the lymphatic capillary and the adjoining connective tissue area. Am J Anat 118:785–809

    PubMed  CAS  Google Scholar 

  • Leak LV, Burke JF (1968) Ultrastructural studies on the lymphatic anchoring filaments. J Cell Biol 36:129–149

    Google Scholar 

  • Leak LV, Jones M (1994) Lymphangiogenesis in vitro: formation of lymphatic capillary-like channels from confluent monolayers of lymphatic endothelial cells. In Vitro Cell Dev Biol Anim 30A:512–518

    PubMed  CAS  Google Scholar 

  • Lee S, Kang J, Yoo J, Ganesan SK, Cook SC, Aguilar B, Ramu S, Lee J, Hong YK (2009) Prox1 physically and functionally interacts with COUP-TFII to specify lymphatic endothelial cell fate. Blood 113:1856–1859

    PubMed  CAS  Google Scholar 

  • Liersch R, Nay F, Lu L, Detmar M (2006) Induction of lymphatic endothelial cell differentiation in embryoid bodies. Blood 107:1214–1216

    PubMed  CAS  Google Scholar 

  • Lin J, Lalani AS, Harding TC, Gonzalez M, Wu WW, Luan B, Tu GH, Koprivnikar K, VanRoey MJ, He Y, Alitalo K, Jooss K (2005) Inhibition of lymphogenous metastasis using adeno-­associated virus-mediated gene transfer of a soluble VEGFR-3 decoy receptor. Cancer Res 65:6901–6909

    PubMed  CAS  Google Scholar 

  • Lin FJ, Chen X, Qin J, Hong YK, Tsai MJ, Tsai SY (2010) Direct transcriptional regulation of neuropilin-2 by COUP-TFII modulates multiple steps in murine lymphatic vessel development. J Clin Invest 120:1694–1707

    PubMed  CAS  Google Scholar 

  • Linares PM, Gisbert JP (2011) Role of growth factors in the development of lymphangiogenesis driven by inflammatory bowel disease: a review. Inflamm Bowel Dis 17:1814–1821

    PubMed  Google Scholar 

  • Liu R, Li X, Tulpule A, Zhou Y, Scehnet JS, Zhang S, Lee JS, Chaudhary PM, Jung J, Gill PS (2010) KSHV-induced notch components render endothelial and mural cell characteristics and cell survival. Blood 115:887–895

    PubMed  CAS  Google Scholar 

  • Lohela M, Bry M, Tammela T, Alitalo K (2009) VEGFs and receptors involved in angiogenesis versus lymphangiogenesis. Curr Opin Cell Biol 21:154–165

    PubMed  CAS  Google Scholar 

  • Luong MX, Tam J, Lin Q, Hagendoorn J, Moore KJ, Padera TP, Seed B, Fukumura D, Kucherlapati R, Jain RK (2009) Lack of lymphatic vessel phenotype in LYVE-1/CD44 double knockout mice. J Cell Physiol 219:430–437

    PubMed  CAS  Google Scholar 

  • Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, Compton D, McClain J, Aldrich TH, Papadopoulos N, Daly TJ, Davis S, Sato TN, Yancopoulos GD (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277:55–60

    PubMed  CAS  Google Scholar 

  • Makinen T, Adams RH, Bailey J, Lu Q, Ziemiecki A, Alitalo K, Klein R, Wilkinson GA (2005) PDZ interaction site in ephrinB2 is required for the remodeling of lymphatic vasculature. Genes Dev 19:397–410

    PubMed  Google Scholar 

  • Makinen T, Norrmen C, Petrova TV (2007) Molecular mechanisms of lymphatic vascular development. Cell Mol Life Sci 64:1915–1929

    PubMed  CAS  Google Scholar 

  • Mandriota SJ, Jussila L, Jeltsch M, Compagni A, Baetens D, Prevo R, Banerji S, Huarte J, Montesano R, Jackson DG, Orci L, Alitalo K, Christofori G, Pepper MS (2001) Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO J 20:672–682

    PubMed  CAS  Google Scholar 

  • Maruyama K, Ii M, Cursiefen C, Jackson DG, Keino H, Tomita M, Van Rooijen N, Takenaka H, D’Amore PA, Stein-Streilein J, Losordo DW, Streilein JW (2005) Inflammation-induced lymphangiogenesis in the cornea arises from CD11b-positive macrophages. J Clin Invest 115:2363–2372

    PubMed  CAS  Google Scholar 

  • McHaffie DR, Kozak KR, Warner TF, Cho CS, Heiner JP, Attia S (2010) Stewart-Treves syndrome of the lower extremity. J Clin Oncol 28:e351–e352

    PubMed  Google Scholar 

  • Mellor RH, Brice G, Stanton AW, French J, Smith A, Jeffery S, Levick JR, Burnand KG, Mortimer PS, Lymphoedema Research Consortium (2007) Mutations in FOXC2 are strongly associated with primary valve failure in veins of the lower limb. Circulation 115:1912–1920

    PubMed  CAS  Google Scholar 

  • Mellor RH, Hubert CE, Stanton AW, Tate N, Akhras V, Smith A, Burnand KG, Jeffery S, Makinen T, Levick JR, Mortimer PS (2010) Lymphatic dysfunction, not aplasia, underlies Milroy disease. Microcirculation 17:281–296

    PubMed  CAS  Google Scholar 

  • Mesri EA, Cesarman E, Boshoff C (2010) Kaposi’s sarcoma and its associated herpesvirus. Nat Rev Cancer 10:707–719

    PubMed  CAS  Google Scholar 

  • Miteva DO, Rutkowski JM, Dixon JB, Kilarski W, Shields JD, Swartz MA (2010) Transmural flow modulates cell and fluid transport functions of lymphatic endothelium. Circ Res 106:920–931

    PubMed  CAS  Google Scholar 

  • Mizuno R, Yokoyama Y, Ono N, Ikomi F, Ohhashi T (2003) Establishment of rat lymphatic endothelial cell line. Microcirculation 10:127–131

    PubMed  CAS  Google Scholar 

  • Mouta C, Heroult M (2003) Inflammatory triggers of lymphangiogenesis. Lymphat Res Biol 1:201–218

    PubMed  CAS  Google Scholar 

  • Murdaca G, Cagnati P, Gulli R, Spano F, Puppo F, Campisi C, Boccardo F (2012) Current views on diagnostic approach and treatment of lymphedema. Am J Med 125:134–140

    PubMed  Google Scholar 

  • Neufeld G, Cohen T, Shraga N, Lange T, Kessler O, Herzog Y (2002) The neuropilins: multifunctional semaphorin and VEGF receptors that modulate axon guidance and angiogenesis. Trends Cardiovasc Med 12:13–19

    PubMed  CAS  Google Scholar 

  • Ng CP, Helm CL, Swartz MA (2004) Interstitial flow differentially stimulates blood and lymphatic endothelial cell morphogenesis in vitro. Microvasc Res 68:258–264

    PubMed  Google Scholar 

  • Nilsson I, Rolny C, Wu Y, Pytowski B, Hicklin D, Alitalo K, Claesson-Welsh L, Wennstrom S (2004) Vascular endothelial growth factor receptor-3 in hypoxia-induced vascular development. FASEB J 18:1507–1515

    PubMed  CAS  Google Scholar 

  • Norrmen C, Ivanov KI, Cheng J, Zangger N, Delorenzi M, Jaquet M, Miura N, Puolakkainen P, Horsley V, Hu J, Augustin HG, Yla-Herttuala S, Alitalo K, Petrova TV (2009) FOXC2 controls formation and maturation of lymphatic collecting vessels through cooperation with NFATc1. J Cell Biol 185:439–457

    PubMed  CAS  Google Scholar 

  • Norrmen C, Tammela T, Petrova TV, Alitalo K (2011) Biological basis of therapeutic lymphangiogenesis. Circulation 123:1335–1351

    PubMed  Google Scholar 

  • Ny A, Koch M, Schneider M, Neven E, Tong RT, Maity S, Fischer C, Plaisance S, Lambrechts D, Heligon C, Terclavers S, Ciesiolka M, Kalin R, Man WY, Senn I, Wyns S, Lupu F, Brandli A, Vleminckx K, Collen D, Dewerchin M, Conway EM, Moons L, Jain RK, Carmeliet P (2005) A genetic Xenopus laevis tadpole model to study lymphangiogenesis. Nat Med 11:998–1004

    PubMed  CAS  Google Scholar 

  • Ny A, Autiero M, Carmeliet P (2006) Zebrafish and Xenopus tadpoles: small animal models to study angiogenesis and lymphangiogenesis. Exp Cell Res 312:684–693

    PubMed  CAS  Google Scholar 

  • Nykanen AI, Sandelin H, Krebs R, Keranen MA, Tuuminen R, Karpanen T, Wu Y, Pytowski B, Koskinen PK, Yla-Herttuala S, Alitalo K, Lemstrom KB (2010) Targeting lymphatic vessel activation and CCL21 production by vascular endothelial growth factor receptor-3 inhibition has novel immunomodulatory and antiarteriosclerotic effects in cardiac allografts. Circulation 121:1413–1422

    PubMed  Google Scholar 

  • Oh SJ, Jeltsch MM, Birkenhager R, McCarthy JE, Weich HA, Christ B, Alitalo K, Wilting J (1997) VEGF and VEGF-C: specific induction of angiogenesis and lymphangiogenesis in the differentiated avian chorioallantoic membrane. Dev Biol 188:96–109

    PubMed  CAS  Google Scholar 

  • Ohtani Y, Ohtani O (2001) Postnatal development of lymphatic vessels and their smooth muscle cells in the rat diaphragm: a confocal microscopic study. Arch Histol Cytol 64:513–522

    PubMed  CAS  Google Scholar 

  • Okazaki T, Ni A, Ayeni OA, Baluk P, Yao LC, Vossmeyer D, Zischinsky G, Zahn G, Knolle J, Christner C, McDonald DM (2009) Alpha5beta1 Integrin blockade inhibits lymphangiogenesis in airway inflammation. Am J Pathol 174:2378–2387

    PubMed  CAS  Google Scholar 

  • Oliver G (2004) Lymphatic vasculature development. Nat Rev Immunol 4:35–45

    PubMed  CAS  Google Scholar 

  • Oliver G, Alitalo K (2005) The lymphatic vasculature: recent progress and paradigms. Annu Rev Cell Dev Biol 21:457–483

    PubMed  CAS  Google Scholar 

  • Oliver G, Detmar M (2002) The rediscovery of the lymphatic system: old and new insights into the development and biological function of the lymphatic vasculature. Genes Dev 16:773–783

    PubMed  CAS  Google Scholar 

  • Oliver G, Srinivasan RS (2008) Lymphatic vasculature development: current concepts. Ann N Y Acad Sci 1131:75–81

    PubMed  CAS  Google Scholar 

  • Padera TP, Kadambi A, di Tomaso E, Carreira CM, Brown EB, Boucher Y, Choi NC, Mathisen D, Wain J, Mark EJ, Munn LL, Jain RK (2002) Lymphatic metastasis in the absence of functional intratumor lymphatics. Science 296:1883–1886

    PubMed  CAS  Google Scholar 

  • Pedica F, Ligorio C, Tonelli P, Bartolini S, Baccarini P (2008) Lymphangiogenesis in Crohn’s disease: an immunohistochemical study using monoclonal antibody D2-40. Virchows Arch 452:57–63

    PubMed  CAS  Google Scholar 

  • Petrenko VM, Gashev AA (2008) Observations on the prenatal development of human lymphatic vessels with focus on basic structural elements of lymph flow. Lymphat Res Biol 6:89–95

    PubMed  Google Scholar 

  • Petrova TV, Makinen T, Makela TP, Saarela J, Virtanen I, Ferrell RE, Finegold DN, Kerjaschki D, Yla-Herttuala S, Alitalo K (2002) Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcription factor. EMBO J 21:4593–4599

    PubMed  CAS  Google Scholar 

  • Petrova TV, Karpanen T, Norrmen C, Mellor R, Tamakoshi T, Finegold D, Ferrell R, Kerjaschki D, Mortimer P, Yla-Herttuala S, Miura N, Alitalo K (2004) Defective valves and abnormal mural cell recruitment underlie lymphatic vascular failure in lymphedema distichiasis. Nat Med 10:974–981

    PubMed  CAS  Google Scholar 

  • Pfarr KM, Debrah AY, Specht S, Hoerauf A (2009) Filariasis and lymphoedema. Parasite Immunol 31:664–672

    PubMed  CAS  Google Scholar 

  • Podgrabinska S, Braun P, Velasco P, Kloos B, Pepper MS, Skobe M (2002) Molecular characterization of lymphatic endothelial cells. Proc Natl Acad Sci USA 99:16069–16074

    PubMed  CAS  Google Scholar 

  • Polzer K, Baeten D, Soleiman A, Distler J, Gerlag DM, Tak PP, Schett G, Zwerina J (2008) Tumour necrosis factor blockade increases lymphangiogenesis in murine and human arthritic joints. Ann Rheum Dis 67:1610–1616

    PubMed  CAS  Google Scholar 

  • Rahier JF, De Beauce S, Dubuquoy L, Erdual E, Colombel JF, Jouret-Mourin A, Geboes K, Desreumaux P (2011) Increased lymphatic vessel density and lymphangiogenesis in inflammatory bowel disease. Aliment Pharmacol Ther 34:533–543

    PubMed  Google Scholar 

  • Randolph GJ, Angeli V, Swartz MA (2005) Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat Rev Immunol 5:617–628

    PubMed  CAS  Google Scholar 

  • Ranger AM, Grusby MJ, Hodge MR, Gravallese EM, de la Brousse FC, Hoey T, Mickanin C, Baldwin HS, Glimcher LH (1998) The transcription factor NF-ATc is essential for cardiac valve formation. Nature 392:186–190

    PubMed  CAS  Google Scholar 

  • Religa P, Cao R, Bjorndahl M, Zhou Z, Zhu Z, Cao Y (2005) Presence of bone marrow-derived circulating progenitor endothelial cells in the newly formed lymphatic vessels. Blood 106:4184–4190

    PubMed  CAS  Google Scholar 

  • Rinderknecht M, Villa A, Ballmer-Hofer K, Neri D, Detmar M (2010) Phage-derived fully human monoclonal antibody fragments to human vascular endothelial growth factor-C block its ­interaction with VEGF receptor-2 and 3. PLoS One 5:e11941

    PubMed  Google Scholar 

  • Rissanen TT, Markkanen JE, Gruchala M, Heikura T, Puranen A, Kettunen MI, Kholova I, Kauppinen RA, Achen MG, Stacker SA, Alitalo K, Yla-Herttuala S (2003) VEGF-D is the strongest angiogenic and lymphangiogenic effector among VEGFs delivered into skeletal muscle via adenoviruses. Circ Res 92:1098–1106

    PubMed  CAS  Google Scholar 

  • Ristimaki A, Narko K, Enholm B, Joukov V, Alitalo K (1998) Proinflammatory cytokines regulate expression of the lymphatic endothelial mitogen vascular endothelial growth factor-C. J Biol Chem 273:8413–8418

    PubMed  CAS  Google Scholar 

  • Roberts N, Kloos B, Cassella M, Podgrabinska S, Persaud K, Wu Y, Pytowski B, Skobe M (2006) Inhibition of VEGFR-3 activation with the antagonistic antibody more potently suppresses lymph node and distant metastases than inactivation of VEGFR-2. Cancer Res 66:2650–2657

    PubMed  CAS  Google Scholar 

  • Rockson SG (2012) Update on the biology and treatment of lymphedema. Curr Treat Options Cardiovasc Med 14:184–192

    PubMed  Google Scholar 

  • Ruocco V, Schwartz RA, Ruocco E (2002) Lymphedema: an immunologically vulnerable site for development of neoplasms. J Am Acad Dermatol 47:124–127

    PubMed  Google Scholar 

  • Saaristo A, Tammela T, Timonen J, Yla-Herttuala S, Tukiainen E, Asko-Seljavaara S, Alitalo K (2004) Vascular endothelial growth factor-C gene therapy restores lymphatic flow across incision wounds. FASEB J 18:1707–1709

    PubMed  CAS  Google Scholar 

  • Sabin F (1902) On the origin of the lymphatic system from the veins, and the development of lymph hearts and thoracic duct in the pig. Am J Anat 1:367–389

    Google Scholar 

  • Sabin F (1904) On the development of the superficial lymphatics in the skin of the pig. Am J Anat 3:183–195

    Google Scholar 

  • Sabin FR (1916) The method of growth of the lymphatic system. Science 44:145–158

    PubMed  CAS  Google Scholar 

  • Saharinen P, Kerkela K, Ekman N, Marron M, Brindle N, Lee GM, Augustin H, Koh GY, Alitalo K (2005) Multiple angiopoietin recombinant proteins activate the Tie1 receptor tyrosine kinase and promote its interaction with Tie2. J Cell Biol 169:239–243

    PubMed  CAS  Google Scholar 

  • Schacht V, Ramirez MI, Hong YK, Hirakawa S, Feng D, Harvey N, Williams M, Dvorak AM, Dvorak HF, Oliver G, Detmar M (2003) T1alpha/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema. EMBO J 22:3546–3556

    PubMed  CAS  Google Scholar 

  • Schmid-Schonbein GW (1990) Mechanisms causing initial lymphatics to expand and compress to promote lymph flow. Arch Histol Cytol 53(suppl):107–114

    PubMed  Google Scholar 

  • Schoppmann SF, Birner P, Stockl J, Kalt R, Ullrich R, Caucig C, Kriehuber E, Nagy K, Alitalo K, Kerjaschki D (2002) Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. Am J Pathol 161:947–956

    PubMed  CAS  Google Scholar 

  • Schulte-Merker S, Sabine A, Petrova TV (2011) Lymphatic vascular morphogenesis in development, physiology, and disease. J Cell Biol 193:607–618

    PubMed  CAS  Google Scholar 

  • Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu XF, Breitman ML, Schuh AC (1995) Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376:62–66

    PubMed  CAS  Google Scholar 

  • Shields JD, Emmett MS, Dunn DB, Joory KD, Sage LM, Rigby H, Mortimer PS, Orlando A, Levick JR, Bates DO (2007a) Chemokine-mediated migration of melanoma cells towards lymphatics–a mechanism contributing to metastasis. Oncogene 26:2997–3005

    PubMed  CAS  Google Scholar 

  • Shields JD, Fleury ME, Yong C, Tomei AA, Randolph GJ, Swartz MA (2007b) Autologous chemotaxis as a mechanism of tumor cell homing to lymphatics via interstitial flow and autocrine CCR7 signaling. Cancer Cell 11:526–538

    PubMed  CAS  Google Scholar 

  • Shin JW, Min M, Larrieu-Lahargue F, Canron X, Kunstfeld R, Nguyen L, Henderson JE, Bikfalvi A, Detmar M, Hong YK (2006) Prox1 promotes lineage-specific expression of fibroblast growth factor (FGF) receptor-3 in lymphatic endothelium: a role for FGF signaling in lymphangiogenesis. Mol Biol Cell 17:576–584

    PubMed  CAS  Google Scholar 

  • Skobe M, Hawighorst T, Jackson DG, Prevo R, Janes L, Velasco P, Riccardi L, Alitalo K, Claffey K, Detmar M (2001) Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med 7:192–198

    PubMed  CAS  Google Scholar 

  • Srinivasan RS, Dillard ME, Lagutin OV, Lin FJ, Tsai S, Tsai MJ, Samokhvalov IM, Oliver G (2007) Lineage tracing demonstrates the venous origin of the mammalian lymphatic vasculature. Genes Dev 21:2422–2432

    PubMed  CAS  Google Scholar 

  • Srinivasan RS, Geng X, Yang Y, Wang Y, Mukatira S, Studer M, Porto MP, Lagutin O, Oliver G (2010) The nuclear hormone receptor Coup-TFII is required for the initiation and early maintenance of Prox1 expression in lymphatic endothelial cells. Genes Dev 24:696–707

    PubMed  CAS  Google Scholar 

  • Stacker SA, Stenvers K, Caesar C, Vitali A, Domagala T, Nice E, Roufail S, Simpson RJ, Moritz R, Karpanen T, Alitalo K, Achen MG (1999) Biosynthesis of vascular endothelial growth factor-­D involves proteolytic processing which generates non-covalent homodimers. J Biol Chem 274:32127–32136

    PubMed  CAS  Google Scholar 

  • Stacker SA, Caesar C, Baldwin ME, Thornton GE, Williams RA, Prevo R, Jackson DG, Nishikawa S, Kubo H, Achen MG (2001) VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med 7:186–191

    PubMed  CAS  Google Scholar 

  • Stanton AW, Modi S, Mellor RH, Levick JR, Mortimer PS (2009) Recent advances in breast cancer-­related lymphedema of the arm: lymphatic pump failure and predisposing factors. Lymphat Res Biol 7:29–45

    PubMed  Google Scholar 

  • Stewart FW, Treves N (1948) Lymphangiosarcoma in postmastectomy lymphedema: A report of six cases in elephantiasis chirurgica. Cancer 1:64–81

    PubMed  CAS  Google Scholar 

  • Szuba A, Skobe M, Karkkainen MJ, Shin WS, Beynet DP, Rockson NB, Dakhil N, Spilman S, Goris ML, Strauss HW, Quertermous T, Alitalo K, Rockson SG (2002) Therapeutic lymphangiogenesis with human recombinant VEGF-C. FASEB J 16:1985–1987

    PubMed  CAS  Google Scholar 

  • Tammela T, Alitalo K (2010) Lymphangiogenesis: molecular mechanisms and future promise. Cell 140:460–476

    PubMed  CAS  Google Scholar 

  • Tammela T, Enholm B, Alitalo K, Paavonen K (2005a) The biology of vascular endothelial growth factors. Cardiovasc Res 65:550–563

    PubMed  CAS  Google Scholar 

  • Tammela T, Saaristo A, Lohela M, Morisada T, Tornberg J, Norrmen C, Oike Y, Pajusola K, Thurston G, Suda T, Yla-Herttuala S, Alitalo K (2005b) Angiopoietin-1 promotes lymphatic sprouting and hyperplasia. Blood 105:4642–4648

    PubMed  CAS  Google Scholar 

  • Tammela T, Saaristo A, Holopainen T, Lyytikka J, Kotronen A, Pitkonen M, Abo-Ramadan U, Yla-Herttuala S, Petrova TV, Alitalo K (2007) Therapeutic differentiation and maturation of lymphatic vessels after lymph node dissection and transplantation. Nat Med 13:1458–1466

    PubMed  CAS  Google Scholar 

  • Taniguchi K, Kohno R, Ayada T, Kato R, Ichiyama K, Morisada T, Oike Y, Yonemitsu Y, Maehara Y, Yoshimura A (2007) Spreds are essential for embryonic lymphangiogenesis by regulating vascular endothelial growth factor receptor 3 signaling. Mol Cell Biol 27:4541–4550

    PubMed  CAS  Google Scholar 

  • Taylor AE, Gibson WH, Granger HJ, Guyton AC (1973) The interaction between intracapillary and tissue forces in the overall regulation of interstitial fluid volume. Lymphology 6:192–208

    PubMed  CAS  Google Scholar 

  • Tobler NE, Detmar M (2006) Tumor and lymph node lymphangiogenesis—impact on cancer metastasis. J Leukoc Biol 80:691–696

    PubMed  CAS  Google Scholar 

  • Traboulsi EI, Al-Khayer K, Matsumoto M, Kimak MA, Crowe S, Wilson SE, Finegold DN, Ferrell RE, Meisler DM (2002) Lymphedema-distichiasis syndrome and FOXC2 gene mutation. Am J Ophthalmol 134:592–596

    PubMed  CAS  Google Scholar 

  • Tso P (1994) Intestinal lipid absorption. In: Johnson L (ed) Physiology of the gastrointestinal tract. Raven Press, New York, pp 1867–1908

    Google Scholar 

  • Tvorogov D, Anisimov A, Zheng W, Leppanen VM, Tammela T, Laurinavicius S, Holnthoner W, Helotera H, Holopainen T, Jeltsch M, Kalkkinen N, Lankinen H, Ojala PM, Alitalo K (2010) Effective suppression of vascular network formation by combination of antibodies blocking VEGFR ligand binding and receptor dimerization. Cancer Cell 18:630–640

    PubMed  CAS  Google Scholar 

  • Uhrin P, Zaujec J, Breuss JM, Olcaydu D, Chrenek P, Stockinger H, Fuertbauer E, Moser M, Haiko P, Fassler R, Alitalo K, Binder BR, Kerjaschki D (2010) Novel function for blood platelets and podoplanin in developmental separation of blood and lymphatic circulation. Blood 115:3997–4005

    PubMed  CAS  Google Scholar 

  • Uldrick TS, Whitby D (2011) Update on KSHV epidemiology, Kaposi Sarcoma pathogenesis, and treatment of Kaposi Sarcoma. Cancer Lett 305:150–162

    PubMed  CAS  Google Scholar 

  • Veikkola T, Jussila L, Makinen T, Karpanen T, Jeltsch M, Petrova TV, Kubo H, Thurston G, McDonald DM, Achen MG, Stacker SA, Alitalo K (2001) Signalling via vascular endothelial growth factor receptor-3 is sufficient for lymphangiogenesis in transgenic mice. EMBO J 20:1223–1231

    PubMed  CAS  Google Scholar 

  • von der Weid PY, Rehal S, Ferraz JG (2011) Role of the lymphatic system in the pathogenesis of Crohn’s disease. Curr Opin Gastroenterol 27:335–341

    PubMed  Google Scholar 

  • Wang HU, Chen ZF, Anderson DJ (1998) Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93:741–753

    PubMed  CAS  Google Scholar 

  • Wang HW, Trotter MW, Lagos D, Bourboulia D, Henderson S, Makinen T, Elliman S, Flanagan AM, Alitalo K, Boshoff C (2004) Kaposi sarcoma herpesvirus-induced cellular reprogramming contributes to the lymphatic endothelial gene expression in Kaposi sarcoma. Nat Genet 36:687–693

    PubMed  CAS  Google Scholar 

  • Warren AG, Brorson H, Borud LJ, Slavin SA (2007) Lymphedema: a comprehensive review. Ann Plast Surg 59:464–472

    PubMed  CAS  Google Scholar 

  • Whitehurst B, Eversgerd C, Flister M, Bivens CM, Pickett B, Zawieja DC, Ran S (2006) Molecular profile and proliferative responses of rat lymphatic endothelial cells in culture. Lymphat Res Biol 4:119–142

    PubMed  CAS  Google Scholar 

  • Wiegand S, Eivazi B, Barth PJ, von Rautenfeld DB, Folz BJ, Mandic R, Werner JA (2008) Pathogenesis of lymphangiomas. Virchows Arch 453:1–8

    PubMed  Google Scholar 

  • Wigle JT, Oliver G (1999) Prox1 function is required for the development of the murine lymphatic system. Cell 98:769–778

    PubMed  CAS  Google Scholar 

  • Wigle JT, Harvey N, Detmar M, Lagutina I, Grosveld G, Gunn MD, Jackson DG, Oliver G (2002) An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J 21:1505–1513

    PubMed  CAS  Google Scholar 

  • Wijchers PJ, Burbach JP, Smidt MP (2006) In control of biology: of mice, men and Foxes. Biochem J 397:233–246

    PubMed  CAS  Google Scholar 

  • Wiley HE, Gonzalez EB, Maki W, Wu MT, Hwang ST (2001) Expression of CC chemokine receptor-­7 and regional lymph node metastasis of B16 murine melanoma. J Natl Cancer Inst 93:1638–1643

    PubMed  CAS  Google Scholar 

  • Wu M, Han L, Shi Y, Xu G, Wei J, You L, Chen Y, Zhu T, Li Q, Li S, Meng L, Lu Y, Zhou J, Wang S, Ma D (2010) Development and characterization of a novel method for the analysis of gene expression patterns in lymphatic endothelial cells derived from primary breast tissues. J Cancer Res Clin Oncol 136:863–872

    PubMed  CAS  Google Scholar 

  • Xu Y, Yuan L, Mak J, Pardanaud L, Caunt M, Kasman I, Larrivee B, Del Toro R, Suchting S, Medvinsky A, Silva J, Yang J, Thomas JL, Koch AW, Alitalo K, Eichmann A, Bagri A (2010) Neuropilin-2 mediates VEGF-C-induced lymphatic sprouting together with VEGFR3. J Cell Biol 188:115–130

    PubMed  CAS  Google Scholar 

  • Yamaguchi T, Ichise T, Iwata O, Hori A, Adachi T, Nakamura M, Yoshida N, Ichise H (2008) Development of a new method for isolation and long-term culture of organ-specific blood vascular and lymphatic endothelial cells of the mouse. FEBS J 275:1988–1998

    PubMed  CAS  Google Scholar 

  • Yamazaki T, Yoshimatsu Y, Morishita Y, Miyazono K, Watabe T (2009) COUP-TFII regulates the functions of Prox1 in lymphatic endothelial cells through direct interaction. Genes Cells 14:425–434

    PubMed  CAS  Google Scholar 

  • Yaniv K, Isogai S, Castranova D, Dye L, Hitomi J, Weinstein BM (2006) Live imaging of lymphatic development in the zebrafish. Nat Med 12:711–716

    PubMed  CAS  Google Scholar 

  • Yin N, Zhang N, Xu J, Shi Q, Ding Y, Bromberg JS (2011) Targeting lymphangiogenesis after islet transplantation prolongs islet allograft survival. Transplantation 92:25–30

    PubMed  CAS  Google Scholar 

  • Yoffey JM, Courtice FC (eds) (1970) The formation of lymph in lymphatics, lymph and the lymphomyeloid complex. Academic, London, pp 123–132

    Google Scholar 

  • Yoon YS, Murayama T, Gravereaux E, Tkebuchava T, Silver M, Curry C, Wecker A, Kirchmair R, Hu CS, Kearney M, Ashare A, Jackson DG, Kubo H, Isner JM, Losordo DW (2003) VEGF-C gene therapy augments postnatal lymphangiogenesis and ameliorates secondary lymphedema. J Clin Invest 111:717–725

    PubMed  CAS  Google Scholar 

  • Yuan L, Moyon D, Pardanaud L, Breant C, Karkkainen MJ, Alitalo K, Eichmann A (2002) Abnormal lymphatic vessel development in neuropilin 2 mutant mice. Development 129:4797–4806

    PubMed  CAS  Google Scholar 

  • Zumsteg A, Baeriswyl V, Imaizumi N, Schwendener R, Ruegg C, Christofori G (2009) Myeloid cells contribute to tumor lymphangiogenesis. PLoS One 4:e7067

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariappan Muthuchamy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Foskett, A.M., Chakraborty, S., Muthuchamy, M. (2013). Lymphangiogenesis. In: Santambrogio, L. (eds) Immunology of the Lymphatic System. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3235-7_2

Download citation

Publish with us

Policies and ethics