• Andrea M. Foskett
  • Sanjukta Chakraborty
  • Mariappan Muthuchamy


Lymphatic vessels are intimately involved in the maintenance of tissue homeostasis, immune cell trafficking, and transport of dietary lipids. During embryonic development, growth of new lymphatic vessels or lymphangiogenesis occurs from preexisting blood vessels in a tightly regulated manner, which then undergoes remodeling and maturation to form the extensive lymphatic network. However, aberrant lymphangiogenesis is also associated with a number of pathological conditions, such as inflammatory diseases, allograft rejection, and cancer metastasis, while insufficient lymphangiogenesis underlies the debilitating condition of lymphedema. This chapter aims to provide an overview of the different cellular mechanisms and key molecular players involved in the regulation and progression of normal lymphatic vascular development (or physiological lymphangiogenesis) and pathological lymphangiogenesis. Understanding the mechanisms of lymphatic vascular development or its role in these pathological processes is a prerequisite for the efficient development of key therapeutic interventions for lymphatic-associated diseases.


Lymphatic Vessel Lymph Transport Lymphatic Capillary Cardinal Vein Lymphatic Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abtahian F, Guerriero A, Sebzda E, Lu MM, Zhou R, Mocsai A, Myers EE, Huang B, Jackson DG, Ferrari VA, Tybulewicz V, Lowell CA, Lepore JJ, Koretzky GA, Kahn ML (2003) Regulation of blood and lymphatic vascular separation by signaling proteins SLP-76 and Syk. Science 299:247–251PubMedGoogle Scholar
  2. Achen MG, Jeltsch M, Kukk E, Makinen T, Vitali A, Wilks AF, Alitalo K, Stacker SA (1998) Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Proc Natl Acad Sci USA 95:548–553PubMedGoogle Scholar
  3. Achen MG, McColl BK, Stacker SA (2005) Focus on lymphangiogenesis in tumor metastasis. Cancer Cell 7:121–127PubMedGoogle Scholar
  4. Adams RH, Wilkinson GA, Weiss C, Diella F, Gale NW, Deutsch U, Risau W, Klein R (1999) Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev 13:295–306PubMedGoogle Scholar
  5. Alajati A, Laib AM, Weber H, Boos AM, Bartol A, Ikenberg K, Korff T, Zentgraf H, Obodozie C, Graeser R, Christian S, Finkenzeller G, Stark GB, Heroult M, Augustin HG (2008) Spheroid-­based engineering of a human vasculature in mice. Nat Methods 5:439–445PubMedGoogle Scholar
  6. Albrecht I, Christofori G (2011) Molecular mechanisms of lymphangiogenesis in development and cancer. Int J Dev Biol 55:483–494PubMedGoogle Scholar
  7. Alders M, Hogan BM, Gjini E, Salehi F, Al-Gazali L, Hennekam EA, Holmberg EE, Mannens MM, Mulder MF, Offerhaus GJ, Prescott TE, Schroor EJ, Verheij JB, Witte M, Zwijnenburg PJ, Vikkula M, Schulte-Merker S, Hennekam RC (2009) Mutations in CCBE1 cause generalized lymph vessel dysplasia in humans. Nat Genet 41:1272–1274PubMedGoogle Scholar
  8. Alitalo K (2011) The lymphatic vasculature in disease. Nat Med 17:1371–1380PubMedGoogle Scholar
  9. Alitalo K, Tammela T, Petrova TV (2005) Lymphangiogenesis in development and human disease. Nature 438:946–953PubMedGoogle Scholar
  10. Al-Rawi MA, Watkins G, Mansel RE, Jiang WG (2005) The effects of interleukin-7 on the ­lymphangiogenic properties of human endothelial cells. Int J Oncol 27:721–730PubMedGoogle Scholar
  11. Angeli V, Randolph GJ (2006) Inflammation, lymphatic function, and dendritic cell migration. Lymphat Res Biol 4:217–228PubMedGoogle Scholar
  12. Au AC, Hernandez PA, Lieber E, Nadroo AM, Shen YM, Kelley KA, Gelb BD, Diaz GA (2010) Protein tyrosine phosphatase PTPN14 is a regulator of lymphatic function and choanal development in humans. Am J Hum Genet 87:436–444PubMedGoogle Scholar
  13. Auguste P, Javerzat S, Bikfalvi A (2003) Regulation of vascular development by fibroblast growth factors. Cell Tissue Res 314:157–166PubMedGoogle Scholar
  14. Backhed F, Crawford PA, O’Donnell D, Gordon JI (2007) Postnatal lymphatic partitioning from the blood vasculature in the small intestine requires fasting-induced adipose factor. Proc Natl Acad Sci USA 104:606–611PubMedGoogle Scholar
  15. Baker A, Kim H, Semple JL, Dumont D, Shoichet M, Tobbia D, Johnston M (2010) Experimental assessment of pro-lymphangiogenic growth factors in the treatment of post-surgical lymphedema following lymphadenectomy. Breast Cancer Res 12:R70PubMedGoogle Scholar
  16. Baldwin ME, Halford MM, Roufail S, Williams RA, Hibbs ML, Grail D, Kubo H, Stacker SA, Achen MG (2005) Vascular endothelial growth factor D is dispensable for development of the lymphatic system. Mol Cell Biol 25:2441–2449PubMedGoogle Scholar
  17. Baluk P, Tammela T, Ator E, Lyubynska N, Achen MG, Hicklin DJ, Jeltsch M, Petrova TV, Pytowski B, Stacker SA, Yla-Herttuala S, Jackson DG, Alitalo K, McDonald DM (2005) Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation. J Clin Invest 115:247–257PubMedGoogle Scholar
  18. Baluk P, Fuxe J, Hashizume H, Romano T, Lashnits E, Butz S, Vestweber D, Corada M, Molendini C, Dejana E, McDonald DM (2007) Functionally specialized junctions between endothelial cells of lymphatic vessels. J Exp Med 204:2349–2362PubMedGoogle Scholar
  19. Bazigou E, Xie S, Chen C, Weston A, Miura N, Sorokin L, Adams R, Muro AF, Sheppard D, Makinen T (2009) Integrin-alpha9 is required for fibronectin matrix assembly during lymphatic valve morphogenesis. Dev Cell 17:175–186PubMedGoogle Scholar
  20. Bennuru S, Nutman TB (2009) Lymphangiogenesis and lymphatic remodeling induced by filarial parasites: implications for pathogenesis. PLoS Pathog 5:e1000688PubMedGoogle Scholar
  21. Bjorndahl M, Cao R, Nissen LJ, Clasper S, Johnson LA, Xue Y, Zhou Z, Jackson D, Hansen AJ, Cao Y (2005a) Insulin-like growth factors 1 and 2 induce lymphangiogenesis in vivo. Proc Natl Acad Sci USA 102:15593–15598PubMedGoogle Scholar
  22. Bjorndahl MA, Cao R, Burton JB, Brakenhielm E, Religa P, Galter D, Wu L, Cao Y (2005b) Vascular endothelial growth factor-a promotes peritumoral lymphangiogenesis and lymphatic metastasis. Cancer Res 65:9261–9268PubMedGoogle Scholar
  23. Bollinger A, Isenring G, Franzeck UK, Brunner U (1983) Aplasia of superficial lymphatic capillaries in hereditary and connatal lymphedema (Milroy’s disease). Lymphology 16:27–30PubMedGoogle Scholar
  24. Breiteneder-Geleff S, Soleiman A, Kowalski H, Horvat R, Amann G, Kriehuber E, Diem K, Weninger W, Tschachler E, Alitalo K, Kerjaschki D (1999) Angiosarcomas express mixed endothelial phenotypes of blood and lymphatic capillaries: podoplanin as a specific marker for lymphatic endothelium. Am J Pathol 154:385–394PubMedGoogle Scholar
  25. Bruyere F, Noel A (2010) Lymphangiogenesis: in vitro and in vivo models. FASEB J 24:8–21PubMedGoogle Scholar
  26. Bruyere F, Melen-Lamalle L, Blacher S, Roland G, Thiry M, Moons L, Frankenne F, Carmeliet P, Alitalo K, Libert C, Sleeman JP, Foidart JM, Noel A (2008) Modeling lymphangiogenesis in a three-dimensional culture system. Nat Methods 5:431–437PubMedGoogle Scholar
  27. Byzova TV, Goldman CK, Jankau J, Chen J, Cabrera G, Achen MG, Stacker SA, Carnevale KA, Siemionow M, Deitcher SR, DiCorleto PE (2002) Adenovirus encoding vascular endothelial growth factor-D induces tissue-specific vascular patterns in vivo. Blood 99:4434–4442PubMedGoogle Scholar
  28. Cao R, Bjorndahl MA, Religa P, Clasper S, Garvin S, Galter D, Meister B, Ikomi F, Tritsaris K, Dissing S, Ohhashi T, Jackson DG, Cao Y (2004) PDGF-BB induces intratumoral lymphangiogenesis and promotes lymphatic metastasis. Cancer Cell 6:333–345PubMedGoogle Scholar
  29. Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, Fahrig M, Vandenhoeck A, Harpal K, Eberhardt C, Declercq C, Pawling J, Moons L, Collen D, Risau W, Nagy A (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380:435–439PubMedGoogle Scholar
  30. Casley-Smith JR (1974) The lymphatic system in inflammation. In: Zweifach BW, Grant L, Mcclusky RT (eds) The inflammatory process. Academic, New York, pp 161–204Google Scholar
  31. Caunt M, Mak J, Liang WC, Stawicki S, Pan Q, Tong RK, Kowalski J, Ho C, Reslan HB, Ross J, Berry L, Kasman I, Zlot C, Cheng Z, Le Couter J, Filvaroff EH, Plowman G, Peale F, French D, Carano R, Koch AW, Wu Y, Watts RJ, Tessier-Lavigne M, Bagri A (2008) Blocking neuropilin-­2 function inhibits tumor cell metastasis. Cancer Cell 13:331–342PubMedGoogle Scholar
  32. Chen Z, Varney ML, Backora MW, Cowan K, Solheim JC, Talmadge JE, Singh RK (2005) Down-­regulation of vascular endothelial cell growth factor-C expression using small interfering RNA vectors in mammary tumors inhibits tumor lymphangiogenesis and spontaneous metastasis and enhances survival. Cancer Res 65:9004–9011PubMedGoogle Scholar
  33. Chen L, Hamrah P, Cursiefen C, Zhang Q, Pytowski B, Streilein JW, Dana MR (2007) Vascular endothelial growth factor receptor-3 mediates induction of corneal alloimmunity. 2004. Ocul Immunol Inflamm 15:275–278PubMedGoogle Scholar
  34. Clasper S, Royston D, Baban D, Cao Y, Ewers S, Butz S, Vestweber D, Jackson DG (2008) A novel gene expression profile in lymphatics associated with tumor growth and nodal metastasis. Cancer Res 68:7293–7303PubMedGoogle Scholar
  35. Connell FC, Ostergaard P, Carver C, Brice G, Williams N, Mansour S, Mortimer PS, Jeffery S (2009) Analysis of the coding regions of VEGFR3 and VEGFC in Milroy disease and other primary lymphoedemas. Hum Genet 124:625–631PubMedGoogle Scholar
  36. Crnic I, Strittmatter K, Cavallaro U, Kopfstein L, Jussila L, Alitalo K, Christofori G (2004) Loss of neural cell adhesion molecule induces tumor metastasis by up-regulating lymphangiogenesis. Cancer Res 64:8630–8638PubMedGoogle Scholar
  37. Cueni LN, Detmar M (2008) The lymphatic system in health and disease. Lymphat Res Biol 6:109–122PubMedGoogle Scholar
  38. Dagenais SL, Hartsough RL, Erickson RP, Witte MH, Butler MG, Glover TW (2004) Foxc2 is expressed in developing lymphatic vessels and other tissues associated with lymphedema-­distichiasis syndrome. Gene Expr Patterns 4:611–619PubMedGoogle Scholar
  39. Danussi C, Spessotto P, Petrucco A, Wassermann B, Sabatelli P, Montesi M, Doliana R, Bressan G, Colombatti A (2008) Emilin1 deficiency causes structural and functional defects of lymphatic vasculature. Mol Cell Biol 28:4026–4039PubMedGoogle Scholar
  40. Dejana E, Orsenigo F, Molendini C, Baluk P, McDonald DM (2009) Organization and signaling of endothelial cell-to-cell junctions in various regions of the blood and lymphatic vascular trees. Cell Tissue Res 335:17–25PubMedGoogle Scholar
  41. Dellinger M, Hunter R, Bernas M, Gale N, Yancopoulos G, Erickson R, Witte M (2008) Defective remodeling and maturation of the lymphatic vasculature in angiopoietin-2 deficient mice. Dev Biol 319:309–320PubMedGoogle Scholar
  42. Dreyer G, Noroes J, Figueredo-Silva J, Piessens WF (2000) Pathogenesis of lymphatic disease in bancroftian filariasis: a clinical perspective. Parasitol Today 16:544–548PubMedGoogle Scholar
  43. Dumont DJ, Jussila L, Taipale J, Lymboussaki A, Mustonen T, Pajusola K, Breitman M, Alitalo K (1998) Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science 282:946–949PubMedGoogle Scholar
  44. Duong T, Koopman P, Francois M (2012) Tumor lymphangiogenesis as a potential therapeutic target. J Oncol 2012:204946PubMedGoogle Scholar
  45. Enholm B, Karpanen T, Jeltsch M, Kubo H, Stenback F, Prevo R, Jackson DG, Yla-Herttuala S, Alitalo K (2001) Adenoviral expression of vascular endothelial growth factor-C induces lymphangiogenesis in the skin. Circ Res 88:623–629PubMedGoogle Scholar
  46. Fang J, Dagenais SL, Erickson RP, Arlt MF, Glynn MW, Gorski JL, Seaver LH, Glover TW (2000) Mutations in FOXC2 (MFH-1), a forkhead family transcription factor, are responsible for the hereditary lymphedema-distichiasis syndrome. Am J Hum Genet 67:1382–1388PubMedGoogle Scholar
  47. Ferrell RE, Baty CJ, Kimak MA, Karlsson JM, Lawrence EC, Franke-Snyder M, Meriney SD, Feingold E, Finegold DN (2010) GJC2 missense mutations cause human lymphedema. Am J Hum Genet 86:943–948PubMedGoogle Scholar
  48. Finegold DN, Kimak MA, Lawrence EC, Levinson KL, Cherniske EM, Pober BR, Dunlap JW, Ferrell RE (2001) Truncating mutations in FOXC2 cause multiple lymphedema syndromes. Hum Mol Genet 10:1185–1189PubMedGoogle Scholar
  49. Fischer C, Jonckx B, Mazzone M, Zacchigna S, Loges S, Pattarini L, Chorianopoulos E, Liesenborghs L, Koch M, De Mol M, Autiero M, Wyns S, Plaisance S, Moons L, van Rooijen N, Giacca M, Stassen JM, Dewerchin M, Collen D, Carmeliet P (2007) Anti-PlGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without affecting healthy vessels. Cell 131:463–475PubMedGoogle Scholar
  50. Flister MJ, Wilber A, Hall KL, Iwata C, Miyazono K, Nisato RE, Pepper MS, Zawieja DC, Ran S (2010) Inflammation induces lymphangiogenesis through up-regulation of VEGFR-3 mediated by NF-kappaB and Prox1. Blood 115:418–429PubMedGoogle Scholar
  51. Foskett AM, Ezekiel UR, Trzeciakowski JP, Zawieja DC, Muthuchamy M (2011) Hypoxia and extracellular matrix proteins influence angiogenesis and lymphangiogenesis in mouse embryoid bodies. Front Physiol 2:103PubMedGoogle Scholar
  52. Francois M, Caprini A, Hosking B, Orsenigo F, Wilhelm D, Browne C, Paavonen K, Karnezis T, Shayan R, Downes M, Davidson T, Tutt D, Cheah KS, Stacker SA, Muscat GE, Achen MG, Dejana E, Koopman P (2008) Sox18 induces development of the lymphatic vasculature in mice. Nature 456:643–647PubMedGoogle Scholar
  53. Gale NW, Baluk P, Pan L, Kwan M, Holash J, DeChiara TM, McDonald DM, Yancopoulos GD (2001) Ephrin-B2 selectively marks arterial vessels and neovascularization sites in the adult, with expression in both endothelial and smooth-muscle cells. Dev Biol 230:151–160PubMedGoogle Scholar
  54. Gale NW, Thurston G, Hackett SF, Renard R, Wang Q, McClain J, Martin C, Witte C, Witte MH, Jackson D, Suri C, Campochiaro PA, Wiegand SJ, Yancopoulos GD (2002) Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by angiopoietin-1. Dev Cell 3:411–423PubMedGoogle Scholar
  55. Gale NW, Prevo R, Espinosa J, Ferguson DJ, Dominguez MG, Yancopoulos GD, Thurston G, Jackson DG (2007) Normal lymphatic development and function in mice deficient for the lymphatic hyaluronan receptor LYVE-1. Mol Cell Biol 27:595–604PubMedGoogle Scholar
  56. Ganta VC, Cromer W, Mills GL, Traylor J, Jennings M, Daley S, Clark B, Mathis JM, Bernas M, Boktor M, Jordan P, Witte M, Alexander JS (2010) Angiopoietin-2 in experimental colitis. Inflamm Bowel Dis 16:1029–1039PubMedGoogle Scholar
  57. Gashev AA (2002) Physiologic aspects of lymphatic contractile function: current perspectives. Ann N Y Acad Sci 979:178–187; discussion 188–196Google Scholar
  58. Gashev AA, Li J, Muthuchamy M, Zawieja DC (2012) Adenovirus-mediated gene transfection in the isolated lymphatic vessels. Methods Mol Biol 843:199–204PubMedGoogle Scholar
  59. Glasgow CG, Steagall WK, Taveira-Dasilva A, Pacheco-Rodriguez G, Cai X, El-Chemaly S, Moses M, Darling T, Moss J (2010) Lymphangioleiomyomatosis (LAM): molecular insights lead to targeted therapies. Respir Med 104(suppl 1):S45–S58PubMedGoogle Scholar
  60. Gnepp DR (1976) The bicuspid nature of the valves of the peripheral collecting lymphatic vessels of the dog. Lymphology 9:75–77PubMedGoogle Scholar
  61. Gnepp DR (1984) Lymphatics. In: Staub NC, Taylor AE (eds) Edema. Raven Press, New York, NY, pp 263–298Google Scholar
  62. Gnepp DR, Chandler W (1985) Tissue culture of human and canine thoracic duct endothelium. In Vitro Cell Dev Biol 21:200–206PubMedGoogle Scholar
  63. Gnepp DR, Green FH (1980) Scanning electron microscopic study of canine lymphatic vessels and their valves. Lymphology 13:91–99PubMedGoogle Scholar
  64. Groger M, Loewe R, Holnthoner W, Embacher R, Pillinger M, Herron GS, Wolff K, Petzelbauer P (2004) IL-3 induces expression of lymphatic markers Prox-1 and podoplanin in human endothelial cells. J Immunol 173:7161–7169PubMedGoogle Scholar
  65. Hamada K, Oike Y, Takakura N, Ito Y, Jussila L, Dumont DJ, Alitalo K, Suda T (2000) VEGF-C signaling pathways through VEGFR-2 and VEGFR-3 in vasculoangiogenesis and hematopoiesis. Blood 96:3793–3800PubMedGoogle Scholar
  66. Harrell MI, Iritani BM, Ruddell A (2007) Tumor-induced sentinel lymph node lymphangiogenesis and increased lymph flow precede melanoma metastasis. Am J Pathol 170:774–786PubMedGoogle Scholar
  67. Harvey NL, Srinivasan RS, Dillard ME, Johnson NC, Witte MH, Boyd K, Sleeman MW, Oliver G (2005) Lymphatic vascular defects promoted by Prox1 haploinsufficiency cause adult-onset obesity. Nat Genet 37:1072–1081PubMedGoogle Scholar
  68. Hayes H, Kossmann E, Wilson E, Meininger C, Zawieja D (2003) Development and characterization of endothelial cells from rat microlymphatics. Lymphat Res Biol 1:101–119PubMedGoogle Scholar
  69. He Y, Kozaki K, Karpanen T, Koshikawa K, Yla-Herttuala S, Takahashi T, Alitalo K (2002) Suppression of tumor lymphangiogenesis and lymph node metastasis by blocking vascular endothelial growth factor receptor 3 signaling. J Natl Cancer Inst 94:819–825PubMedGoogle Scholar
  70. Helm CL, Fleury ME, Zisch AH, Boschetti F, Swartz MA (2005) Synergy between interstitial flow and VEGF directs capillary morphogenesis in vitro through a gradient amplification mechanism. Proc Natl Acad Sci USA 102:15779–15784PubMedGoogle Scholar
  71. Helm CL, Zisch A, Swartz MA (2007) Engineered blood and lymphatic capillaries in 3-D VEGF-fibrin-­collagen matrices with interstitial flow. Biotechnol Bioeng 96:167–176PubMedGoogle Scholar
  72. Hirakawa S, Hong YK, Harvey N, Schacht V, Matsuda K, Libermann T, Detmar M (2003) Identification of vascular lineage-specific genes by transcriptional profiling of isolated blood vascular and lymphatic endothelial cells. Am J Pathol 162:575–586PubMedGoogle Scholar
  73. Hirakawa S, Brown LF, Kodama S, Paavonen K, Alitalo K, Detmar M (2007) VEGF-C-induced lymphangiogenesis in sentinel lymph nodes promotes tumor metastasis to distant sites. Blood 109:1010–1017PubMedGoogle Scholar
  74. Hirashima M, Sano K, Morisada T, Murakami K, Rossant J, Suda T (2008) Lymphatic vessel assembly is impaired in Aspp1-deficient mouse embryos. Dev Biol 316:149–159PubMedGoogle Scholar
  75. Hong YK, Harvey N, Noh YH, Schacht V, Hirakawa S, Detmar M, Oliver G (2002) Prox1 is a master control gene in the program specifying lymphatic endothelial cell fate. Dev Dyn 225:351–357PubMedGoogle Scholar
  76. Hong YK, Foreman K, Shin JW, Hirakawa S, Curry CL, Sage DR, Libermann T, Dezube BJ, Fingeroth JD, Detmar M (2004) Lymphatic reprogramming of blood vascular endothelium by Kaposi sarcoma-associated herpesvirus. Nat Genet 36:683–685PubMedGoogle Scholar
  77. Huggenberger R, Siddiqui SS, Brander D, Ullmann S, Zimmermann K, Antsiferova M, Werner S, Alitalo K, Detmar M (2011) An important role of lymphatic vessel activation in limiting acute inflammation. Blood 117:4667–4678PubMedGoogle Scholar
  78. Huntington GS, McClure CFW (1910) The anatomy and development of the jugular lymph sac in the domestic cat (Felis domestica). Am J Anat 10:177–311Google Scholar
  79. Ichise H, Ichise T, Ohtani O, Yoshida N (2009) Phospholipase Cgamma2 is necessary for separation of blood and lymphatic vasculature in mice. Development 136:191–195PubMedGoogle Scholar
  80. Irigoyen M, Anso E, Martinez E, Garayoa M, Martinez-Irujo JJ, Rouzaut A (2007) Hypoxia alters the adhesive properties of lymphatic endothelial cells. A transcriptional and functional study. Biochim Biophys Acta 1773:880–890PubMedGoogle Scholar
  81. Irjala H, Alanen K, Grenman R, Heikkila P, Joensuu H, Jalkanen S (2003) Mannose receptor (MR) and common lymphatic endothelial and vascular endothelial receptor (CLEVER)-1 direct the binding of cancer cells to the lymph vessel endothelium. Cancer Res 63:4671–4676PubMedGoogle Scholar
  82. Irrthum A, Devriendt K, Chitayat D, Matthijs G, Glade C, Steijlen PM, Fryns JP, Van Steensel MA, Vikkula M (2003) Mutations in the transcription factor gene SOX18 underlie recessive and dominant forms of hypotrichosis-lymphedema-telangiectasia. Am J Hum Genet 72:1470–1478PubMedGoogle Scholar
  83. Isogai S, Hitomi J, Yaniv K, Weinstein BM (2009) Zebrafish as a new animal model to study lymphangiogenesis. Anat Sci Int 84:102–111PubMedGoogle Scholar
  84. Issa A, Le TX, Shoushtari AN, Shields JD, Swartz MA (2009) Vascular endothelial growth factor-­C and C-C chemokine receptor 7 in tumor cell-lymphatic cross-talk promote invasive phenotype. Cancer Res 69:349–357PubMedGoogle Scholar
  85. Iwata C, Kano MR, Komuro A, Oka M, Kiyono K, Johansson E, Morishita Y, Yashiro M, Hirakawa K, Kaminishi M, Miyazono K (2007) Inhibition of cyclooxygenase-2 suppresses lymph node metastasis via reduction of lymphangiogenesis. Cancer Res 67:10181–10189PubMedGoogle Scholar
  86. Jeltsch M, Kaipainen A, Joukov V, Meng X, Lakso M, Rauvala H, Swartz M, Fukumura D, Jain RK, Alitalo K (1997) Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science 276:1423–1425PubMedGoogle Scholar
  87. Jiang S, Bailey AS, Goldman DC, Swain JR, Wong MH, Streeter PR, Fleming WH (2008) Hematopoietic stem cells contribute to lymphatic endothelium. PLoS One 3:e3812PubMedGoogle Scholar
  88. Johnson LA, Clasper S, Holt AP, Lalor PF, Baban D, Jackson DG (2006) An inflammation-induced mechanism for leukocyte transmigration across lymphatic vessel endothelium. J Exp Med 203:2763–2777PubMedGoogle Scholar
  89. Joukov V, Pajusola K, Kaipainen A, Chilov D, Lahtinen I, Kukk E, Saksela O, Kalkkinen N, Alitalo K (1996) A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J 15:1751PubMedGoogle Scholar
  90. Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9:239–252PubMedGoogle Scholar
  91. Jurisic G, Detmar M (2009) Lymphatic endothelium in health and disease. Cell Tissue Res 335:97–108PubMedGoogle Scholar
  92. Kaipainen A, Korhonen J, Mustonen T, van Hinsbergh VW, Fang GH, Dumont D, Breitman M, Alitalo K (1995) Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc Natl Acad Sci USA 92:3566–3570PubMedGoogle Scholar
  93. Kajiya K, Detmar M (2006) An important role of lymphatic vessels in the control of UVB-induced edema formation and inflammation. J Invest Dermatol 126:919–921PubMedGoogle Scholar
  94. Kajiya K, Hirakawa S, Ma B, Drinnenberg I, Detmar M (2005) Hepatocyte growth factor promotes lymphatic vessel formation and function. EMBO J 24:2885–2895PubMedGoogle Scholar
  95. Kajiya K, Hirakawa S, Detmar M (2006) Vascular endothelial growth factor-A mediates ultraviolet B-induced impairment of lymphatic vessel function. Am J Pathol 169:1496–1503PubMedGoogle Scholar
  96. Kajiya K, Sawane M, Huggenberger R, Detmar M (2009) Activation of the VEGFR-3 pathway by VEGF-C attenuates UVB-induced edema formation and skin inflammation by promoting lymphangiogenesis. J Invest Dermatol 129:1292–1298PubMedGoogle Scholar
  97. Kanady JD, Dellinger MT, Munger SJ, Witte MH, Simon AM (2011) Connexin37 and Connexin43 deficiencies in mice disrupt lymphatic valve development and result in lymphatic disorders including lymphedema and chylothorax. Dev Biol 354:253–266PubMedGoogle Scholar
  98. Kang S, Lee SP, Kim KE, Kim HZ, Memet S, Koh GY (2009) Toll-like receptor 4 in lymphatic endothelial cells contributes to LPS-induced lymphangiogenesis by chemotactic recruitment of macrophages. Blood 113:2605–2613PubMedGoogle Scholar
  99. Karkkainen MJ, Ferrell RE, Lawrence EC, Kimak MA, Levinson KL, McTigue MA, Alitalo K, Finegold DN (2000) Missense mutations interfere with VEGFR-3 signalling in primary lymphoedema. Nat Genet 25:153–159PubMedGoogle Scholar
  100. Karkkainen MJ, Saaristo A, Jussila L, Karila KA, Lawrence EC, Pajusola K, Bueler H, Eichmann A, Kauppinen R, Kettunen MI, Yla-Herttuala S, Finegold DN, Ferrell RE, Alitalo K (2001) A model for gene therapy of human hereditary lymphedema. Proc Natl Acad Sci USA 98:12677–12682PubMedGoogle Scholar
  101. Karkkainen MJ, Haiko P, Sainio K, Partanen J, Taipale J, Petrova TV, Jeltsch M, Jackson DG, Talikka M, Rauvala H, Betsholtz C, Alitalo K (2004) Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol 5:74–80PubMedGoogle Scholar
  102. Karpanen T, Alitalo K (2008) Molecular biology and pathology of lymphangiogenesis. Annu Rev Pathol 3:367–397PubMedGoogle Scholar
  103. Kawai Y, Hosaka K, Kaidoh M, Minami T, Kodama T, Ohhashi T (2008) Heterogeneity in immunohistochemical, genomic, and biological properties of human lymphatic endothelial cells between initial and collecting lymph vessels. Lymphat Res Biol 6:15–27PubMedGoogle Scholar
  104. Kerjaschki D (2005) The crucial role of macrophages in lymphangiogenesis. J Clin Invest 115:2316–2319PubMedGoogle Scholar
  105. Kerjaschki D, Huttary N, Raab I, Regele H, Bojarski-Nagy K, Bartel G, Krober SM, Greinix H, Rosenmaier A, Karlhofer F, Wick N, Mazal PR (2006) Lymphatic endothelial progenitor cells contribute to de novo lymphangiogenesis in human renal transplants. Nat Med 12:230–234PubMedGoogle Scholar
  106. Kim KE, Koh YJ, Jeon BH, Jang C, Han J, Kataru RP, Schwendener RA, Kim JM, Koh GY (2009) Role of CD11b+ macrophages in intraperitoneal lipopolysaccharide-induced aberrant lymphangiogenesis and lymphatic function in the diaphragm. Am J Pathol 175:1733–1745PubMedGoogle Scholar
  107. Kreuger J, Nilsson I, Kerjaschki D, Petrova T, Alitalo K, Claesson-Welsh L (2006) Early lymph vessel development from embryonic stem cells. Arterioscler Thromb Vasc Biol 26:1073–1078PubMedGoogle Scholar
  108. Kriehuber E, Breiteneder-Geleff S, Groeger M, Soleiman A, Schoppmann SF, Stingl G, Kerjaschki D, Maurer D (2001) Isolation and characterization of dermal lymphatic and blood endothelial cells reveal stable and functionally specialized cell lineages. J Exp Med 194:797–808PubMedGoogle Scholar
  109. Kubo H, Cao R, Brakenhielm E, Makinen T, Cao Y, Alitalo K (2002) Blockade of vascular endothelial growth factor receptor-3 signaling inhibits fibroblast growth factor-2-induced lymphangiogenesis in mouse cornea. Proc Natl Acad Sci USA 99:8868–8873PubMedGoogle Scholar
  110. Kuchler AM, Gjini E, Peterson-Maduro J, Cancilla B, Wolburg H, Schulte-Merker S (2006) Development of the zebrafish lymphatic system requires VEGFC signaling. Curr Biol 16:1244–1248PubMedGoogle Scholar
  111. Lahteenvuo M, Honkonen K, Tervala T, Tammela T, Suominen E, Lahteenvuo J, Kholova I, Alitalo K, Yla-Herttuala S, Saaristo A (2011) Growth factor therapy and autologous lymph node transfer in lymphedema. Circulation 123:613–620PubMedGoogle Scholar
  112. Leak LV, Burke JF (1966) Fine structure of the lymphatic capillary and the adjoining connective tissue area. Am J Anat 118:785–809PubMedGoogle Scholar
  113. Leak LV, Burke JF (1968) Ultrastructural studies on the lymphatic anchoring filaments. J Cell Biol 36:129–149Google Scholar
  114. Leak LV, Jones M (1994) Lymphangiogenesis in vitro: formation of lymphatic capillary-like channels from confluent monolayers of lymphatic endothelial cells. In Vitro Cell Dev Biol Anim 30A:512–518PubMedGoogle Scholar
  115. Lee S, Kang J, Yoo J, Ganesan SK, Cook SC, Aguilar B, Ramu S, Lee J, Hong YK (2009) Prox1 physically and functionally interacts with COUP-TFII to specify lymphatic endothelial cell fate. Blood 113:1856–1859PubMedGoogle Scholar
  116. Liersch R, Nay F, Lu L, Detmar M (2006) Induction of lymphatic endothelial cell differentiation in embryoid bodies. Blood 107:1214–1216PubMedGoogle Scholar
  117. Lin J, Lalani AS, Harding TC, Gonzalez M, Wu WW, Luan B, Tu GH, Koprivnikar K, VanRoey MJ, He Y, Alitalo K, Jooss K (2005) Inhibition of lymphogenous metastasis using adeno-­associated virus-mediated gene transfer of a soluble VEGFR-3 decoy receptor. Cancer Res 65:6901–6909PubMedGoogle Scholar
  118. Lin FJ, Chen X, Qin J, Hong YK, Tsai MJ, Tsai SY (2010) Direct transcriptional regulation of neuropilin-2 by COUP-TFII modulates multiple steps in murine lymphatic vessel development. J Clin Invest 120:1694–1707PubMedGoogle Scholar
  119. Linares PM, Gisbert JP (2011) Role of growth factors in the development of lymphangiogenesis driven by inflammatory bowel disease: a review. Inflamm Bowel Dis 17:1814–1821PubMedGoogle Scholar
  120. Liu R, Li X, Tulpule A, Zhou Y, Scehnet JS, Zhang S, Lee JS, Chaudhary PM, Jung J, Gill PS (2010) KSHV-induced notch components render endothelial and mural cell characteristics and cell survival. Blood 115:887–895PubMedGoogle Scholar
  121. Lohela M, Bry M, Tammela T, Alitalo K (2009) VEGFs and receptors involved in angiogenesis versus lymphangiogenesis. Curr Opin Cell Biol 21:154–165PubMedGoogle Scholar
  122. Luong MX, Tam J, Lin Q, Hagendoorn J, Moore KJ, Padera TP, Seed B, Fukumura D, Kucherlapati R, Jain RK (2009) Lack of lymphatic vessel phenotype in LYVE-1/CD44 double knockout mice. J Cell Physiol 219:430–437PubMedGoogle Scholar
  123. Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, Compton D, McClain J, Aldrich TH, Papadopoulos N, Daly TJ, Davis S, Sato TN, Yancopoulos GD (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277:55–60PubMedGoogle Scholar
  124. Makinen T, Adams RH, Bailey J, Lu Q, Ziemiecki A, Alitalo K, Klein R, Wilkinson GA (2005) PDZ interaction site in ephrinB2 is required for the remodeling of lymphatic vasculature. Genes Dev 19:397–410PubMedGoogle Scholar
  125. Makinen T, Norrmen C, Petrova TV (2007) Molecular mechanisms of lymphatic vascular development. Cell Mol Life Sci 64:1915–1929PubMedGoogle Scholar
  126. Mandriota SJ, Jussila L, Jeltsch M, Compagni A, Baetens D, Prevo R, Banerji S, Huarte J, Montesano R, Jackson DG, Orci L, Alitalo K, Christofori G, Pepper MS (2001) Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO J 20:672–682PubMedGoogle Scholar
  127. Maruyama K, Ii M, Cursiefen C, Jackson DG, Keino H, Tomita M, Van Rooijen N, Takenaka H, D’Amore PA, Stein-Streilein J, Losordo DW, Streilein JW (2005) Inflammation-induced lymphangiogenesis in the cornea arises from CD11b-positive macrophages. J Clin Invest 115:2363–2372PubMedGoogle Scholar
  128. McHaffie DR, Kozak KR, Warner TF, Cho CS, Heiner JP, Attia S (2010) Stewart-Treves syndrome of the lower extremity. J Clin Oncol 28:e351–e352PubMedGoogle Scholar
  129. Mellor RH, Brice G, Stanton AW, French J, Smith A, Jeffery S, Levick JR, Burnand KG, Mortimer PS, Lymphoedema Research Consortium (2007) Mutations in FOXC2 are strongly associated with primary valve failure in veins of the lower limb. Circulation 115:1912–1920PubMedGoogle Scholar
  130. Mellor RH, Hubert CE, Stanton AW, Tate N, Akhras V, Smith A, Burnand KG, Jeffery S, Makinen T, Levick JR, Mortimer PS (2010) Lymphatic dysfunction, not aplasia, underlies Milroy disease. Microcirculation 17:281–296PubMedGoogle Scholar
  131. Mesri EA, Cesarman E, Boshoff C (2010) Kaposi’s sarcoma and its associated herpesvirus. Nat Rev Cancer 10:707–719PubMedGoogle Scholar
  132. Miteva DO, Rutkowski JM, Dixon JB, Kilarski W, Shields JD, Swartz MA (2010) Transmural flow modulates cell and fluid transport functions of lymphatic endothelium. Circ Res 106:920–931PubMedGoogle Scholar
  133. Mizuno R, Yokoyama Y, Ono N, Ikomi F, Ohhashi T (2003) Establishment of rat lymphatic endothelial cell line. Microcirculation 10:127–131PubMedGoogle Scholar
  134. Mouta C, Heroult M (2003) Inflammatory triggers of lymphangiogenesis. Lymphat Res Biol 1:201–218PubMedGoogle Scholar
  135. Murdaca G, Cagnati P, Gulli R, Spano F, Puppo F, Campisi C, Boccardo F (2012) Current views on diagnostic approach and treatment of lymphedema. Am J Med 125:134–140PubMedGoogle Scholar
  136. Neufeld G, Cohen T, Shraga N, Lange T, Kessler O, Herzog Y (2002) The neuropilins: multifunctional semaphorin and VEGF receptors that modulate axon guidance and angiogenesis. Trends Cardiovasc Med 12:13–19PubMedGoogle Scholar
  137. Ng CP, Helm CL, Swartz MA (2004) Interstitial flow differentially stimulates blood and lymphatic endothelial cell morphogenesis in vitro. Microvasc Res 68:258–264PubMedGoogle Scholar
  138. Nilsson I, Rolny C, Wu Y, Pytowski B, Hicklin D, Alitalo K, Claesson-Welsh L, Wennstrom S (2004) Vascular endothelial growth factor receptor-3 in hypoxia-induced vascular development. FASEB J 18:1507–1515PubMedGoogle Scholar
  139. Norrmen C, Ivanov KI, Cheng J, Zangger N, Delorenzi M, Jaquet M, Miura N, Puolakkainen P, Horsley V, Hu J, Augustin HG, Yla-Herttuala S, Alitalo K, Petrova TV (2009) FOXC2 controls formation and maturation of lymphatic collecting vessels through cooperation with NFATc1. J Cell Biol 185:439–457PubMedGoogle Scholar
  140. Norrmen C, Tammela T, Petrova TV, Alitalo K (2011) Biological basis of therapeutic lymphangiogenesis. Circulation 123:1335–1351PubMedGoogle Scholar
  141. Ny A, Koch M, Schneider M, Neven E, Tong RT, Maity S, Fischer C, Plaisance S, Lambrechts D, Heligon C, Terclavers S, Ciesiolka M, Kalin R, Man WY, Senn I, Wyns S, Lupu F, Brandli A, Vleminckx K, Collen D, Dewerchin M, Conway EM, Moons L, Jain RK, Carmeliet P (2005) A genetic Xenopus laevis tadpole model to study lymphangiogenesis. Nat Med 11:998–1004PubMedGoogle Scholar
  142. Ny A, Autiero M, Carmeliet P (2006) Zebrafish and Xenopus tadpoles: small animal models to study angiogenesis and lymphangiogenesis. Exp Cell Res 312:684–693PubMedGoogle Scholar
  143. Nykanen AI, Sandelin H, Krebs R, Keranen MA, Tuuminen R, Karpanen T, Wu Y, Pytowski B, Koskinen PK, Yla-Herttuala S, Alitalo K, Lemstrom KB (2010) Targeting lymphatic vessel activation and CCL21 production by vascular endothelial growth factor receptor-3 inhibition has novel immunomodulatory and antiarteriosclerotic effects in cardiac allografts. Circulation 121:1413–1422PubMedGoogle Scholar
  144. Oh SJ, Jeltsch MM, Birkenhager R, McCarthy JE, Weich HA, Christ B, Alitalo K, Wilting J (1997) VEGF and VEGF-C: specific induction of angiogenesis and lymphangiogenesis in the differentiated avian chorioallantoic membrane. Dev Biol 188:96–109PubMedGoogle Scholar
  145. Ohtani Y, Ohtani O (2001) Postnatal development of lymphatic vessels and their smooth muscle cells in the rat diaphragm: a confocal microscopic study. Arch Histol Cytol 64:513–522PubMedGoogle Scholar
  146. Okazaki T, Ni A, Ayeni OA, Baluk P, Yao LC, Vossmeyer D, Zischinsky G, Zahn G, Knolle J, Christner C, McDonald DM (2009) Alpha5beta1 Integrin blockade inhibits lymphangiogenesis in airway inflammation. Am J Pathol 174:2378–2387PubMedGoogle Scholar
  147. Oliver G (2004) Lymphatic vasculature development. Nat Rev Immunol 4:35–45PubMedGoogle Scholar
  148. Oliver G, Alitalo K (2005) The lymphatic vasculature: recent progress and paradigms. Annu Rev Cell Dev Biol 21:457–483PubMedGoogle Scholar
  149. Oliver G, Detmar M (2002) The rediscovery of the lymphatic system: old and new insights into the development and biological function of the lymphatic vasculature. Genes Dev 16:773–783PubMedGoogle Scholar
  150. Oliver G, Srinivasan RS (2008) Lymphatic vasculature development: current concepts. Ann N Y Acad Sci 1131:75–81PubMedGoogle Scholar
  151. Padera TP, Kadambi A, di Tomaso E, Carreira CM, Brown EB, Boucher Y, Choi NC, Mathisen D, Wain J, Mark EJ, Munn LL, Jain RK (2002) Lymphatic metastasis in the absence of functional intratumor lymphatics. Science 296:1883–1886PubMedGoogle Scholar
  152. Pedica F, Ligorio C, Tonelli P, Bartolini S, Baccarini P (2008) Lymphangiogenesis in Crohn’s disease: an immunohistochemical study using monoclonal antibody D2-40. Virchows Arch 452:57–63PubMedGoogle Scholar
  153. Petrenko VM, Gashev AA (2008) Observations on the prenatal development of human lymphatic vessels with focus on basic structural elements of lymph flow. Lymphat Res Biol 6:89–95PubMedGoogle Scholar
  154. Petrova TV, Makinen T, Makela TP, Saarela J, Virtanen I, Ferrell RE, Finegold DN, Kerjaschki D, Yla-Herttuala S, Alitalo K (2002) Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcription factor. EMBO J 21:4593–4599PubMedGoogle Scholar
  155. Petrova TV, Karpanen T, Norrmen C, Mellor R, Tamakoshi T, Finegold D, Ferrell R, Kerjaschki D, Mortimer P, Yla-Herttuala S, Miura N, Alitalo K (2004) Defective valves and abnormal mural cell recruitment underlie lymphatic vascular failure in lymphedema distichiasis. Nat Med 10:974–981PubMedGoogle Scholar
  156. Pfarr KM, Debrah AY, Specht S, Hoerauf A (2009) Filariasis and lymphoedema. Parasite Immunol 31:664–672PubMedGoogle Scholar
  157. Podgrabinska S, Braun P, Velasco P, Kloos B, Pepper MS, Skobe M (2002) Molecular characterization of lymphatic endothelial cells. Proc Natl Acad Sci USA 99:16069–16074PubMedGoogle Scholar
  158. Polzer K, Baeten D, Soleiman A, Distler J, Gerlag DM, Tak PP, Schett G, Zwerina J (2008) Tumour necrosis factor blockade increases lymphangiogenesis in murine and human arthritic joints. Ann Rheum Dis 67:1610–1616PubMedGoogle Scholar
  159. Rahier JF, De Beauce S, Dubuquoy L, Erdual E, Colombel JF, Jouret-Mourin A, Geboes K, Desreumaux P (2011) Increased lymphatic vessel density and lymphangiogenesis in inflammatory bowel disease. Aliment Pharmacol Ther 34:533–543PubMedGoogle Scholar
  160. Randolph GJ, Angeli V, Swartz MA (2005) Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat Rev Immunol 5:617–628PubMedGoogle Scholar
  161. Ranger AM, Grusby MJ, Hodge MR, Gravallese EM, de la Brousse FC, Hoey T, Mickanin C, Baldwin HS, Glimcher LH (1998) The transcription factor NF-ATc is essential for cardiac valve formation. Nature 392:186–190PubMedGoogle Scholar
  162. Religa P, Cao R, Bjorndahl M, Zhou Z, Zhu Z, Cao Y (2005) Presence of bone marrow-derived circulating progenitor endothelial cells in the newly formed lymphatic vessels. Blood 106:4184–4190PubMedGoogle Scholar
  163. Rinderknecht M, Villa A, Ballmer-Hofer K, Neri D, Detmar M (2010) Phage-derived fully human monoclonal antibody fragments to human vascular endothelial growth factor-C block its ­interaction with VEGF receptor-2 and 3. PLoS One 5:e11941PubMedGoogle Scholar
  164. Rissanen TT, Markkanen JE, Gruchala M, Heikura T, Puranen A, Kettunen MI, Kholova I, Kauppinen RA, Achen MG, Stacker SA, Alitalo K, Yla-Herttuala S (2003) VEGF-D is the strongest angiogenic and lymphangiogenic effector among VEGFs delivered into skeletal muscle via adenoviruses. Circ Res 92:1098–1106PubMedGoogle Scholar
  165. Ristimaki A, Narko K, Enholm B, Joukov V, Alitalo K (1998) Proinflammatory cytokines regulate expression of the lymphatic endothelial mitogen vascular endothelial growth factor-C. J Biol Chem 273:8413–8418PubMedGoogle Scholar
  166. Roberts N, Kloos B, Cassella M, Podgrabinska S, Persaud K, Wu Y, Pytowski B, Skobe M (2006) Inhibition of VEGFR-3 activation with the antagonistic antibody more potently suppresses lymph node and distant metastases than inactivation of VEGFR-2. Cancer Res 66:2650–2657PubMedGoogle Scholar
  167. Rockson SG (2012) Update on the biology and treatment of lymphedema. Curr Treat Options Cardiovasc Med 14:184–192PubMedGoogle Scholar
  168. Ruocco V, Schwartz RA, Ruocco E (2002) Lymphedema: an immunologically vulnerable site for development of neoplasms. J Am Acad Dermatol 47:124–127PubMedGoogle Scholar
  169. Saaristo A, Tammela T, Timonen J, Yla-Herttuala S, Tukiainen E, Asko-Seljavaara S, Alitalo K (2004) Vascular endothelial growth factor-C gene therapy restores lymphatic flow across incision wounds. FASEB J 18:1707–1709PubMedGoogle Scholar
  170. Sabin F (1902) On the origin of the lymphatic system from the veins, and the development of lymph hearts and thoracic duct in the pig. Am J Anat 1:367–389Google Scholar
  171. Sabin F (1904) On the development of the superficial lymphatics in the skin of the pig. Am J Anat 3:183–195Google Scholar
  172. Sabin FR (1916) The method of growth of the lymphatic system. Science 44:145–158PubMedGoogle Scholar
  173. Saharinen P, Kerkela K, Ekman N, Marron M, Brindle N, Lee GM, Augustin H, Koh GY, Alitalo K (2005) Multiple angiopoietin recombinant proteins activate the Tie1 receptor tyrosine kinase and promote its interaction with Tie2. J Cell Biol 169:239–243PubMedGoogle Scholar
  174. Schacht V, Ramirez MI, Hong YK, Hirakawa S, Feng D, Harvey N, Williams M, Dvorak AM, Dvorak HF, Oliver G, Detmar M (2003) T1alpha/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema. EMBO J 22:3546–3556PubMedGoogle Scholar
  175. Schmid-Schonbein GW (1990) Mechanisms causing initial lymphatics to expand and compress to promote lymph flow. Arch Histol Cytol 53(suppl):107–114PubMedGoogle Scholar
  176. Schoppmann SF, Birner P, Stockl J, Kalt R, Ullrich R, Caucig C, Kriehuber E, Nagy K, Alitalo K, Kerjaschki D (2002) Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. Am J Pathol 161:947–956PubMedGoogle Scholar
  177. Schulte-Merker S, Sabine A, Petrova TV (2011) Lymphatic vascular morphogenesis in development, physiology, and disease. J Cell Biol 193:607–618PubMedGoogle Scholar
  178. Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu XF, Breitman ML, Schuh AC (1995) Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376:62–66PubMedGoogle Scholar
  179. Shields JD, Emmett MS, Dunn DB, Joory KD, Sage LM, Rigby H, Mortimer PS, Orlando A, Levick JR, Bates DO (2007a) Chemokine-mediated migration of melanoma cells towards lymphatics–a mechanism contributing to metastasis. Oncogene 26:2997–3005PubMedGoogle Scholar
  180. Shields JD, Fleury ME, Yong C, Tomei AA, Randolph GJ, Swartz MA (2007b) Autologous chemotaxis as a mechanism of tumor cell homing to lymphatics via interstitial flow and autocrine CCR7 signaling. Cancer Cell 11:526–538PubMedGoogle Scholar
  181. Shin JW, Min M, Larrieu-Lahargue F, Canron X, Kunstfeld R, Nguyen L, Henderson JE, Bikfalvi A, Detmar M, Hong YK (2006) Prox1 promotes lineage-specific expression of fibroblast growth factor (FGF) receptor-3 in lymphatic endothelium: a role for FGF signaling in lymphangiogenesis. Mol Biol Cell 17:576–584PubMedGoogle Scholar
  182. Skobe M, Hawighorst T, Jackson DG, Prevo R, Janes L, Velasco P, Riccardi L, Alitalo K, Claffey K, Detmar M (2001) Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med 7:192–198PubMedGoogle Scholar
  183. Srinivasan RS, Dillard ME, Lagutin OV, Lin FJ, Tsai S, Tsai MJ, Samokhvalov IM, Oliver G (2007) Lineage tracing demonstrates the venous origin of the mammalian lymphatic vasculature. Genes Dev 21:2422–2432PubMedGoogle Scholar
  184. Srinivasan RS, Geng X, Yang Y, Wang Y, Mukatira S, Studer M, Porto MP, Lagutin O, Oliver G (2010) The nuclear hormone receptor Coup-TFII is required for the initiation and early maintenance of Prox1 expression in lymphatic endothelial cells. Genes Dev 24:696–707PubMedGoogle Scholar
  185. Stacker SA, Stenvers K, Caesar C, Vitali A, Domagala T, Nice E, Roufail S, Simpson RJ, Moritz R, Karpanen T, Alitalo K, Achen MG (1999) Biosynthesis of vascular endothelial growth factor-­D involves proteolytic processing which generates non-covalent homodimers. J Biol Chem 274:32127–32136PubMedGoogle Scholar
  186. Stacker SA, Caesar C, Baldwin ME, Thornton GE, Williams RA, Prevo R, Jackson DG, Nishikawa S, Kubo H, Achen MG (2001) VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med 7:186–191PubMedGoogle Scholar
  187. Stanton AW, Modi S, Mellor RH, Levick JR, Mortimer PS (2009) Recent advances in breast cancer-­related lymphedema of the arm: lymphatic pump failure and predisposing factors. Lymphat Res Biol 7:29–45PubMedGoogle Scholar
  188. Stewart FW, Treves N (1948) Lymphangiosarcoma in postmastectomy lymphedema: A report of six cases in elephantiasis chirurgica. Cancer 1:64–81PubMedGoogle Scholar
  189. Szuba A, Skobe M, Karkkainen MJ, Shin WS, Beynet DP, Rockson NB, Dakhil N, Spilman S, Goris ML, Strauss HW, Quertermous T, Alitalo K, Rockson SG (2002) Therapeutic lymphangiogenesis with human recombinant VEGF-C. FASEB J 16:1985–1987PubMedGoogle Scholar
  190. Tammela T, Alitalo K (2010) Lymphangiogenesis: molecular mechanisms and future promise. Cell 140:460–476PubMedGoogle Scholar
  191. Tammela T, Enholm B, Alitalo K, Paavonen K (2005a) The biology of vascular endothelial growth factors. Cardiovasc Res 65:550–563PubMedGoogle Scholar
  192. Tammela T, Saaristo A, Lohela M, Morisada T, Tornberg J, Norrmen C, Oike Y, Pajusola K, Thurston G, Suda T, Yla-Herttuala S, Alitalo K (2005b) Angiopoietin-1 promotes lymphatic sprouting and hyperplasia. Blood 105:4642–4648PubMedGoogle Scholar
  193. Tammela T, Saaristo A, Holopainen T, Lyytikka J, Kotronen A, Pitkonen M, Abo-Ramadan U, Yla-Herttuala S, Petrova TV, Alitalo K (2007) Therapeutic differentiation and maturation of lymphatic vessels after lymph node dissection and transplantation. Nat Med 13:1458–1466PubMedGoogle Scholar
  194. Taniguchi K, Kohno R, Ayada T, Kato R, Ichiyama K, Morisada T, Oike Y, Yonemitsu Y, Maehara Y, Yoshimura A (2007) Spreds are essential for embryonic lymphangiogenesis by regulating vascular endothelial growth factor receptor 3 signaling. Mol Cell Biol 27:4541–4550PubMedGoogle Scholar
  195. Taylor AE, Gibson WH, Granger HJ, Guyton AC (1973) The interaction between intracapillary and tissue forces in the overall regulation of interstitial fluid volume. Lymphology 6:192–208PubMedGoogle Scholar
  196. Tobler NE, Detmar M (2006) Tumor and lymph node lymphangiogenesis—impact on cancer metastasis. J Leukoc Biol 80:691–696PubMedGoogle Scholar
  197. Traboulsi EI, Al-Khayer K, Matsumoto M, Kimak MA, Crowe S, Wilson SE, Finegold DN, Ferrell RE, Meisler DM (2002) Lymphedema-distichiasis syndrome and FOXC2 gene mutation. Am J Ophthalmol 134:592–596PubMedGoogle Scholar
  198. Tso P (1994) Intestinal lipid absorption. In: Johnson L (ed) Physiology of the gastrointestinal tract. Raven Press, New York, pp 1867–1908Google Scholar
  199. Tvorogov D, Anisimov A, Zheng W, Leppanen VM, Tammela T, Laurinavicius S, Holnthoner W, Helotera H, Holopainen T, Jeltsch M, Kalkkinen N, Lankinen H, Ojala PM, Alitalo K (2010) Effective suppression of vascular network formation by combination of antibodies blocking VEGFR ligand binding and receptor dimerization. Cancer Cell 18:630–640PubMedGoogle Scholar
  200. Uhrin P, Zaujec J, Breuss JM, Olcaydu D, Chrenek P, Stockinger H, Fuertbauer E, Moser M, Haiko P, Fassler R, Alitalo K, Binder BR, Kerjaschki D (2010) Novel function for blood platelets and podoplanin in developmental separation of blood and lymphatic circulation. Blood 115:3997–4005PubMedGoogle Scholar
  201. Uldrick TS, Whitby D (2011) Update on KSHV epidemiology, Kaposi Sarcoma pathogenesis, and treatment of Kaposi Sarcoma. Cancer Lett 305:150–162PubMedGoogle Scholar
  202. Veikkola T, Jussila L, Makinen T, Karpanen T, Jeltsch M, Petrova TV, Kubo H, Thurston G, McDonald DM, Achen MG, Stacker SA, Alitalo K (2001) Signalling via vascular endothelial growth factor receptor-3 is sufficient for lymphangiogenesis in transgenic mice. EMBO J 20:1223–1231PubMedGoogle Scholar
  203. von der Weid PY, Rehal S, Ferraz JG (2011) Role of the lymphatic system in the pathogenesis of Crohn’s disease. Curr Opin Gastroenterol 27:335–341PubMedGoogle Scholar
  204. Wang HU, Chen ZF, Anderson DJ (1998) Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93:741–753PubMedGoogle Scholar
  205. Wang HW, Trotter MW, Lagos D, Bourboulia D, Henderson S, Makinen T, Elliman S, Flanagan AM, Alitalo K, Boshoff C (2004) Kaposi sarcoma herpesvirus-induced cellular reprogramming contributes to the lymphatic endothelial gene expression in Kaposi sarcoma. Nat Genet 36:687–693PubMedGoogle Scholar
  206. Warren AG, Brorson H, Borud LJ, Slavin SA (2007) Lymphedema: a comprehensive review. Ann Plast Surg 59:464–472PubMedGoogle Scholar
  207. Whitehurst B, Eversgerd C, Flister M, Bivens CM, Pickett B, Zawieja DC, Ran S (2006) Molecular profile and proliferative responses of rat lymphatic endothelial cells in culture. Lymphat Res Biol 4:119–142PubMedGoogle Scholar
  208. Wiegand S, Eivazi B, Barth PJ, von Rautenfeld DB, Folz BJ, Mandic R, Werner JA (2008) Pathogenesis of lymphangiomas. Virchows Arch 453:1–8PubMedGoogle Scholar
  209. Wigle JT, Oliver G (1999) Prox1 function is required for the development of the murine lymphatic system. Cell 98:769–778PubMedGoogle Scholar
  210. Wigle JT, Harvey N, Detmar M, Lagutina I, Grosveld G, Gunn MD, Jackson DG, Oliver G (2002) An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J 21:1505–1513PubMedGoogle Scholar
  211. Wijchers PJ, Burbach JP, Smidt MP (2006) In control of biology: of mice, men and Foxes. Biochem J 397:233–246PubMedGoogle Scholar
  212. Wiley HE, Gonzalez EB, Maki W, Wu MT, Hwang ST (2001) Expression of CC chemokine receptor-­7 and regional lymph node metastasis of B16 murine melanoma. J Natl Cancer Inst 93:1638–1643PubMedGoogle Scholar
  213. Wu M, Han L, Shi Y, Xu G, Wei J, You L, Chen Y, Zhu T, Li Q, Li S, Meng L, Lu Y, Zhou J, Wang S, Ma D (2010) Development and characterization of a novel method for the analysis of gene expression patterns in lymphatic endothelial cells derived from primary breast tissues. J Cancer Res Clin Oncol 136:863–872PubMedGoogle Scholar
  214. Xu Y, Yuan L, Mak J, Pardanaud L, Caunt M, Kasman I, Larrivee B, Del Toro R, Suchting S, Medvinsky A, Silva J, Yang J, Thomas JL, Koch AW, Alitalo K, Eichmann A, Bagri A (2010) Neuropilin-2 mediates VEGF-C-induced lymphatic sprouting together with VEGFR3. J Cell Biol 188:115–130PubMedGoogle Scholar
  215. Yamaguchi T, Ichise T, Iwata O, Hori A, Adachi T, Nakamura M, Yoshida N, Ichise H (2008) Development of a new method for isolation and long-term culture of organ-specific blood vascular and lymphatic endothelial cells of the mouse. FEBS J 275:1988–1998PubMedGoogle Scholar
  216. Yamazaki T, Yoshimatsu Y, Morishita Y, Miyazono K, Watabe T (2009) COUP-TFII regulates the functions of Prox1 in lymphatic endothelial cells through direct interaction. Genes Cells 14:425–434PubMedGoogle Scholar
  217. Yaniv K, Isogai S, Castranova D, Dye L, Hitomi J, Weinstein BM (2006) Live imaging of lymphatic development in the zebrafish. Nat Med 12:711–716PubMedGoogle Scholar
  218. Yin N, Zhang N, Xu J, Shi Q, Ding Y, Bromberg JS (2011) Targeting lymphangiogenesis after islet transplantation prolongs islet allograft survival. Transplantation 92:25–30PubMedGoogle Scholar
  219. Yoffey JM, Courtice FC (eds) (1970) The formation of lymph in lymphatics, lymph and the lymphomyeloid complex. Academic, London, pp 123–132Google Scholar
  220. Yoon YS, Murayama T, Gravereaux E, Tkebuchava T, Silver M, Curry C, Wecker A, Kirchmair R, Hu CS, Kearney M, Ashare A, Jackson DG, Kubo H, Isner JM, Losordo DW (2003) VEGF-C gene therapy augments postnatal lymphangiogenesis and ameliorates secondary lymphedema. J Clin Invest 111:717–725PubMedGoogle Scholar
  221. Yuan L, Moyon D, Pardanaud L, Breant C, Karkkainen MJ, Alitalo K, Eichmann A (2002) Abnormal lymphatic vessel development in neuropilin 2 mutant mice. Development 129:4797–4806PubMedGoogle Scholar
  222. Zumsteg A, Baeriswyl V, Imaizumi N, Schwendener R, Ruegg C, Christofori G (2009) Myeloid cells contribute to tumor lymphangiogenesis. PLoS One 4:e7067PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Andrea M. Foskett
    • 1
  • Sanjukta Chakraborty
    • 1
  • Mariappan Muthuchamy
    • 1
  1. 1.Department of Medical PhysiologyTexas A&M Health Science Center, College of MedicineCollege StationUSA

Personalised recommendations