Skip to main content

Hypoxia-Inducible Factor (HIF)/Vascular Endothelial Growth Factor (VEGF) Signaling in the Retina

  • Conference paper
  • First Online:
Retinal Degenerative Diseases

Abstract

Over a span of two decades, it has become increasingly clear that vascular endothelial growth factor (VEGF) plays an important role in the pathogenesis of retinal diseases including age-related macular degeneration (AMD) and diabetic retinopathy (DR). Based on these observations, anti-VEGF therapies are being developed and approved for clinical use in the treatment of neovascular eye diseases. Hypoxia-inducible factors (HIFs) are transcriptional factors that are stabilized and activated under hypoxic conditions and induce expression of gene products, including VEGF, that are required for cell survival under hypoxia. Here we discuss recent findings from our lab and others that define roles of the HIF-VEGF axis in the retina.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

VEGF:

Vascular endothelial growth factor

AMD:

Age-related macular degeneration

DR:

Diabetic retinopathy

HIFs:

Hypoxia-inducible factors

ARNTs:

Aryl hydrocarbon receptor nuclear translocators

PHDs:

HIF prolyl hydroxylases

NOSs:

Nitric oxide synthases

GLUTs:

Glucose transporters

VHL:

Von Hippel-Lindau disease gene

RPE:

Retinal pigment epithelium

PHPV:

Persistent hypertrophic primary vitreous

OIR:

Oxygen-induced retinopathy

ROP:

Retinopathy of prematurity

CNV:

Choroidal neovascularization

References

  1. Aiello LP, Avery RL, Arrigg PG, Keyt BA, Jampel HD, Shah ST et al (1994) Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med 331(22):1480–1487

    Article  PubMed  CAS  Google Scholar 

  2. Gragoudas ES, Adamis AP, Cunningham ET Jr, Feinsod M, Guyer DR (2004) Pegaptanib for neovascular age-related macular degeneration. N Engl J Med 351(27):2805–2816

    Article  PubMed  CAS  Google Scholar 

  3. Rosenfeld PJ, Brown DM, Heier JS, Boyer DS, Kaiser PK, Chung CY et al (2006) Ranibizumab for neovascular age-related macular degeneration. N Engl J Med 355(14):1419–1431

    Article  PubMed  CAS  Google Scholar 

  4. Stewart MW, Grippon S, Kirkpatrick P (2012) Aflibercept. Nat Rev Drug Discov 11(4):269–270

    Article  PubMed  CAS  Google Scholar 

  5. Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O’Shea KS et al (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380(6573):439–442

    Article  PubMed  CAS  Google Scholar 

  6. Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M et al (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380(6573):435–439

    Article  PubMed  CAS  Google Scholar 

  7. Eremina V, Jefferson JA, Kowalewska J, Hochster H, Haas M, Weisstuch J et al (2008) VEGF inhibition and renal thrombotic microangiopathy. N Engl J Med 358(11):1129–1136

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Maharaj AS, Walshe TE, Saint-Geniez M, Venkatesha S, Maldonado AE, Himes NC et al (2008) VEGF and TGF-beta are required for the maintenance of the choroid plexus and ependyma. J Exp Med 205(2):491–501

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Sandler A, Gray R, Perry MC, Brahmer J, Schiller JH, Dowlati A et al (2006) Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 355(24):2542–2550

    Article  PubMed  CAS  Google Scholar 

  10. Martin DF, Maguire MG, Fine SL, Ying GS, Jaffe GJ, Grunwald JE et al (2012) Ranibizumab and bevacizumab for treatment of neovascular age-related macular degeneration: two-year results. Ophthalmology 119(7):1388–1398

    Article  PubMed Central  PubMed  Google Scholar 

  11. Kurihara T, Westenskow PD, Bravo S, Aguilar E, Friedlander M (2012) Targeted deletion of Vegfa in adult mice induces vision loss. J Clin Invest 122(11):4213–4217

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Semenza GL, Wang GL (1992) A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol 12(12):5447–5454

    PubMed Central  PubMed  CAS  Google Scholar 

  13. Wang GL, Jiang BH, Rue EA, Semenza GL (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A 92(12):5510–5514

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME et al (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399(6733):271–275

    Article  PubMed  CAS  Google Scholar 

  15. Ito M, Yoshioka M (1999) Regression of the hyaloid vessels and pupillary membrane of the mouse. Anat Embryol (Berl) 200(4):403–411

    Article  CAS  Google Scholar 

  16. Kurihara T, Westenskow PD, Krohne TU, Aguilar E, Johnson RS, Friedlander M (2011) Astrocyte pVHL and HIF-alpha isoforms are required for embryonic-to-adult vascular transition in the eye. J Cell Biol 195(4):689–701

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Dorrell MI, Aguilar E, Friedlander M (2002) Retinal vascular development is mediated by endothelial filopodia, a preexisting astrocytic template and specific R-cadherin adhesion. Invest Ophthalmol Vis Sci 43(11):3500–3510

    PubMed  Google Scholar 

  18. Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A et al (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161(6):1163–1177

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Yu DY, Cringle SJ (2001) Oxygen distribution and consumption within the retina in vascularised and avascular retinas and in animal models of retinal disease. Prog Retin Eye Res 20(2):175–208

    Article  PubMed  CAS  Google Scholar 

  20. Kurihara T, Kubota Y, Ozawa Y, Takubo K, Noda K, Simon MC et al (2010) von Hippel-Lindau protein regulates transition from the fetal to the adult circulatory system in retina. Development 137(9):1563–1571

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Weidemann A, Krohne TU, Aguilar E, Kurihara T, Takeda N, Dorrell MI et al (2010) Astrocyte hypoxic response is essential for pathological but not developmental angiogenesis of the retina. Glia 58(10):1177–1185

    PubMed Central  PubMed  Google Scholar 

  22. Scott A, Powner MB, Gandhi P, Clarkin C, Gutmann DH, Johnson RS et al (2010) Astrocyte-derived vascular endothelial growth factor stabilizes vessels in the developing retinal vasculature. PLoS One 5(7):e11863

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Nakamura-Ishizu A, Kurihara T, Okuno Y, Ozawa Y, Kishi K, Goda N et al (2012) The formation of an angiogenic astrocyte template is regulated by the neuroretina in a HIF-1-dependent manner. Dev Biol 363(1):106–114

    Article  PubMed  CAS  Google Scholar 

  24. Caprara C, Thiersch M, Lange C, Joly S, Samardzija M, Grimm C (2011) HIF1A is essential for the development of the intermediate plexus of the retinal vasculature. Invest Ophthalmol Vis Sci 52(5):2109–2117

    Article  PubMed  CAS  Google Scholar 

  25. Marneros AG, Fan J, Yokoyama Y, Gerber HP, Ferrara N, Crouch RK et al (2005) Vascular endothelial growth factor expression in the retinal pigment epithelium is essential for choriocapillaris development and visual function. Am J Pathol 167(5):1451–1459

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Le YZ, Bai Y, Zhu M, Zheng L (2010) Temporal requirement of RPE-derived VEGF in the development of choroidal vasculature. J Neurochem 112(6):1584–1592

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Lin M, Hu Y, Chen Y, Zhou KK, Jin J, Zhu M et al (2012) Impacts of hypoxia-inducible factor-1 knockout in the retinal pigment epithelium on choroidal neovascularization. Invest Ophthalmol Vis Sci 53(10):6197–6206

    Article  PubMed  CAS  Google Scholar 

  28. Saint-Geniez M, Kurihara T, Sekiyama E, Maldonado AE, D’Amore PA (2009) An essential role for RPE-derived soluble VEGF in the maintenance of the choriocapillaris. Proc Natl Acad Sci U S A 106(44):18751–18756

    Article  PubMed Central  PubMed  Google Scholar 

  29. Robinson GS, Ju M, Shih SC, Xu X, McMahon G, Caldwell RB et al (2001) Nonvascular role for VEGF: VEGFR-1, 2 activity is critical for neural retinal development. Faseb J 15(7):1215–1217

    PubMed  CAS  Google Scholar 

  30. Nishijima K, Ng YS, Zhong L, Bradley J, Schubert W, Jo N et al (2007) Vascular endothelial growth factor-A is a survival factor for retinal neurons and a critical neuroprotectant during the adaptive response to ischemic injury. Am J Pathol 171(1):53–67

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Saint-Geniez M, Maharaj AS, Walshe TE, Tucker BA, Sekiyama E, Kurihara T et al (2008) Endogenous VEGF is required for visual function: evidence for a survival role on muller cells and photoreceptors. PLoS One 3(11):e3554

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Arany Z, Foo SY, Ma Y, Ruas JL, Bommi-Reddy A, Girnun G et al (2008) HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha. Nature 451(7181):1008–1012

    Article  PubMed  CAS  Google Scholar 

  33. Schmidt D, Textor B, Pein OT, Licht AH, Andrecht S, Sator-Schmitt M et al (2007) Critical role for NF-kappaB-induced JunB in VEGF regulation and tumor angiogenesis. Embo J 26(3):710–719

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Lange CA, Luhmann UF, Mowat FM, Georgiadis A, West EL, Abrahams S et al (2012) Von Hippel-Lindau protein in the RPE is essential for normal ocular growth and vascular development. Development 139(13):2340–2350

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Smith LE, Wesolowski E, McLellan A, Kostyk SK, D’Amato R, Sullivan R et al (1994) Oxygen-induced retinopathy in the mouse. Invest Ophthalmol Vis Sci 35(1):101–111

    PubMed  CAS  Google Scholar 

  36. Ozaki H, Yu AY, Della N, Ozaki K, Luna JD, Yamada H et al (1999) Hypoxia inducible factor-1alpha is increased in ischemic retina: temporal and spatial correlation with VEGF expression. Invest Ophthalmol Vis Sci 40(1):182–189

    PubMed  CAS  Google Scholar 

  37. Mowat FM, Luhmann UF, Smith AJ, Lange C, Duran Y, Harten S et al (2010) HIF-1alpha and HIF-2alpha are differentially activated in distinct cell populations in retinal ischaemia. PLoS One 5(6):e11103

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  38. Morita M, Ohneda O, Yamashita T, Takahashi S, Suzuki N, Nakajima O et al (2003) HLF/HIF-2alpha is a key factor in retinopathy of prematurity in association with erythropoietin. Embo J 22(5):1134–1146

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Poulaki V, Qin W, Joussen AM, Hurlbut P, Wiegand SJ, Rudge J et al (2002) Acute intensive insulin therapy exacerbates diabetic blood-retinal barrier breakdown via hypoxia-inducible factor-1alpha and VEGF. J Clin Invest 109(6):805–815

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Ryan SJ (1979) The development of an experimental model of subretinal neovascularization in disciform macular degeneration. Trans Am Ophthalmol Soc 77:707–745

    PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to warmly thank all members of the Friedlander lab and our collaborators. Work discussed in this chapter was supported by fellowships to TK (Manpei Suzuki Diabetes Foundation and The Japan Society for the Promotion of Science Postdoctoral Fellowships for Research Abroad) and to PDW (a Ruth Kirschstein Fellow NEI EY021416). MF gratefully acknowledges the generous support of the research in our lab from the National Eye Institute of the National Institutes of Health (EY11254 and EY017540), the California Institute for Regenerative Medicine (CIRM TR1–01219), the Lowy Medical Research Foundation (the MacTel Project), and the Rasmussen Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Friedlander MD PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this paper

Cite this paper

Kurihara, T., Westenskow, P., Friedlander, M. (2014). Hypoxia-Inducible Factor (HIF)/Vascular Endothelial Growth Factor (VEGF) Signaling in the Retina. In: Ash, J., Grimm, C., Hollyfield, J., Anderson, R., LaVail, M., Bowes Rickman, C. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 801. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3209-8_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3209-8_35

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3208-1

  • Online ISBN: 978-1-4614-3209-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics