Skip to main content

Genetic Susceptibility to Lung Cancer

  • Chapter
  • First Online:
Molecular Pathology of Lung Cancer

Part of the book series: Molecular Pathology Library ((MPLB,volume 6))

  • 1818 Accesses

Abstract

Although tobacco smoke, with its numerous carcinogens and procarcinogens, is strongly linked to lung cancer risk, many people have similar tobacco smoke and other environmental exposures and do not develop lung cancer. Also, the histologic types occurring in never-smokers differs from those occurring in smokers. People are thought to have different susceptibilities to cancer risk factors, including lung cancer risk factors; and a genetic basis for differing cancer risk factor susceptibilities has been proposed based on to the observation that different susceptibilities appear to be inherited based on aggregation of cancers within families. The concept of inherited susceptibilities explains why some people with little or no tobacco smoke exposure develop lung cancer. Further, genetic differences, gene-environment interactions, and risk factors could help explain why some people develop lung cancer with little or no smoke exposure, or at younger ages; why some heavy smokers do not develop lung cancer; and why some lung cancer patients have strong family histories of cancer. Studies of genetic factors associated with tobacco-related lung cancer risk have identified several genetic polymorphisms as potentially increasing lung cancer risk. These genetic polymorphisms involve genes that are associated primarily with the metabolism of tobacco smoke carcinogens and the suppression of mutations induced by those carcinogens. Tobacco-associated vs. nontobacco-associated lung cancers, gender differences, and geographic differences are all confounding factors in the evaluation of the genetic factors involved in lung cancer risk. There is much that remains to be discovered, and studies such as these must continue in order to further elucidate the relationship between genetic polymorphisms and lung cancer risk, and how such relationships may be used to prevent lung cancer, affect treatment responses, and improve clinical outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Higginson J, Jensen OM. Epidemiological review of lung cancer in man. IARC Sci Publ. 1977;16:169–89.

    PubMed  Google Scholar 

  2. Gazdar AF, Boffetta P. A risky business—identifying susceptibility loci for lung cancer. J Natl Cancer Inst. 2010;102:920–3.

    Article  PubMed  Google Scholar 

  3. Ikawa S, Uematsu F, Watanabe K, et al. Assessment of cancer susceptibility in humans by use of genetic polymorphisms in carcinogen metabolism. Pharmacogenetics. 1995;5(Spec No):S154–60.

    Article  PubMed  Google Scholar 

  4. Caporaso NE, Landi MT. Molecular epidemiology: a new perspective for the study of toxic exposures in man. A consideration of the influence of genetic susceptibility factors on risk in different lung cancer histologies. Med Lav. 1994;85:68–77.

    PubMed  CAS  Google Scholar 

  5. Braun MM, Caporaso NE, Page WF, Hoover RN. Genetic component of lung cancer: cohort study of twins. Lancet. 1994;344:440–3.

    Article  PubMed  CAS  Google Scholar 

  6. el-Zein R, Conforti-Froes N, Au WW. Interactions between genetic predisposition and environmental toxicants for development of lung cancer. Environ Mol Mutagen. 1997;30:196–204.

    Article  PubMed  CAS  Google Scholar 

  7. Mooney LA, Bell DA, Santella RM, et al. Contribution of genetic and nutritional factors to DNA damage in heavy smokers. Carcinogenesis. 1997;18:503–9.

    Article  PubMed  CAS  Google Scholar 

  8. Amos CI, Xu W, Spitz MR. Is there a genetic basis for lung cancer susceptibility? Recent Results Cancer Res. 1999;151:3–12.

    Article  PubMed  CAS  Google Scholar 

  9. Fryer AA, Jones PW. Interactions between detoxifying enzyme polymorphisms and susceptibility to cancer. IARC Sci Publ. 1999;148:303–22.

    PubMed  CAS  Google Scholar 

  10. Kaminsky LS, Spivack SD. Cytochromes P450 and cancer. Mol Aspects Med. 1999;20:70–84, 137.

    Google Scholar 

  11. Hirvonen A. Polymorphic NATs and cancer predisposition. IARC Sci Publ. 1999;148:251–70.

    PubMed  CAS  Google Scholar 

  12. Spitz MR, Wei Q, Li G, Wu X. Genetic susceptibility to tobacco carcinogenesis. Cancer Invest. 1999;17: 645–59.

    Article  PubMed  CAS  Google Scholar 

  13. Bartsch H, Nair U, Risch A, Rojas M, Wikman H, Alexandrov K. Genetic polymorphism of CYP genes, alone or in combination, as a risk modifier of tobacco-related cancers. Cancer Epidemiol Biomarkers Prev. 2000;9:3–28.

    PubMed  CAS  Google Scholar 

  14. Houlston RS. CYP1A1 polymorphisms and lung cancer risk: a meta-analysis. Pharmacogenetics. 2000;10:105–14.

    Article  PubMed  CAS  Google Scholar 

  15. Bouchardy C, Benhamou S, Jourenkova N, Dayer P, Hirvonen A. Metabolic genetic polymorphisms and susceptibility to lung cancer. Lung Cancer. 2001;32: 109–12.

    Article  PubMed  CAS  Google Scholar 

  16. Goode EL, Ulrich CM, Potter JD. Polymorphisms in DNA repair genes and associations with cancer risk. Cancer Epidemiol Biomarkers Prev. 2002;11:1513–30.

    PubMed  CAS  Google Scholar 

  17. Kiyohara C, Otsu A, Shirakawa T, Fukuda S, Hopkin JM. Genetic polymorphisms and lung cancer susceptibility: a review. Lung Cancer. 2002;37:241–56.

    Article  PubMed  Google Scholar 

  18. Gorlova OY, Amos C, Henschke C, et al. Genetic susceptibility for lung cancer: interactions with gender and smoking history and impact on early detection policies. Hum Hered. 2003;56:139–45.

    Article  PubMed  Google Scholar 

  19. Schwartz AG. Genetic predisposition to lung cancer. Chest. 2004;125:86S–9.

    Article  PubMed  CAS  Google Scholar 

  20. Kiyohara C, Yoshimasu K, Shirakawa T, Hopkin JM. Genetic polymorphisms and environmental risk of lung cancer: a review. Rev Environ Health. 2004;19:15–38.

    Article  PubMed  CAS  Google Scholar 

  21. Miller YE, Fain P. Genetic susceptibility to lung cancer. Semin Respir Crit Care Med. 2003;24:197–204.

    Article  PubMed  Google Scholar 

  22. Christiani DC. Genetic susceptibility to lung cancer. J Clin Oncol. 2006;24:1651–2.

    Article  PubMed  CAS  Google Scholar 

  23. Kiyohara C, Yoshimasu K, Takayama K, Nakanishi Y. Lung cancer susceptibility: are we on our way to identifying a high-risk group? Future Oncol. 2007;3: 617–27.

    Article  PubMed  CAS  Google Scholar 

  24. Foulkes WD. Inherited susceptibility to common cancers. N Engl J Med. 2008;359:2143–53.

    Article  PubMed  CAS  Google Scholar 

  25. Rudin CM, Avila-Tang E, Harris CC, et al. Lung cancer in never smokers: molecular profiles and therapeutic implications. Clin Cancer Res. 2009;15:5646–61.

    Article  PubMed  CAS  Google Scholar 

  26. Stein QP, Flanagan JD. Genetic and familial factors influencing breast, colon, prostate and lung cancers. S D Med. Spec No:16–22.

    Google Scholar 

  27. Baird DM. Variation at the TERT locus and predisposition for cancer. Expert Rev Mol Med. 2010;12:e16.

    Article  PubMed  CAS  Google Scholar 

  28. Brennan P, Hainaut P, Boffetta P. Genetics of lung-cancer susceptibility. Lancet Oncol. 2011;12:399–408.

    Article  PubMed  CAS  Google Scholar 

  29. Yokota J, Shiraishi K, Kohno T. Genetic basis for susceptibility to lung cancer: recent progress and future directions. Adv Cancer Res. 2010;109:51–72.

    Article  PubMed  CAS  Google Scholar 

  30. Adcock IM, Caramori G, Barnes PJ. Chronic obstructive pulmonary disease and lung cancer: new molecular insights. Respiration. 2011;81:265–84.

    Article  PubMed  CAS  Google Scholar 

  31. Yang P. Lung cancer in never smokers. Semin Respir Crit Care Med. 2011;32:10–21.

    Article  PubMed  CAS  Google Scholar 

  32. Hodkinson PS, Sethi T. Advances in the prevention and treatment of lung cancer. J R Coll Physicians Edinb. 2011;41:142–9.

    Article  PubMed  CAS  Google Scholar 

  33. Young RP, Hopkins RJ. How the genetics of lung cancer may overlap with COPD. Respirology. 2011;16(7):1047–55.

    Article  PubMed  Google Scholar 

  34. Anderson D. Familial susceptibility to cancer. CA Cancer J Clin. 1976;26:143–9.

    Article  PubMed  CAS  Google Scholar 

  35. Ooi WL, Elston RC, Chen VW, Bailey-Wilson JE, Rothschild H. Familial lung cancer—correcting an error in calculation. J Natl Cancer Inst. 1986;77:990.

    PubMed  CAS  Google Scholar 

  36. Sellers TA, Ooi WL, Elston RC, Chen VW, Bailey-Wilson JE, Rothschild H. Increased familial risk for non-lung cancer among relatives of lung cancer patients. Am J Epidemiol. 1987;126:237–46.

    Article  PubMed  CAS  Google Scholar 

  37. McDuffie HH. Clustering of cancer in families of patients with primary lung cancer. J Clin Epidemiol. 1991;44:69–76.

    Article  PubMed  CAS  Google Scholar 

  38. Ambrosone CB, Rao U, Michalek AM, Cummings KM, Mettlin CJ. Lung cancer histologic types and family history of cancer. Analysis of histologic subtypes of 872 patients with primary lung cancer. Cancer. 1993;72:1192–8.

    Article  PubMed  CAS  Google Scholar 

  39. Sellers TA, Chen PL, Potter JD, Bailey-Wilson JE, Rothschild H, Elston RC. Segregation analysis of smoking-associated malignancies: evidence for Mendelian inheritance. Am J Med Genet. 1994;52:308–14.

    Article  PubMed  CAS  Google Scholar 

  40. Dragani TA, Manenti G, Pierotti MA. Polygenic inheritance of predisposition to lung cancer. Ann Ist Super Sanita. 1996;32:145–50.

    PubMed  CAS  Google Scholar 

  41. Ahlbom A, Lichtenstein P, Malmstrom H, Feychting M, Hemminki K, Pedersen NL. Cancer in twins: genetic and nongenetic familial risk factors. J Natl Cancer Inst. 1997;89:287–93.

    Article  PubMed  CAS  Google Scholar 

  42. Li H, Yang P, Schwartz AG. Analysis of age of onset data from case-control family studies. Biometrics. 1998;54:1030–9.

    Article  PubMed  CAS  Google Scholar 

  43. Suzuki K, Ogura T, Yokose T, et al. Microsatellite instability in female non-small-cell lung cancer patients with familial clustering of malignancy. Br J Cancer. 1998;77:1003–8.

    Article  PubMed  CAS  Google Scholar 

  44. Hemminki K, Vaittinen P. Familial cancers in a nationwide family cancer database: age distribution and prevalence. Eur J Cancer. 1999;35:1109–17.

    Article  PubMed  CAS  Google Scholar 

  45. Bromen K, Pohlabeln H, Jahn I, Ahrens W, Jockel KH. Aggregation of lung cancer in families: results from a population-based case-control study in Germany. Am J Epidemiol. 2000;152:497–505.

    Article  PubMed  CAS  Google Scholar 

  46. Gupta D, Aggarwal AN, Vikrant S, Jindal SK. Familial aggregation of cancer in patients with bronchogenic carcinoma. Indian J Cancer. 2000;37: 43–9.

    PubMed  CAS  Google Scholar 

  47. Wunsch-Filho V, Boffetta P, Colin D, Moncau JE. Familial cancer aggregation and the risk of lung cancer. Sao Paulo Med J. 2002;120:38–44.

    PubMed  Google Scholar 

  48. Li X, Hemminki K. Familial and second lung cancers: a nation-wide epidemiologic study from Sweden. Lung Cancer. 2003;39:255–63.

    Article  PubMed  Google Scholar 

  49. Etzel CJ, Amos CI, Spitz MR. Risk for smoking-related cancer among relatives of lung cancer patients. Cancer Res. 2003;63:8531–5.

    PubMed  CAS  Google Scholar 

  50. Rooney A. Family history reveals lung-cancer risk. Lancet Oncol. 2003;4:267.

    Article  PubMed  Google Scholar 

  51. Jonsson S, Thorsteinsdottir U, Gudbjartsson DF, et al. Familial risk of lung carcinoma in the Icelandic population. JAMA. 2004;292:2977–83.

    Article  PubMed  CAS  Google Scholar 

  52. Bailey-Wilson JE, Amos CI, Pinney SM, et al. A major lung cancer susceptibility locus maps to chromosome 6q23-25. Am J Hum Genet. 2004;75: 460–74.

    Article  PubMed  CAS  Google Scholar 

  53. Jin YT, Xu YC, Yang RD, Huang CF, Xu CW, He XZ. Familial aggregation of lung cancer in a high incidence area in China. Br J Cancer. 2005;92: 1321–5.

    Article  PubMed  CAS  Google Scholar 

  54. Hemminki K, Li X. Familial risk for lung cancer by histology and age of onset: evidence for recessive inheritance. Exp Lung Res. 2005;31:205–15.

    Article  PubMed  Google Scholar 

  55. Lorenzo Bermejo J, Hemminki K. Familial lung cancer and aggregation of smoking habits: a simulation of the effect of shared environmental factors on the familial risk of cancer. Cancer Epidemiol Biomarkers Prev. 2005;14:1738–40.

    Article  PubMed  Google Scholar 

  56. Jin Y, Xu Y, Xu M, Xue S. Increased risk of cancer among relatives of patients with lung cancer in China. BMC Cancer. 2005;5:146.

    Article  PubMed  Google Scholar 

  57. Li X, Hemminki K. Familial multiple primary lung cancers: a population-based analysis from Sweden. Lung Cancer. 2005;47:301–7.

    Article  PubMed  Google Scholar 

  58. Keith RL, Miller YE. Lung cancer: genetics of risk and advances in chemoprevention. Curr Opin Pulm Med. 2005;11:265–71.

    Article  PubMed  CAS  Google Scholar 

  59. Matakidou A, Eisen T, Houlston RS. Systematic review of the relationship between family history and lung cancer risk. Br J Cancer. 2005;93:825–33.

    Article  PubMed  CAS  Google Scholar 

  60. Schwartz AG, Ruckdeschel JC. Familial lung cancer: genetic susceptibility and relationship to chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2006;173:16–22.

    Article  PubMed  CAS  Google Scholar 

  61. Eisen T, Matakidou A, Houlston R. Identification of low penetrance alleles for lung cancer: the GEnetic Lung CAncer Predisposition Study (GELCAPS). BMC Cancer. 2008;8:244.

    Article  PubMed  CAS  Google Scholar 

  62. Bennett WP, Alavanja MC, Blomeke B, et al. Environmental tobacco smoke, genetic susceptibility, and risk of lung cancer in never-smoking women. J Natl Cancer Inst. 1999;91:2009–14.

    Article  PubMed  CAS  Google Scholar 

  63. Cohet C, Borel S, Nyberg F, et al. Exon 5 polymorphisms in the O6-alkylguanine DNA alkyltransferase gene and lung cancer risk in non-smokers exposed to second-hand smoke. Cancer Epidemiol Biomarkers Prev. 2004;13:320–3.

    Article  PubMed  CAS  Google Scholar 

  64. Wenzlaff AS, Cote ML, Bock CH, Land SJ, Schwartz AG. GSTM1, GSTT1 and GSTP1 polymorphisms, environmental tobacco smoke exposure and risk of lung cancer among never smokers: a ­population-based study. Carcinogenesis. 2005;26:395–401.

    Article  PubMed  CAS  Google Scholar 

  65. Wenzlaff AS, Cote ML, Bock CH, et al. CYP1A1 and CYP1B1 polymorphisms and risk of lung cancer among never smokers: a population-based study. Carcinogenesis. 2005;26:2207–12.

    Article  PubMed  CAS  Google Scholar 

  66. Gorlova OY, Zhang Y, Schabath MB, et al. Never smokers and lung cancer risk: a case-control study of epidemiological factors. Int J Cancer. 2006;118: 1798–804.

    Article  PubMed  CAS  Google Scholar 

  67. Samet JM, Avila-Tang E, Boffetta P, et al. Lung ­cancer in never smokers: clinical epidemiology and environmental risk factors. Clin Cancer Res. 2009;15:5626–45.

    Article  PubMed  Google Scholar 

  68. Rudin CM, Avila-Tang E, Samet JM. Lung cancer in never smokers: a call to action. Clin Cancer Res. 2009;15:5622–5.

    Article  PubMed  Google Scholar 

  69. Sun S, Schiller JH, Gazdar AF. Lung cancer in never smokers—a different disease. Nat Rev Cancer. 2007;7:778–90.

    Article  PubMed  CAS  Google Scholar 

  70. Schwartz AG, Yang P, Swanson GM. Familial risk of lung cancer among nonsmokers and their relatives. Am J Epidemiol. 1996;144:554–62.

    Article  PubMed  CAS  Google Scholar 

  71. Yang P, Schwartz AG, McAllister AE, Aston CE, Swanson GM. Genetic analysis of families with nonsmoking lung cancer probands. Genet Epidemiol. 1997;14:181–97.

    Article  PubMed  CAS  Google Scholar 

  72. Mayne ST, Buenconsejo J, Janerich DT. Familial cancer history and lung cancer risk in United States nonsmoking men and women. Cancer Epidemiol Biomarkers Prev. 1999;8:1065–9.

    PubMed  CAS  Google Scholar 

  73. Yang P, Schwartz AG, McAllister AE, Swanson GM, Aston CE. Lung cancer risk in families of nonsmoking probands: heterogeneity by age at diagnosis. Genet Epidemiol. 1999;17:253–73.

    Article  PubMed  CAS  Google Scholar 

  74. Schwartz AG, Rothrock M, Yang P, Swanson GM. Increased cancer risk among relatives of nonsmoking lung cancer cases. Genet Epidemiol. 1999;17:1–15.

    Article  PubMed  CAS  Google Scholar 

  75. Kreuzer M, Kreienbrock L, Gerken M, et al. Risk factors for lung cancer in young adults. Am J Epidemiol. 1998;147:1028–37.

    Article  PubMed  CAS  Google Scholar 

  76. Gauderman WJ, Morrison JL. Evidence for age-specific genetic relative risks in lung cancer. Am J Epidemiol. 2000;151:41–9.

    Article  PubMed  CAS  Google Scholar 

  77. Li X, Hemminki K. Inherited predisposition to early onset lung cancer according to histological type. Int J Cancer. 2004;112:451–7.

    Article  PubMed  CAS  Google Scholar 

  78. Cote ML, Kardia SL, Wenzlaff AS, Land SJ, Schwartz AG. Combinations of glutathione S-transferase genotypes and risk of early-onset lung cancer in Caucasians and African Americans: a population-based study. Carcinogenesis. 2005;26:811–9.

    Article  PubMed  CAS  Google Scholar 

  79. Cote ML, Kardia SL, Wenzlaff AS, Ruckdeschel JC, Schwartz AG. Risk of lung cancer among white and black relatives of individuals with early-onset lung cancer. JAMA. 2005;293:3036–42.

    Article  PubMed  CAS  Google Scholar 

  80. Wen J, Fu J, Zhang W, Guo M. Genetic and epigenetic changes in lung carcinoma and their clinical implications. Mod Pathol. 2011;24:932–43.

    Article  PubMed  Google Scholar 

  81. Franklin TR, Wang Z, Li Y, et al. Dopamine transporter genotype modulation of neural responses to smoking cues: confirmation in a new cohort. Addict Biol. 2011;16:308–22.

    Article  PubMed  CAS  Google Scholar 

  82. Kim DK, Hersh CP, Washko GR, et al. Epidemiology, radiology, and genetics of nicotine dependence in COPD. Respir Res. 2011;12:9.

    Article  PubMed  Google Scholar 

  83. Ishii T, Wakabayashi R, Kurosaki H, Gemma A, Kida K. Association of serotonin transporter gene variation with smoking, chronic obstructive pulmonary disease, and its depressive symptoms. J Hum Genet. 2011;56:41–6.

    Article  PubMed  CAS  Google Scholar 

  84. Kouri RE, Billups LH, Rude TH, Whitmire CE, Sass B, Henry CJ. Correlation of inducibility of aryl hydrocarbon hydroxylase with susceptibility to 3-methylcholanthrene-induced lung cancers. Cancer Lett. 1980;9:277–84.

    Article  PubMed  CAS  Google Scholar 

  85. Ayesh R, Idle JR, Ritchie JC, Crothers MJ, Hetzel MR. Metabolic oxidation phenotypes as markers for susceptibility to lung cancer. Nature. 1984;312: 169–70.

    Article  PubMed  CAS  Google Scholar 

  86. Harris CC, Weston A, Willey JC, Trivers GE, Mann DL. Biochemical and molecular epidemiology of human cancer: indicators of carcinogen exposure, DNA damage, and genetic predisposition. Environ Health Perspect. 1987;75:109–19.

    Article  PubMed  CAS  Google Scholar 

  87. Perera FP, Weinstein IB. Molecular epidemiology and carcinogen-DNA adduct detection: new approaches to studies of human cancer causation. J Chronic Dis. 1982;35:581–600.

    Article  PubMed  CAS  Google Scholar 

  88. Minnix JA, Robinson JD, Lam CY, et al. The serotonin transporter gene and startle response during nicotine deprivation. Biol Psychol. 2011;86:1–8.

    Article  PubMed  Google Scholar 

  89. Johnson EO, Chen LS, Breslau N, et al. Peer smoking and the nicotinic receptor genes: an examination of genetic and environmental risks for nicotine dependence. Addiction. 2010;105:2014–22.

    Article  PubMed  Google Scholar 

  90. Tokuhata GK, Lilienfeld AM. Familial aggregation of lung cancer in humans. J Natl Cancer Inst. 1963;30:289–312.

    PubMed  CAS  Google Scholar 

  91. Avenevoli S, Merikangas KR. Familial influences on adolescent smoking. Addiction. 2003;98 Suppl 1:1–20.

    Article  PubMed  Google Scholar 

  92. Bermejo JL. Gene-environment interactions and familial relative risks. Hum Hered. 2008;66:170–9.

    Article  PubMed  Google Scholar 

  93. Truong T, Sauter W, McKay JD, et al. International Lung Cancer Consortium: coordinated association study of 10 potential lung cancer susceptibility variants. Carcinogenesis. 2010;31:625–33.

    Article  PubMed  CAS  Google Scholar 

  94. Wilhelmsen KC, Ehlers C. Heritability of substance dependence in a native American population. Psychiatr Genet. 2005;15:101–7.

    Article  PubMed  Google Scholar 

  95. Li MD, Burmeister M. New insights into the genetics of addiction. Nat Rev Genet. 2009;10:225–31.

    Article  PubMed  CAS  Google Scholar 

  96. Rossing MA. Genetic influences on smoking: candidate genes. Environ Health Perspect. 1998;106:231–8.

    Article  PubMed  CAS  Google Scholar 

  97. Volkow N, Rutter J, Pollock JD, Shurtleff D, Baler R. One SNP linked to two diseases-addiction and cancer: a double whammy? Nicotine addiction and lung cancer susceptibility. Mol Psychiatry. 2008;13:990–2.

    Article  PubMed  CAS  Google Scholar 

  98. Changeux JP. Nicotinic receptors and nicotine addiction. C R Biol. 2009;332:421–5.

    Article  PubMed  CAS  Google Scholar 

  99. Improgo MR, Scofield MD, Tapper AR, Gardner PD. The nicotinic acetylcholine receptor CHRNA5/A3/B4 gene cluster: dual role in nicotine addiction and lung cancer. Prog Neurobiol. 2010;92:212–26.

    Article  PubMed  CAS  Google Scholar 

  100. Genome-wide meta-analyses identify multiple loci associated with smoking behavior. Nat Genet. 42:441–7.

    Google Scholar 

  101. Liu JZ, Tozzi F, Waterworth DM, et al. Meta-analysis and imputation refines the association of 15q25 with smoking quantity. Nat Genet. 2010;42:436–40.

    Article  PubMed  CAS  Google Scholar 

  102. Amos CI, Spitz MR, Cinciripini P. Chipping away at the genetics of smoking behavior. Nat Genet. 2010;42:366–8.

    Article  PubMed  CAS  Google Scholar 

  103. Kiyohara C, Wakai K, Mikami H, Sido K, Ando M, Ohno Y. Risk modification by CYP1A1 and GSTM1 polymorphisms in the association of environmental tobacco smoke and lung cancer: a case-control study in Japanese nonsmoking women. Int J Cancer. 2003;107:139–44.

    Article  PubMed  CAS  Google Scholar 

  104. Dresler CM, Fratelli C, Babb J, Everley L, Evans AA, Clapper ML. Gender differences in genetic susceptibility for lung cancer. Lung Cancer. 2000;30:153–60.

    Article  PubMed  CAS  Google Scholar 

  105. Kreuzer M, Wichmann HE. Lung cancer in young females. Eur Respir J. 2001;17:1333–4.

    Article  PubMed  CAS  Google Scholar 

  106. Haugen A. Women who smoke: are women more susceptible to tobacco-induced lung cancer? Carcinogenesis. 2002;23:227–9.

    Article  PubMed  CAS  Google Scholar 

  107. Stabile LP, Siegfried JM. Sex and gender differences in lung cancer. J Gend Specif Med. 2003;6:37–48.

    PubMed  Google Scholar 

  108. Pauk N, Kubik A, Zatloukal P, Krepela E. Lung cancer in women. Lung Cancer. 2005;48:1–9.

    Article  PubMed  Google Scholar 

  109. Matakidou A, Eisen T, Bridle H, O’Brien M, Mutch R, Houlston RS. Case-control study of familial lung cancer risks in UK women. Int J Cancer. 2005;116: 445–50.

    Article  PubMed  CAS  Google Scholar 

  110. Patel JD. Lung cancer in women. J Clin Oncol. 2005;23:3212–8.

    Article  PubMed  CAS  Google Scholar 

  111. Risch HA, Howe GR, Jain M, Burch JD, Holowaty EJ, Miller AB. Are female smokers at higher risk for lung cancer than male smokers? A case-control analysis by histologic type. Am J Epidemiol. 1993;138: 281–93.

    PubMed  CAS  Google Scholar 

  112. Henschke CI, Miettinen OS. Women’s susceptibility to tobacco carcinogens. Lung Cancer. 2004;43:1–5.

    Article  PubMed  Google Scholar 

  113. Bach PB, Kattan MW, Thornquist MD, et al. Variations in lung cancer risk among smokers. J Natl Cancer Inst. 2003;95:470–8.

    Article  PubMed  Google Scholar 

  114. Bain C, Feskanich D, Speizer FE, et al. Lung cancer rates in men and women with comparable histories of smoking. J Natl Cancer Inst. 2004;96:826–34.

    Article  PubMed  Google Scholar 

  115. Kiyohara C, Ohno Y. Sex differences in lung cancer susceptibility: a review. Gend Med. 2010;7:381–401.

    Article  PubMed  Google Scholar 

  116. Berardi R, Verdecchia L, Paolo MD, et al. Women and lung cancer: clinical and molecular profiling as a determinate for treatment decisions: a literature review. Crit Rev Oncol Hematol. 2009;69:223–36.

    Article  PubMed  Google Scholar 

  117. Henschke CI, Yip R, Miettinen OS. Women’s susceptibility to tobacco carcinogens and survival after diagnosis of lung cancer. JAMA. 2006;296:180–4.

    Article  PubMed  Google Scholar 

  118. Zang EA, Wynder EL. Differences in lung cancer risk between men and women: examination of the evidence. J Natl Cancer Inst. 1996;88:183–92.

    PubMed  CAS  Google Scholar 

  119. Ng DP, Tan KW, Zhao B, Seow A. CYP1A1 polymorphisms and risk of lung cancer in non-smoking Chinese women: influence of environmental tobacco smoke exposure and GSTM1/T1 genetic variation. Cancer Causes Control. 2005;16:399–405.

    Article  PubMed  Google Scholar 

  120. Mollerup S, Berge G, Baera R, et al. Sex differences in risk of lung cancer: expression of genes in the PAH bioactivation pathway in relation to smoking and bulky DNA adducts. Int J Cancer. 2006;119:741–4.

    Article  PubMed  CAS  Google Scholar 

  121. Bond JA. Metabolism and elimination of inhaled drugs and airborne chemicals from the lungs. Pharmacol Toxicol. 1993;72 Suppl 3:36–47.

    Article  PubMed  CAS  Google Scholar 

  122. Raunio H, Husgafvel-Pursiainen K, Anttila S, Hietanen E, Hirvonen A, Pelkonen O. Diagnosis of polymorphisms in carcinogen-activating and inactivating enzymes and cancer susceptibility—a review. Gene. 1995;159:113–21.

    Article  PubMed  CAS  Google Scholar 

  123. Wormhoudt LW, Commandeur JN, Vermeulen NP. Genetic polymorphisms of human N-acetyltransferase, cytochrome P450, glutathione-S-transferase, and epoxide hydrolase enzymes: relevance to xenobiotic metabolism and toxicity. Crit Rev Toxicol. 1999;29: 59–124.

    Article  PubMed  CAS  Google Scholar 

  124. Nakajima T, Aoyama T. Polymorphism of drug-metabolizing enzymes in relation to individual susceptibility to industrial chemicals. Ind Health. 2000;38:143–52.

    Article  PubMed  CAS  Google Scholar 

  125. Miller III MC, Mohrenweiser HW, Bell DA. Genetic variability in susceptibility and response to toxicants. Toxicol Lett. 2001;120:269–80.

    Article  PubMed  CAS  Google Scholar 

  126. Rushmore TH, Kong AN. Pharmacogenomics, regulation and signaling pathways of phase I and II drug metabolizing enzymes. Curr Drug Metab. 2002;3:481–90.

    Article  PubMed  CAS  Google Scholar 

  127. Daly AK. Pharmacogenetics of the major polymorphic metabolizing enzymes. Fundam Clin Pharmacol. 2003;17:27–41.

    Article  PubMed  CAS  Google Scholar 

  128. Sheweita SA, Tilmisany AK. Cancer and phase II drug-metabolizing enzymes. Curr Drug Metab. 2003;4:45–58.

    Article  PubMed  CAS  Google Scholar 

  129. Xu C, Li CY, Kong AN. Induction of phase I, II and III drug metabolism/transport by xenobiotics. Arch Pharm Res. 2005;28:249–68.

    Article  PubMed  CAS  Google Scholar 

  130. Nishikawa A, Mori Y, Lee IS, Tanaka T, Hirose M. Cigarette smoking, metabolic activation and carcinogenesis. Curr Drug Metab. 2004;5:363–73.

    Article  PubMed  CAS  Google Scholar 

  131. Cascorbi I. Genetic basis of toxic reactions to drugs and chemicals. Toxicol Lett. 2006;162:16–28.

    Article  PubMed  CAS  Google Scholar 

  132. Anttila S, Raunio H, Hakkola J. Cytochrome P450-mediated pulmonary metabolism of carcinogens: regulation and cross-talk in lung carcinogenesis. Am J Respir Cell Mol Biol. 2011;44:583–90.

    Article  PubMed  CAS  Google Scholar 

  133. Tan XL, Spivack SD. Dietary chemoprevention strategies for induction of phase II xenobiotic-metabolizing enzymes in lung carcinogenesis: a review. Lung Cancer. 2009;65:129–37.

    Article  PubMed  Google Scholar 

  134. Gresner P, Gromadzinska J, Wasowicz W. Polymorphism of selected enzymes involved in detoxification and biotransformation in relation to lung cancer. Lung Cancer. 2007;57:1–25.

    Article  PubMed  Google Scholar 

  135. Zhang JY, Wang Y, Prakash C. Xenobiotic-metabolizing enzymes in human lung. Curr Drug Metab. 2006;7:939–48.

    Article  PubMed  CAS  Google Scholar 

  136. Kerremans AL. Cytochrome P450 isoenzymes—importance for the internist. Neth J Med. 1996;48: 237–43.

    Article  PubMed  CAS  Google Scholar 

  137. Dogra SC, Whitelaw ML, May BK. Transcriptional activation of cytochrome P450 genes by different classes of chemical inducers. Clin Exp Pharmacol Physiol. 1998;25:1–9.

    Article  PubMed  CAS  Google Scholar 

  138. Lewis DF, Watson E, Lake BG. Evolution of the cytochrome P450 superfamily: sequence alignments and pharmacogenetics. Mutat Res. 1998;410: 245–70.

    Article  PubMed  CAS  Google Scholar 

  139. McKinnon RA, Nebert DW. Cytochrome P450 knockout mice: new toxicological models. Clin Exp Pharmacol Physiol. 1998;25:783–7.

    Article  PubMed  CAS  Google Scholar 

  140. Lewis DF. Human cytochromes P450 associated with the phase 1 metabolism of drugs and other xenobiotics: a compilation of substrates and inhibitors of the CYP1, CYP2 and CYP3 families. Curr Med Chem. 2003;10:1955–72.

    Article  PubMed  CAS  Google Scholar 

  141. Shimada T, Fujii-Kuriyama Y. Metabolic activation of polycyclic aromatic hydrocarbons to carcinogens by cytochromes P450 1A1 and 1B1. Cancer Sci. 2004;95:1–6.

    Article  PubMed  CAS  Google Scholar 

  142. Lewis DF. 57 varieties: the human cytochromes P450. Pharmacogenomics. 2004;5:305–18.

    Article  PubMed  CAS  Google Scholar 

  143. Cote ML, Wenzlaff AS, Bock CH, et al. Combinations of cytochrome P-450 genotypes and risk of early-onset lung cancer in Caucasians and African Americans: a population-based study. Lung Cancer. 2007;55:255–62.

    Article  PubMed  CAS  Google Scholar 

  144. Rodriguez-Antona C, Ingelman-Sundberg M. Cytochrome P450 pharmacogenetics and cancer. Oncogene. 2006;25:1679–91.

    Article  PubMed  CAS  Google Scholar 

  145. Sim SC, Ingelman-Sundberg M. The human cytochrome P450 Allele Nomenclature Committee Web site: submission criteria, procedures, and objectives. Methods Mol Biol. 2006;320:183–91.

    PubMed  CAS  Google Scholar 

  146. Raunio H, Hakkola J, Hukkanen J, et al. Expression of xenobiotic-metabolizing CYPs in human pulmonary tissue. Exp Toxicol Pathol. 1999;51:412–7.

    Article  PubMed  CAS  Google Scholar 

  147. Hukkanen J, Pelkonen O, Raunio H. Expression of xenobiotic-metabolizing enzymes in human pulmonary tissue: possible role in susceptibility for ILD. Eur Respir J Suppl. 2001;32:122s–6.

    PubMed  CAS  Google Scholar 

  148. Ding X, Kaminsky LS. Human extrahepatic cytochromes P450: function in xenobiotic metabolism and tissue-selective chemical toxicity in the respiratory and gastrointestinal tracts. Annu Rev Pharmacol Toxicol. 2003;43:149–73.

    Article  PubMed  CAS  Google Scholar 

  149. Castell JV, Donato MT, Gomez-Lechon MJ. Metabolism and bioactivation of toxicants in the lung. The in vitro cellular approach. Exp Toxicol Pathol. 2005;57 Suppl 1:189–204.

    Article  PubMed  CAS  Google Scholar 

  150. Fujii-Kuriyama Y, Ema M, Mimura J, Matsushita N, Sogawa K. Polymorphic forms of the Ah receptor and induction of the CYP1A1 gene. Pharmacogenetics. 1995;5(Spec No):S149–53.

    Article  PubMed  CAS  Google Scholar 

  151. Denison MS, Nagy SR. Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annu Rev Pharmacol Toxicol. 2003;43:309–34.

    Article  PubMed  CAS  Google Scholar 

  152. Fujii-Kuriyama Y, Mimura J. Molecular mechanisms of AhR functions in the regulation of cytochrome P450 genes. Biochem Biophys Res Commun. 2005;338:311–7.

    Article  PubMed  CAS  Google Scholar 

  153. Hankinson O. Role of coactivators in transcriptional activation by the aryl hydrocarbon receptor. Arch Biochem Biophys. 2005;433:379–86.

    Article  PubMed  CAS  Google Scholar 

  154. Tompkins LM, Wallace AD. Mechanisms of cytochrome P450 induction. J Biochem Mol Toxicol. 2007;21:176–81.

    Article  PubMed  CAS  Google Scholar 

  155. Androutsopoulos VP, Tsatsakis AM, Spandidos DA. Cytochrome P450 CYP1A1: wider roles in cancer progression and prevention. BMC Cancer. 2009;9:187.

    Article  PubMed  CAS  Google Scholar 

  156. Stejskalova L, Dvorak Z, Pavek P. Endogenous and exogenous ligands of aryl hydrocarbon receptor: current state of art. Curr Drug Metab. 2011;12: 198–212.

    Article  PubMed  CAS  Google Scholar 

  157. Gelboin HV. Benzo[alpha]pyrene metabolism, activation and carcinogenesis: role and regulation of mixed-function oxidases and related enzymes. Physiol Rev. 1980;60:1107–66.

    PubMed  CAS  Google Scholar 

  158. Phillips DH. Fifty years of benzo(a)pyrene. Nature. 1983;303:468–72.

    Article  PubMed  CAS  Google Scholar 

  159. Jeffrey AM. DNA modification by chemical carcinogens. Pharmacol Ther. 1985;28:237–72.

    Article  PubMed  CAS  Google Scholar 

  160. Graslund A, Jernstrom B. DNA-carcinogen interaction: covalent DNA-adducts of benzo(a)pyrene 7,8-dihydrodiol 9,10-epoxides studied by biochemical and biophysical techniques. Q Rev Biophys. 1989;22:1–37.

    PubMed  CAS  Google Scholar 

  161. Denissenko MF, Pao A, Tang M, Pfeifer GP. Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in P53. Science. 1996;274:430–2.

    Article  PubMed  CAS  Google Scholar 

  162. Kozack R, Seo KY, Jelinsky SA, Loechler EL. Toward an understanding of the role of DNA adduct conformation in defining mutagenic mechanism based on studies of the major adduct (formed at N(2)-dG) of the potent environmental carcinogen, benzo[a]pyrene. Mutat Res. 2000;450:41–59.

    Article  PubMed  CAS  Google Scholar 

  163. Pfeifer GP, Denissenko MF, Olivier M, Tretyakova N, Hecht SS, Hainaut P. Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-associated cancers. Oncogene. 2002;21:7435–51.

    Article  PubMed  CAS  Google Scholar 

  164. Baird WM, Hooven LA, Mahadevan B. Carcinogenic polycyclic aromatic hydrocarbon-DNA adducts and mechanism of action. Environ Mol Mutagen. 2005;45:106–14.

    Article  PubMed  CAS  Google Scholar 

  165. Hoffmann D, Brunnemann KD, Adams JD, Hecht SS. Formation and analysis of N-nitrosamines in tobacco products and their endogenous formation in consumers. IARC Sci Publ. 1984;57:743–62.

    PubMed  CAS  Google Scholar 

  166. Amin S, Desai D, Hecht SS, Hoffmann D. Synthesis of tobacco-specific N-nitrosamines and their metabolites and results of related bioassays. Crit Rev Toxicol. 1996;26:139–47.

    Article  PubMed  CAS  Google Scholar 

  167. Brunnemann KD, Prokopczyk B, Djordjevic MV, Hoffmann D. Formation and analysis of tobacco-specific N-nitrosamines. Crit Rev Toxicol. 1996;26:121–37.

    Article  PubMed  CAS  Google Scholar 

  168. Hecht SS. Biochemistry, biology, and carcinogenicity of tobacco-specific N-nitrosamines. Chem Res Toxicol. 1998;11:559–603.

    Article  PubMed  CAS  Google Scholar 

  169. Hecht SS. DNA adduct formation from tobacco-specific N-nitrosamines. Mutat Res. 1999;424: 127–42.

    Article  PubMed  CAS  Google Scholar 

  170. Vos RM, Van Bladeren PJ. Glutathione S-transferases in relation to their role in the biotransformation of xenobiotics. Chem Biol Interact. 1990;75:241–65.

    Article  PubMed  CAS  Google Scholar 

  171. Daniel V. Glutathione S-transferases: gene structure and regulation of expression. Crit Rev Biochem Mol Biol. 1993;28:173–207.

    Article  PubMed  CAS  Google Scholar 

  172. Hayes JD, Pulford DJ. The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol. 1995;30:445–600.

    Article  PubMed  CAS  Google Scholar 

  173. Rahman Q, Abidi P, Afaq F, et al. Glutathione redox system in oxidative lung injury. Crit Rev Toxicol. 1999;29:543–68.

    Article  PubMed  CAS  Google Scholar 

  174. Rahman I, MacNee W. Lung glutathione and oxidative stress: implications in cigarette smoke-induced airway disease. Am J Physiol. 1999;277:L1067–88.

    PubMed  CAS  Google Scholar 

  175. Salinas AE, Wong MG. Glutathione S-transferases—a review. Curr Med Chem. 1999;6:279–309.

    PubMed  CAS  Google Scholar 

  176. Higgins LG, Hayes JD. Mechanisms of induction of cytosolic and microsomal glutathione transferase (GST) genes by xenobiotics and pro-inflammatory agents. Drug Metab Rev. 2010;43:92–137.

    Article  CAS  Google Scholar 

  177. Baron J, Voigt JM. Localization, distribution, and induction of xenobiotic-metabolizing enzymes and aryl hydrocarbon hydroxylase activity within lung. Pharmacol Ther. 1990;47:419–45.

    Article  PubMed  CAS  Google Scholar 

  178. Seidegard J, Ekstrom G. The role of human glutathione transferases and epoxide hydrolases in the metabolism of xenobiotics. Environ Health Perspect. 1997;105 Suppl 4:791–9.

    Article  PubMed  CAS  Google Scholar 

  179. Omiecinski CJ, Hassett C, Hosagrahara V. Epoxide hydrolase—polymorphism and role in toxicology. Toxicol Lett. 2000;112–113:365–70.

    Article  PubMed  Google Scholar 

  180. Fretland AJ, Omiecinski CJ. Epoxide hydrolases: biochemistry and molecular biology. Chem Biol Interact. 2000;129:41–59.

    Article  PubMed  CAS  Google Scholar 

  181. Arand M, Cronin A, Adamska M, Oesch F. Epoxide hydrolases: structure, function, mechanism, and assay. Methods Enzymol. 2005;400:569–88.

    Article  PubMed  CAS  Google Scholar 

  182. Widersten M, Gurell A, Lindberg D. Structure-function relationships of epoxide hydrolases and their potential use in biocatalysis. Biochim Biophys Acta. 2010;1800:316–26.

    Article  PubMed  CAS  Google Scholar 

  183. Miller EC, Miller JA. Searches for ultimate chemical carcinogens and their reactions with cellular macromolecules. Cancer. 1981;47:2327–45.

    Article  PubMed  CAS  Google Scholar 

  184. Pelkonen O, Nebert DW. Metabolism of polycyclic aromatic hydrocarbons: etiologic role in carcinogenesis. Pharmacol Rev. 1982;34:189–222.

    PubMed  CAS  Google Scholar 

  185. Poirier MC, Beland FA. DNA adduct measurements and tumor incidence during chronic carcinogen exposure in animal models: implications for DNA adduct-based human cancer risk assessment. Chem Res Toxicol. 1992;5:749–55.

    Article  PubMed  CAS  Google Scholar 

  186. Beland FA, Fullerton NF, Smith BA, Poirier MC. DNA adduct formation and aromatic amine tumorigenesis. Prog Clin Biol Res. 1992;374:79–92.

    PubMed  CAS  Google Scholar 

  187. Bartsch H, Rojas M, Nair U, Nair J, Alexandrov K. Genetic cancer susceptibility and DNA adducts: studies in smokers, tobacco chewers, and coke oven workers. Cancer Detect Prev. 1999;23:445–53.

    Article  PubMed  CAS  Google Scholar 

  188. Poirier MC, Santella RM, Weston A. Carcinogen macromolecular adducts and their measurement. Carcinogenesis. 2000;21:353–9.

    Article  PubMed  CAS  Google Scholar 

  189. Weston A, Manchester DK, Poirier MC, et al. Derivative fluorescence spectral analysis of polycyclic aromatic hydrocarbon-DNA adducts in human placenta. Chem Res Toxicol. 1989;2:104–8.

    Article  PubMed  CAS  Google Scholar 

  190. Vulimiri SV, Wu X, Baer-Dubowska W, et al. Analysis of aromatic DNA adducts and 7,8-dihydro-8-oxo- 2′-deoxyguanosine in lymphocyte DNA from a case-control study of lung cancer involving minority populations. Mol Carcinog. 2000;27:34–46.

    Article  PubMed  CAS  Google Scholar 

  191. Tang D, Phillips DH, Stampfer M, et al. Association between carcinogen-DNA adducts in white blood cells and lung cancer risk in the physicians health study. Cancer Res. 2001;61:6708–12.

    PubMed  CAS  Google Scholar 

  192. Phillips DH. Smoking-related DNA and protein adducts in human tissues. Carcinogenesis. 2002;23:1979–2004.

    Article  PubMed  CAS  Google Scholar 

  193. Wiencke JK. DNA adduct burden and tobacco carcinogenesis. Oncogene. 2002;21:7376–91.

    Article  PubMed  CAS  Google Scholar 

  194. Veglia F, Matullo G, Vineis P. Bulky DNA adducts and risk of cancer: a meta-analysis. Cancer Epidemiol Biomarkers Prev. 2003;12:157–60.

    PubMed  CAS  Google Scholar 

  195. Gyorffy E, Anna L, Gyori Z, et al. DNA adducts in tumour, normal peripheral lung and bronchus, and peripheral blood lymphocytes from smoking and non-smoking lung cancer patients: correlations between tissues and detection by 32P-postlabelling and immunoassay. Carcinogenesis. 2004;25:1201–9.

    Article  PubMed  CAS  Google Scholar 

  196. Peluso M, Munnia A, Hoek G, et al. DNA adducts and lung cancer risk: a prospective study. Cancer Res. 2005;65:8042–8.

    PubMed  CAS  Google Scholar 

  197. Hecht SS. Progress and challenges in selected areas of tobacco carcinogenesis. Chem Res Toxicol. 2008;21:160–71.

    Article  PubMed  Google Scholar 

  198. Forkert PG. Mechanisms of lung tumorigenesis by ethyl carbamate and vinyl carbamate. Drug Metab Rev. 2010;42:355–78.

    Article  PubMed  CAS  Google Scholar 

  199. Lodovici M, Bigagli E. Biomarkers of induced active and passive smoking damage. Int J Environ Res Public Health. 2009;6:874–88.

    Article  PubMed  CAS  Google Scholar 

  200. Hassett C, Robinson KB, Beck NB, Omiecinski CJ. The human microsomal epoxide hydrolase gene (EPHX1): complete nucleotide sequence and structural characterization. Genomics. 1994;23:433–42.

    Article  PubMed  CAS  Google Scholar 

  201. Kato S, Bowman ED, Harrington AM, Blomeke B, Shields PG. Human lung carcinogen-DNA adduct levels mediated by genetic polymorphisms in vivo. J Natl Cancer Inst. 1995;87:902–7.

    Article  PubMed  CAS  Google Scholar 

  202. Butkiewicz D, Grzybowska E, Hemminki K, et al. Modulation of DNA adduct levels in human mononuclear white blood cells and granulocytes by CYP1A1 CYP2D6 and GSTM1 genetic polymorphisms. Mutat Res. 1998;415:97–108.

    Article  PubMed  CAS  Google Scholar 

  203. Rojas M, Alexandrov K, Cascorbi I, et al. High benzo[a]pyrene diol-epoxide DNA adduct levels in lung and blood cells from individuals with combined CYP1A1 MspI/Msp-GSTM1*0/*0 genotypes. Pharmacogenetics. 1998;8:109–18.

    Article  PubMed  CAS  Google Scholar 

  204. Ratnasinghe D, Tangrea JA, Andersen MR, et al. Glutathione peroxidase codon 198 polymorphism variant increases lung cancer risk. Cancer Res. 2000;60:6381–3.

    PubMed  CAS  Google Scholar 

  205. Godschalk RW, Dallinga JW, Wikman H, et al. Modulation of DNA and protein adducts in smokers by genetic polymorphisms in GSTM1, GSTT1, NAT1 and NAT2. Pharmacogenetics. 2001;11:389–98.

    Article  PubMed  CAS  Google Scholar 

  206. Ketelslegers HB, Gottschalk RW, Godschalk RW, et al. Interindividual variations in DNA adduct levels assessed by analysis of multiple genetic polymorphisms in smokers. Cancer Epidemiol Biomarkers Prev. 2006;15:624–9.

    Article  PubMed  CAS  Google Scholar 

  207. Voulgaridou GP, Anestopoulos I, Franco R, Panayiotidis MI, Pappa A. DNA damage induced by endogenous aldehydes: current state of knowledge. Mutat Res. 2011;711:13–27.

    Article  PubMed  CAS  Google Scholar 

  208. Kawajiri K, Watanabe J, Eguchi H, Hayashi S. Genetic polymorphisms of drug-metabolizing enzymes and lung cancer susceptibility. Pharmacogenetics. 1995;5(Spec No):S70–3.

    Article  PubMed  CAS  Google Scholar 

  209. Watanabe M, Polymorphic CYP. genes and disease predisposition—what have the studies shown so far? Toxicol Lett. 1998;102–103:167–71.

    Article  PubMed  Google Scholar 

  210. Smith GB, Harper PA, Wong JM, et al. Human lung microsomal cytochrome P4501A1 (CYP1A1) activities: impact of smoking status and CYP1A1, aryl hydrocarbon receptor, and glutathione S-transferase M1 genetic polymorphisms. Cancer Epidemiol Biomarkers Prev. 2001;10:839–53.

    PubMed  CAS  Google Scholar 

  211. Liang G, Pu Y, Yin L. Rapid detection of single nucleotide polymorphisms related with lung cancer susceptibility of Chinese population. Cancer Lett. 2005;223:265–74.

    Article  PubMed  CAS  Google Scholar 

  212. Tamaki Y, Arai T, Sugimura H, et al. Association between cancer risk and drug metabolizing enzyme gene (CYP2A6, CYP2A13, CYP4B1, SULT1A1, GSTM1, and GSTT1) polymorphisms in Japanese cases of lung cancer. Drug Metab Pharmacokinet. 2011;26(5):516–22.

    Article  PubMed  CAS  Google Scholar 

  213. Leclerc J, Tournel G, Courcot-Ngoubo Ngangue E, et al. Profiling gene expression of whole cytochrome P450 superfamily in human bronchial and peripheral lung tissues: differential expression in non-small cell lung cancers. Biochimie. 2010;92:292–306.

    Article  PubMed  CAS  Google Scholar 

  214. Kawajiri K, Nakachi K, Imai K, Yoshii A, Shinoda N, Watanabe J. Identification of genetically high risk individuals to lung cancer by DNA polymorphisms of the cytochrome P450IA1 gene. FEBS Lett. 1990;263:131–3.

    Article  PubMed  CAS  Google Scholar 

  215. Caporaso N, Pickle LW, Bale S, Ayesh R, Hetzel M, Idle J. The distribution of debrisoquine metabolic phenotypes and implications for the suggested association with lung cancer risk. Genet Epidemiol. 1989;6:517–24.

    Article  PubMed  CAS  Google Scholar 

  216. Nebert DW. Polymorphism of human CYP2D genes involved in drug metabolism: possible relationship to individual cancer risk. Cancer Cells. 1991;3:93–6.

    PubMed  CAS  Google Scholar 

  217. Caporaso N, DeBaun MR, Rothman N. Lung cancer and CYP2D6 (the debrisoquine polymorphism): sources of heterogeneity in the proposed association. Pharmacogenetics. 1995;5(Spec No):S129–34.

    Article  PubMed  Google Scholar 

  218. Gao Y, Zhang Q. Polymorphisms of the GSTM1 and CYP2D6 genes associated with susceptibility to lung cancer in Chinese. Mutat Res. 1999;444:441–9.

    Article  PubMed  CAS  Google Scholar 

  219. Laforest L, Wikman H, Benhamou S, et al. CYP2D6 gene polymorphism in Caucasian smokers: lung cancer susceptibility and phenotype-genotype relationships. Eur J Cancer. 2000;36:1825–32.

    Article  PubMed  CAS  Google Scholar 

  220. Hayashi S, Watanabe J, Nakachi K, Kawajiri K. Genetic linkage of lung cancer-associated MspI polymorphisms with amino acid replacement in the heme binding region of the human cytochrome P450IA1 gene. J Biochem. 1991;110:407–11.

    PubMed  CAS  Google Scholar 

  221. Petersen DD, McKinney CE, Ikeya K, et al. Human CYP1A1 gene: cosegregation of the enzyme inducibility phenotype and an RFLP. Am J Hum Genet. 1991;48:720–5.

    PubMed  CAS  Google Scholar 

  222. Ingelman-Sundberg M, Johansson I, Persson I, et al. Genetic polymorphism of cytochromes P450: interethnic differences and relationship to incidence of lung cancer. Pharmacogenetics. 1992;2:264–71.

    Article  PubMed  CAS  Google Scholar 

  223. Cosma G, Crofts F, Taioli E, Toniolo P, Garte S. Relationship between genotype and function of the human CYP1A1 gene. J Toxicol Environ Health. 1993;40:309–16.

    Article  PubMed  CAS  Google Scholar 

  224. Drakoulis N, Cascorbi I, Brockmoller J, Gross CR, Roots I. Polymorphisms in the human CYP1A1 gene as susceptibility factors for lung cancer: exon-7 mutation (4889 A to G), and a T to C mutation in the 3′-flanking region. Clin Investig. 1994;72:240–8.

    Article  PubMed  CAS  Google Scholar 

  225. Nakachi K, Hayashi S, Kawajiri K, Imai K. Association of cigarette smoking and CYP1A1 polymorphisms with adenocarcinoma of the lung by grades of differentiation. Carcinogenesis. 1995;16:2209–13.

    Article  PubMed  CAS  Google Scholar 

  226. Kiyohara C, Nakanishi Y, Inutsuka S, et al. The relationship between CYP1A1 aryl hydrocarbon hydroxylase activity and lung cancer in a Japanese population. Pharmacogenetics. 1998;8:315–23.

    Article  PubMed  CAS  Google Scholar 

  227. Chen S, Xue K, Xu L, Ma G, Wu J. Polymorphisms of the CYP1A1 and GSTM1 genes in relation to individual susceptibility to lung carcinoma in Chinese population. Mutat Res. 2001;458:41–7.

    Article  PubMed  CAS  Google Scholar 

  228. Quinones L, Lucas D, Godoy J, et al. CYP1A1, CYP2E1 and GSTM1 genetic polymorphisms. The effect of single and combined genotypes on lung cancer susceptibility in Chilean people. Cancer Lett. 2001;174:35–44.

    Article  PubMed  CAS  Google Scholar 

  229. Vineis P, Veglia F, Benhamou S, et al. CYP1A1 T3801 C polymorphism and lung cancer: a pooled analysis of 2451 cases and 3358 controls. Int J Cancer. 2003;104:650–7.

    Article  PubMed  CAS  Google Scholar 

  230. Larsen JE, Colosimo ML, Yang IA, Bowman R, Zimmerman PV, Fong KM. Risk of non-small cell lung cancer and the cytochrome P4501A1 Ile462Val polymorphism. Cancer Causes Control. 2005;16: 579–85.

    Article  PubMed  Google Scholar 

  231. Larsen JE, Colosimo ML, Yang IA, Bowman R, Zimmerman PV, Fong KM. CYP1A1 Ile462Val and MPO G-463A interact to increase risk of adenocarcinoma but not squamous cell carcinoma of the lung. Carcinogenesis. 2006;27:525–32.

    Article  PubMed  CAS  Google Scholar 

  232. Pisani P, Srivatanakul P, Randerson-Moor J, et al. GSTM1 and CYP1A1 polymorphisms, tobacco, air pollution, and lung cancer: a study in rural Thailand. Cancer Epidemiol Biomarkers Prev. 2006;15:667–74.

    Article  PubMed  CAS  Google Scholar 

  233. Ada AO, Kunac S, Hancer F, et al. CYP and GST polymorphisms and survival in advanced non-small cell lung cancer patients. Neoplasma. 2010;57:512–21.

    Article  PubMed  CAS  Google Scholar 

  234. Yang M, Choi Y, Hwangbo B, Lee JS. Combined effects of genetic polymorphisms in six selected genes on lung cancer susceptibility. Lung Cancer. 2007;57:135–42.

    Article  PubMed  Google Scholar 

  235. Kihara M, Noda K. Risk of smoking for squamous and small cell carcinomas of the lung modulated by combinations of CYP1A1 and GSTM1 gene polymorphisms in a Japanese population. Carcinogenesis. 1995;16:2331–6.

    Article  PubMed  CAS  Google Scholar 

  236. Sugimura H, Wakai K, Genka K, et al. Association of Ile462Val (Exon 7) polymorphism of cytochrome P450 IA1 with lung cancer in the Asian population: further evidence from a case-control study in Okinawa. Cancer Epidemiol Biomarkers Prev. 1998;7:413–7.

    PubMed  CAS  Google Scholar 

  237. Song N, Tan W, Xing D, Lin D. CYP 1A1 polymorphism and risk of lung cancer in relation to tobacco smoking: a case-control study in China. Carcinogenesis. 2001;22:11–6.

    Article  PubMed  CAS  Google Scholar 

  238. Lin P, Wang SL, Wang HJ, et al. Association of CYP1A1 and microsomal epoxide hydrolase polymorphisms with lung squamous cell carcinoma. Br J Cancer. 2000;82:852–7.

    Article  PubMed  CAS  Google Scholar 

  239. Persson I, Johansson I, Lou YC, et al. Genetic polymorphism of xenobiotic metabolizing enzymes among Chinese lung cancer patients. Int J Cancer. 1999;81:325–9.

    Article  PubMed  CAS  Google Scholar 

  240. Xu X, Kelsey KT, Wiencke JK, Wain JC, Christiani DC. Cytochrome P450 CYP1A1 MspI polymorphism and lung cancer susceptibility. Cancer Epidemiol Biomarkers Prev. 1996;5:687–92.

    PubMed  CAS  Google Scholar 

  241. Garcia-Closas M, Kelsey KT, Wiencke JK, Xu X, Wain JC, Christiani DC. A case-control study of cytochrome P450 1A1, glutathione S-transferase M1, cigarette smoking and lung cancer susceptibility (Massachusetts, United States). Cancer Causes Control. 1997;8:544–53.

    Article  PubMed  CAS  Google Scholar 

  242. Le Marchand L, Sivaraman L, Pierce L, et al. Associations of CYP1A1, GSTM1, and CYP2E1 polymorphisms with lung cancer suggest cell type specificities to tobacco carcinogens. Cancer Res. 1998;58:4858–63.

    PubMed  Google Scholar 

  243. Le Marchand L, Guo C, Benhamou S, et al. Pooled analysis of the CYP1A1 exon 7 polymorphism and lung cancer (United States). Cancer Causes Control. 2003;14:339–46.

    Article  PubMed  Google Scholar 

  244. Hamada GS, Sugimura H, Suzuki I, et al. The heme-binding region polymorphism of cytochrome P450IA1 (CypIA1), rather than the RsaI polymorphism of IIE1 (CypIIE1), is associated with lung cancer in Rio de Janeiro. Cancer Epidemiol Biomarkers Prev. 1995;4:63–7.

    PubMed  CAS  Google Scholar 

  245. Sugimura H, Hamada GS, Suzuki I, et al. CYP1A1 and CYP2E1 polymorphism and lung cancer, case-control study in Rio de Janeiro, Brazil. Pharmacogenetics. 1995;5(Spec No):S145–8.

    Article  PubMed  Google Scholar 

  246. Taioli E, Ford J, Trachman J, Li Y, Demopoulos R, Garte S. Lung cancer risk and CYP1A1 genotype in African Americans. Carcinogenesis. 1998;19:813–7.

    Article  PubMed  CAS  Google Scholar 

  247. London SJ, Daly AK, Fairbrother KS, et al. Lung cancer risk in African-Americans in relation to a race-specific CYP1A1 polymorphism. Cancer Res. 1995;55:6035–7.

    PubMed  CAS  Google Scholar 

  248. Nunoya KI, Yokoi T, Kimura K, et al. A new CYP2A6 gene deletion responsible for the in vivo polymorphic metabolism of (+)-cis-3,5-dimethyl-2-(3-pyridyl)thiazolidin-4-one hydrochloride in humans. J Pharmacol Exp Ther. 1999;289:437–42.

    PubMed  CAS  Google Scholar 

  249. Nunoya K, Yokoi T, Takahashi Y, Kimura K, Kinoshita M, Kamataki T. Homologous unequal cross-over within the human CYP2A gene cluster as a mechanism for the deletion of the entire CYP2A6 gene associated with the poor metabolizer phenotype. J Biochem. 1999;126:402–7.

    Article  PubMed  CAS  Google Scholar 

  250. Wassenaar CA, Dong Q, Wei Q, Amos CI, Spitz MR, Tyndale RF. Relationship between CYP2A6 and CHRNA5-CHRNA3-CHRNB4 variation and smoking behaviors and lung cancer risk. J Natl Cancer Inst. 2010;103(17):1342–6.

    Article  CAS  Google Scholar 

  251. Stucker I, de Waziers I, Cenee S, et al. GSTM1, smoking and lung cancer: a case-control study. Int J Epidemiol. 1999;28:829–35.

    Article  PubMed  CAS  Google Scholar 

  252. Lewis SJ, Cherry NM, Niven RM, Barber PV, Povey AC. GSTM1, GSTT1 and GSTP1 polymorphisms and lung cancer risk. Cancer Lett. 2002;180:165–71.

    Article  PubMed  CAS  Google Scholar 

  253. Stucker I, Hirvonen A, de Waziers I, et al. Genetic polymorphisms of glutathione S-transferases as modulators of lung cancer susceptibility. Carcinogenesis. 2002;23:1475–81.

    Article  PubMed  Google Scholar 

  254. Reszka E, Wasowicz W, Rydzynski K, Szeszenia-Dabrowska N, Szymczak W. Glutathione S-transferase M1 and P1 metabolic polymorphism and lung cancer predisposition. Neoplasma. 2003;50:357–62.

    PubMed  CAS  Google Scholar 

  255. Chan-Yeung M, Tan-Un KC, Ip MS, et al. Lung cancer susceptibility and polymorphisms of glutathione-S-transferase genes in Hong Kong. Lung Cancer. 2004;45:155–60.

    Article  PubMed  Google Scholar 

  256. Ye Z, Song H, Higgins JP, Pharoah P, Danesh J. Five glutathione s-transferase gene variants in 23,452 cases of lung cancer and 30,397 controls: meta-analysis of 130 studies. PLoS Med. 2006;3:e91.

    Article  PubMed  CAS  Google Scholar 

  257. Liu G, Miller DP, Zhou W, et al. Differential association of the codon 72 p53 and GSTM1 polymorphisms on histological subtype of non-small cell lung carcinoma. Cancer Res. 2001;61:8718–22.

    PubMed  CAS  Google Scholar 

  258. Risch A, Wikman H, Thiel S, et al. Glutathione-S-transferase M1, M3, T1 and P1 polymorphisms and susceptibility to non-small-cell lung cancer subtypes and hamartomas. Pharmacogenetics. 2001;11:757–64.

    Article  PubMed  CAS  Google Scholar 

  259. Perera FP, Mooney LA, Stampfer M, et al. Associations between carcinogen-DNA damage, glutathione S-transferase genotypes, and risk of lung cancer in the prospective Physicians’ Health Cohort Study. Carcinogenesis. 2002;23:1641–6.

    Article  PubMed  CAS  Google Scholar 

  260. Hosgood III HD, Berndt SI, Lan Q. GST genotypes and lung cancer susceptibility in Asian populations with indoor air pollution exposures: a meta-analysis. Mutat Res. 2007;636:134–43.

    Article  PubMed  CAS  Google Scholar 

  261. Lawson KA, Woodson K, Virtamo J, Albanes D. Association of the NAD(P)H:quinone oxidoreductase (NQO1) 609C->T polymorphism with lung cancer risk among male smokers. Cancer Epidemiol Biomarkers Prev. 2005;14:2275–6.

    Article  PubMed  CAS  Google Scholar 

  262. Saldivar SJ, Wang Y, Zhao H, et al. An association between a NQO1 genetic polymorphism and risk of lung cancer. Mutat Res. 2005;582:71–8.

    Article  PubMed  CAS  Google Scholar 

  263. Wikman H, Thiel S, Jager B, et al. Relevance of N-acetyltransferase 1 and 2 (NAT1, NAT2) genetic polymorphisms in non-small cell lung cancer susceptibility. Pharmacogenetics. 2001;11:157–68.

    Article  PubMed  CAS  Google Scholar 

  264. Belogubova EV, Kuligina E, Togo AV, et al. ‘Comparison of extremes’ approach provides evidence against the modifying role of NAT2 polymorphism in lung cancer susceptibility. Cancer Lett. 2005;221:177–83.

    Article  PubMed  CAS  Google Scholar 

  265. Habalova V, Salagovic J, Kalina I, Stubna J. A pilot study testing the genetic polymorphism of N-acetyltransferase 2 as a risk factor in lung cancer. Neoplasma. 2005;52:364–8.

    PubMed  CAS  Google Scholar 

  266. Wang Y, Spitz MR, Tsou AM, Zhang K, Makan N, Wu X. Sulfotransferase (SULT) 1A1 polymorphism as a predisposition factor for lung cancer: a case-control analysis. Lung Cancer. 2002;35:137–42.

    Article  PubMed  CAS  Google Scholar 

  267. Miller DP, Liu G, De Vivo I, et al. Combinations of the variant genotypes of GSTP1, GSTM1, and p53 are associated with an increased lung cancer risk. Cancer Res. 2002;62:2819–23.

    PubMed  CAS  Google Scholar 

  268. Hung RJ, Boffetta P, Brockmoller J, et al. CYP1A1 and GSTM1 genetic polymorphisms and lung cancer risk in Caucasian non-smokers: a pooled analysis. Carcinogenesis. 2003;24:875–82.

    Article  PubMed  CAS  Google Scholar 

  269. Alexandrie AK, Nyberg F, Warholm M, Rannug A. Influence of CYP1A1, GSTM1, GSTT1, and NQO1 genotypes and cumulative smoking dose on lung cancer risk in a Swedish population. Cancer Epidemiol Biomarkers Prev. 2004;13:908–14.

    PubMed  CAS  Google Scholar 

  270. Raimondi S, Boffetta P, Anttila S, et al. Metabolic gene polymorphisms and lung cancer risk in non-smokers. An update of the GSEC study. Mutat Res. 2005;592:45–57.

    Article  PubMed  CAS  Google Scholar 

  271. Wei Q, Cheng L, Amos CI, et al. Repair of tobacco carcinogen-induced DNA adducts and lung cancer risk: a molecular epidemiologic study. J Natl Cancer Inst. 2000;92:1764–72.

    Article  PubMed  CAS  Google Scholar 

  272. Shen H, Spitz MR, Qiao Y, et al. Smoking, DNA repair capacity and risk of nonsmall cell lung cancer. Int J Cancer. 2003;107:84–8.

    Article  PubMed  CAS  Google Scholar 

  273. Spitz MR, Wei Q, Dong Q, Amos CI, Wu X. Genetic susceptibility to lung cancer: the role of DNA damage and repair. Cancer Epidemiol Biomarkers Prev. 2003;12:689–98.

    PubMed  CAS  Google Scholar 

  274. Li Z, Guan W, Li MX, et al. Genetic polymorphism of DNA base-excision repair genes (APE1, OGG1 and XRCC1) and their correlation with risk of lung cancer in a Chinese population. Arch Med Res. 2011;42:226–34.

    Article  PubMed  CAS  Google Scholar 

  275. Duell EJ, Wiencke JK, Cheng TJ, et al. Polymorphisms in the DNA repair genes XRCC1 and ERCC2 and biomarkers of DNA damage in human blood mononuclear cells. Carcinogenesis. 2000;21:965–71.

    Article  PubMed  CAS  Google Scholar 

  276. David-Beabes GL, Lunn RM, London SJ. No association between the XPD (Lys751G1n) polymorphism or the XRCC3 (Thr241Met) polymorphism and lung cancer risk. Cancer Epidemiol Biomarkers Prev. 2001;10:911–2.

    PubMed  CAS  Google Scholar 

  277. Qiao Y, Spitz MR, Guo Z, et al. Rapid assessment of repair of ultraviolet DNA damage with a modified host-cell reactivation assay using a luciferase reporter gene and correlation with polymorphisms of DNA repair genes in normal human lymphocytes. Mutat Res. 2002;509:165–74.

    Article  PubMed  CAS  Google Scholar 

  278. Matullo G, Peluso M, Polidoro S, et al. Combination of DNA repair gene single nucleotide polymorphisms and increased levels of DNA adducts in a population-based study. Cancer Epidemiol Biomarkers Prev. 2003;12:674–7.

    PubMed  CAS  Google Scholar 

  279. Vogel U, Laros I, Jacobsen NR, et al. Two regions in chromosome 19q13.2-3 are associated with risk of lung cancer. Mutat Res. 2004;546:65–74.

    Article  PubMed  CAS  Google Scholar 

  280. Yin J, Li J, Ma Y, Guo L, Wang H, Vogel U. The DNA repair gene ERCC2/XPD polymorphism Arg 156Arg (A22541C) and risk of lung cancer in a Chinese population. Cancer Lett. 2005;223:219–26.

    Article  PubMed  CAS  Google Scholar 

  281. Hu Z, Xu L, Shao M, et al. Polymorphisms in the two helicases ERCC2/XPD and ERCC3/XPB of the transcription factor IIH complex and risk of lung cancer: a case-control analysis in a Chinese population. Cancer Epidemiol Biomarkers Prev. 2006;15: 1336–40.

    Article  PubMed  CAS  Google Scholar 

  282. Hu Z, Wei Q, Wang X, Shen H. DNA repair gene XPD polymorphism and lung cancer risk: a meta-analysis. Lung Cancer. 2004;46:1–10.

    Article  PubMed  CAS  Google Scholar 

  283. Benhamou S, Sarasin A. ERCC2/XPD gene polymorphisms and lung cancer: a HuGE review. Am J Epidemiol. 2005;161:1–14.

    Article  PubMed  Google Scholar 

  284. Qiu L, Wang Z, Shi X. Associations between XPC polymorphisms and risk of cancers: a meta-analysis. Eur J Cancer. 2008;44:2241–53.

    Article  PubMed  CAS  Google Scholar 

  285. Zhou W, Liu G, Miller DP, et al. Polymorphisms in the DNA repair genes XRCC1 and ERCC2, smoking, and lung cancer risk. Cancer Epidemiol Biomarkers Prev. 2003;12:359–65.

    PubMed  CAS  Google Scholar 

  286. Chen S, Tang D, Xue K, et al. DNA repair gene XRCC1 and XPD polymorphisms and risk of lung cancer in a Chinese population. Carcinogenesis. 2002;23:1321–5.

    Article  PubMed  Google Scholar 

  287. Butkiewicz D, Popanda O, Risch A, et al. Association between the risk for lung adenocarcinoma and a (-4) G-to-A polymorphism in the XPA gene. Cancer Epidemiol Biomarkers Prev. 2004;13:2242–6.

    PubMed  CAS  Google Scholar 

  288. Vogel U, Overvad K, Wallin H, Tjonneland A, Nexo BA, Raaschou-Nielsen O. Combinations of polymorphisms in XPD, XPC and XPA in relation to risk of lung cancer. Cancer Lett. 2005;222:67–74.

    Article  PubMed  CAS  Google Scholar 

  289. Lee GY, Jang JS, Lee SY, et al. XPC polymorphisms and lung cancer risk. Int J Cancer. 2005;115: 807–13.

    Article  PubMed  CAS  Google Scholar 

  290. Jeon HS, Kim KM, Park SH, et al. Relationship between XPG codon 1104 polymorphism and risk of primary lung cancer. Carcinogenesis. 2003;24:1677–81.

    Article  PubMed  CAS  Google Scholar 

  291. Zhang X, Miao X, Liang G, et al. Polymorphisms in DNA base excision repair genes ADPRT and XRCC1 and risk of lung cancer. Cancer Res. 2005;65:722–6.

    PubMed  CAS  Google Scholar 

  292. Yin J, Vogel U, Guo L, Ma Y, Wang H. Lack of association between DNA repair gene ERCC1 polymorphism and risk of lung cancer in a Chinese population. Cancer Genet Cytogenet. 2006;164:66–70.

    Article  PubMed  CAS  Google Scholar 

  293. Jacobsen NR, Raaschou-Nielsen O, Nexo B, et al. XRCC3 polymorphisms and risk of lung cancer. Cancer Lett. 2004;213:67–72.

    Article  PubMed  CAS  Google Scholar 

  294. Hu YC, Ahrendt SA. hOGG1 Ser326Cys polymorphism and G:C-to-T:A mutations: no evidence for a role in tobacco-related non small cell lung cancer. Int J Cancer. 2005;114:387–93.

    Article  PubMed  CAS  Google Scholar 

  295. Kohno T, Sakiyama T, Kunitoh H, et al. Association of polymorphisms in the MTH1 gene with small cell lung carcinoma risk. Carcinogenesis. 2006;27:2448–54.

    Article  PubMed  CAS  Google Scholar 

  296. Chae MH, Jang JS, Kang HG, et al. O6-alkylguanine-DNA alkyltransferase gene polymorphisms and the risk of primary lung cancer. Mol Carcinog. 2006;45:239–49.

    Article  PubMed  CAS  Google Scholar 

  297. Kim JH, Kim H, Lee KY, et al. Genetic polymorphisms of ataxia telangiectasia mutated affect lung cancer risk. Hum Mol Genet. 2006;15:1181–6.

    Article  PubMed  CAS  Google Scholar 

  298. Zienolddiny S, Campa D, Lind H, et al. Polymorphisms of DNA repair genes and risk of non-small cell lung cancer. Carcinogenesis. 2006;27:560–7.

    Article  PubMed  CAS  Google Scholar 

  299. Kiyohara C, Takayama K, Nakanishi Y. Lung cancer risk and genetic polymorphisms in DNA repair pathways: a meta-analysis. J Nucleic Acids. 2010;2010: 701760.

    PubMed  Google Scholar 

  300. Van Dyke AL, Cote ML, Wenzlaff AS, et al. Chromosome 5p region SNPs are associated with risk of NSCLC among women. J Cancer Epidemiol. 2009;2009:242151.

    PubMed  Google Scholar 

  301. Medina PP, Castillo SD, Blanco S, et al. The SRY-HMG box gene, SOX4, is a target of gene amplification at chromosome 6p in lung cancer. Hum Mol Genet. 2009;18:1343–52.

    Article  PubMed  CAS  Google Scholar 

  302. Lips EH, Gaborieau V, McKay JD, et al. Association between a 15q25 gene variant, smoking quantity and tobacco-related cancers among 17 000 individuals. Int J Epidemiol. 2010;39:563–77.

    Article  PubMed  Google Scholar 

  303. Pande M, Spitz MR, Wu X, Gorlov IP, Chen W, Amos CI. Novel genetic variants in the chromosome 5p15.33 region associate with lung cancer risk. Carcinogenesis. 2011;32(10):1493–9.

    Article  PubMed  CAS  Google Scholar 

  304. Yoo W, Jung HY, Lim S, et al. An association study of polymorphisms in JAK3 Gene with lung Cancer in the Korean population. Cancer Res Treat. 2011;43:108–16.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy Craig Allen MD, JD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Allen, T.C. (2012). Genetic Susceptibility to Lung Cancer. In: Cagle, P., et al. Molecular Pathology of Lung Cancer. Molecular Pathology Library, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3197-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3197-8_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3196-1

  • Online ISBN: 978-1-4614-3197-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics