Skip to main content

What is the Mechanism(s) of Antiphospholipid Antibody-Mediated Pregnancy Morbidity?

  • Chapter
  • First Online:
Antiphospholipid Syndrome

Abstract

Pregnancy complications are a frequent and unsolved condition in patients with antiphospholipid syndrome (APS). Women with antiphospholipid antibodies (aPL) are at high risk of recurrent early pregnancy loss, as well as late obstetrical complications associated with impaired placental function, such as preeclampsia, intrauterine growth restriction, and prematurity. Thrombotic events at the maternal–fetal interface were originally thought to underlie aPL-associated pregnancy complications, due to the partial beneficial effects of heparin. However, more recent clinical and experimental observations suggest, instead, that non-thrombotic events may play a primary role in the pathophysiology of pregnancy complications in APS patients, including complement activation, inflammation, and disruption of normal trophoblast function. This chapter will review the known pathogenic mechanisms of pregnancy complications in APS and provide a helpful instrument to all the workers in the field from both a clinical and basic view.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bakimer R, Fishman P, Blank M, Sredni B, Djaldetti M, Shoenfeld Y. Induction of primary antiphospholipid syndrome in mice by immunization with a human monoclonal anticardiolipin antibody (H-3). J Clin Invest. 1992;89:1558–63.

    PubMed Central  PubMed  CAS  Google Scholar 

  2. Blank M, Cohen J, Toder V, Shoenfeld Y. Induction of anti-phospholipid syndrome in naive mice with mouse lupus monoclonal and human polyclonal anti-cardiolipin antibodies. Proc Natl Acad Sci U S A. 1991;88:3069–73.

    PubMed Central  PubMed  CAS  Google Scholar 

  3. Blank M, Tincani A, Shoenfeld Y. Induction of experimental antiphospholipid syndrome in naive mice with purified IgG antiphosphatidylserine antibodies. J Rheumatol. 1994;21:100–4.

    PubMed  CAS  Google Scholar 

  4. Garcia CO, Kanbour-Shakir A, Tang H, Molina JF, Espinoza LR, Gharavi AE. Induction of experimental antiphospholipid antibody syndrome in PL/J mice following immunization with beta 2 GPI. Am J Reprod Immunol. 1997;37:118–24.

    PubMed  CAS  Google Scholar 

  5. Robertson SA, Roberts CT, van Beijering E, et al. Effect of beta2-glycoprotein I null mutation on reproductive outcome and antiphospholipid antibody-mediated pregnancy pathology in mice. Mol Hum Reprod. 2004;10:409–16.

    PubMed  CAS  Google Scholar 

  6. Meroni PL, Borghi MO, Raschi E, Tedesco F. Pathogenesis of antiphospholipid syndrome: understanding the antibodies. Nat Rev Rheumatol. 2011;7:330–9.

    PubMed  CAS  Google Scholar 

  7. Meroni PL, Tedesco F, Locati M, et al. Anti-phospholipid antibody mediated fetal loss: still an open question from a pathogenic point of view. Lupus. 2010;19:453–6.

    PubMed  CAS  Google Scholar 

  8. Nayar R, Lage JM. Placental changes in a first trimester missed abortion in maternal systemic lupus erythematosus with antiphospholipid syndrome; a case report and review of the literature. Hum Pathol. 1996;27:201–6.

    PubMed  CAS  Google Scholar 

  9. Peaceman AM, Rehnberg KA. The effect of immunoglobulin G fractions from patients with lupus anticoagulant on placental prostacyclin and thromboxane production. Am J Obstet Gynecol. 1993;169:1403–6.

    PubMed  CAS  Google Scholar 

  10. Rand JH, Wu XX, Quinn AS, Taatjes DJ. The annexin A5-mediated pathogenic mechanism in the antiphospholipid syndrome: role in pregnancy losses and thrombosis. Lupus. 2010;19:460–9.

    PubMed  CAS  Google Scholar 

  11. Chaouat G. The Th1/Th2 paradigm: still important in pregnancy? Semin Immunopathol. 2007;29:95–113.

    PubMed  Google Scholar 

  12. Mor G, Abrahams VM. The immunology of pregnancy. In: Creasy R, Resnik R, Iams J, Lockwood C, Moore T, editors. Creasy & Resnik’s Maternal-Fetal Medicine, Principles and Practice, 6th edition. Philadelphia: Saunders Elsevier; 2009. p. 87–100.

    Google Scholar 

  13. Berman J, Girardi G, Salmon JE. TNF-alpha is a critical effector and a target for therapy in antiphospholipid antibody-induced pregnancy loss. J Immunol. 2005;174:485–90.

    PubMed  CAS  Google Scholar 

  14. Girardi G, Berman J, Redecha P, et al. Complement C5a receptors and neutrophils mediate fetal injury in the antiphospholipid syndrome. J Clin Invest. 2003;112:1644–54.

    PubMed Central  PubMed  CAS  Google Scholar 

  15. Girardi G, Redecha P, Salmon JE. Heparin prevents antiphospholipid antibody-induced fetal loss by inhibiting complement activation. Nat Med. 2004;10:1222–6.

    PubMed  CAS  Google Scholar 

  16. Girardi G, Yarilin D, Thurman JM, Holers VM, Salmon JE. Complement activation induces dysregulation of angiogenic factors and causes fetal rejection and growth restriction. J Exp Med. 2006;203:2165–75.

    PubMed Central  PubMed  CAS  Google Scholar 

  17. Holers VM, Girardi G, Mo L, et al. Complement C3 activation is required for antiphospholipid antibody-induced fetal loss. J Exp Med. 2002;195:211–20.

    PubMed Central  PubMed  CAS  Google Scholar 

  18. Redecha P, Franzke CW, Ruf W, Mackman N, Girardi G. Neutrophil activation by the tissue factor/Factor VIIa/PAR2 axis mediates fetal death in a mouse model of antiphospholipid syndrome. J Clin Invest. 2008;118:3453–61.

    PubMed Central  PubMed  CAS  Google Scholar 

  19. Redecha P, Tilley R, Tencati M, et al. Tissue factor: a link between C5a and neutrophil activation in antiphospholipid antibody induced fetal injury. Blood. 2007;110:2423–31.

    PubMed Central  PubMed  CAS  Google Scholar 

  20. Seshan SV, Franzke CW, Redecha P, Monestier M, Mackman N, Girardi G. Role of tissue factor in a mouse model of thrombotic microangiopathy induced by antiphospholipid antibodies. Blood. 2009;114:1675–83.

    PubMed Central  PubMed  CAS  Google Scholar 

  21. Thurman JM, Kraus DM, Girardi G, et al. A novel inhibitor of the alternative complement pathway prevents antiphospholipid antibody-induced pregnancy loss in mice. Mol Immunol. 2005;42:87–97.

    PubMed  CAS  Google Scholar 

  22. Pierangeli SS, Espinola R, Liu X, Harris EN, Salmon JE. Identification of an Fc gamma receptor-independent mechanism by which intravenous immunoglobulin ameliorates antiphospholipid antibody-induced thrombogenic phenotype. Arthritis Rheum. 2001; 44:876–83.

    PubMed  CAS  Google Scholar 

  23. Abbas AK, Lichtman AH, Pober JS. Effector mechanisms of humoral immunity. In: Cellular and molecular Immunology. Philadelphia, PA: W.B. Saunders Company; 2000. p. 316–34.

    Google Scholar 

  24. Weir PE. Immunofluorescent studies of the uteroplacental arteries in normal pregnancy. Br J Obstet Gynaecol. 1981;88:301–7.

    PubMed  CAS  Google Scholar 

  25. Wells M, Bennett J, Bulmer JN, Jackson P, Holgate CS. Complement component deposition in uteroplacental (spiral) arteries in normal human pregnancy. J Reprod Immunol. 1987;12:125–35.

    PubMed  CAS  Google Scholar 

  26. Tedesco F, Narchi G, Radillo O, Meri S, Ferrone S, Betterle C. Susceptibility of human trophoblast to killing by human complement and the role of the complement regulatory proteins. J Immunol. 1993;151:1562–70.

    PubMed  CAS  Google Scholar 

  27. Liszewski MK, Farries TC, Lublin DM, Rooney IA, Atkinson JP. Control of the complement system. Adv Immunol. 1996;61:201–83.

    PubMed  CAS  Google Scholar 

  28. Lynch AM, Salmon JE. Dysregulated complement activation as a common pathway of injury in preeclampsia and other pregnancy complications. Placenta. 2010;31:561–7.

    PubMed Central  PubMed  CAS  Google Scholar 

  29. Caucheteux SM, Kanellopoulos-Langevin C, Ojcius DM. At the innate frontiers between mother and fetus: linking abortion with complement activation. Immunity. 2003;18:169–72.

    PubMed  CAS  Google Scholar 

  30. Noris M, Brioschi S, Caprioli J, et al. Familial haemolytic uraemic syndrome and an MCP mutation. Lancet. 2003;362:1542–7.

    PubMed  CAS  Google Scholar 

  31. Goodship TH, Liszewski MK, Kemp EJ, Richards A, Atkinson JP. Mutations in CD46, a complement regulatory protein, predispose to atypical HUS. Trends Mol Med. 2004;10:226–31.

    PubMed  CAS  Google Scholar 

  32. Xu C, Mao D, Holers VM, Palanca B, Cheng AM, Molina H. A critical role for murine complement regulator crry in fetomaternal tolerance. Science. 2000;287:498–501.

    PubMed  CAS  Google Scholar 

  33. Mao D, Xiaobo W, Molina H. A dispensable role for neutrophils, C5, and the classical pathway of complement activation in the abnormal fetomaternal tolerance found in crry-deficient mice. Int Immunopharmacol. 2002;2:1233.

    Google Scholar 

  34. Rote NS, Vogt E, DeVere G, Obringer AR, Ng AK. The role of placental trophoblast in the pathophysiology of the antiphospholipid antibody syndrome. Am J Reprod Immunol. 1998;39:125–36.

    PubMed  CAS  Google Scholar 

  35. Rote NS, Stetzer BP. Autoimmune disease as a cause of reproductive failure. Clin Lab Med. 2003;23:265–93.

    PubMed  Google Scholar 

  36. Ritis K, Doumas M, Mastellos D, et al. A novel C5a receptor-tissue factor cross-talk in neutrophils links innate immunity to coagulation pathways. J Immunol. 2006;177:4794–802.

    PubMed  CAS  Google Scholar 

  37. Red-Horse K, Zhou Y, Genbacev O, et al. Trophoblast differentiation during embryo implantation and formation of the maternal-fetal interface. J Clin Invest. 2004;114:744–54.

    PubMed Central  PubMed  CAS  Google Scholar 

  38. Cowchock FS, Reece EA, Balaban D, Branch DW, Plouffe L. Repeated fetal losses associated with antiphospholipid antibodies: a collaborative randomized trial comparing prednisone with low-dose heparin treatment. Am J Obstet Gynecol. 1992;166:1318–23.

    PubMed  CAS  Google Scholar 

  39. Ruiz-Irastorza G, Crowther M, Branch W, Khamashta MA. Antiphospholipid syndrome. Lancet. 2010;376:1498–509.

    PubMed  CAS  Google Scholar 

  40. Cavazzana I, Manuela N, Irene C, et al. Complement activation in anti-phospholipid syndrome: a clue for an inflammatory process? J Autoimmun. 2007;28:160–4.

    PubMed  Google Scholar 

  41. Gerosa M, De Angelis V, Trespidi L. Complement involvement in antiphospholipid-mediated placental damage: prospective study in APS pregnant women. Ann Rheum Dis. 2009;68:210 (abstract).

    Google Scholar 

  42. Park AL. Placental plathology in antiphospholipid syndrome. In: Khamashata MA, editor. Hughes’ Syndrome. London: Springer-Verlag; 2006. p. 362–74.

    Google Scholar 

  43. Shamonki JM, Salmon JE, Hyjek E, Baergen RN. Excessive complement activation is associated with placental injury in patients with antiphospholipid antibodies. Am J Obstet Gynecol. 2007;196:167.e1–165.

    Google Scholar 

  44. Oku K, Atsumi T, Bohgaki M, et al. Complement activation in patients with primary antiphospholipid syndrome. Ann Rheum Dis. 2009;68:1030–5.

    PubMed  CAS  Google Scholar 

  45. Ziglioli T, Andreoli L, Mosca M. Low complement levels during pregnancy are associated with obstetric complications in patients with primary antiphospholipid syndrome. Ann Rheum Dis. 2009;68:213–4.

    Google Scholar 

  46. Fischetti F, Durigutto P, Pellis V, et al. Thrombus formation induced by antibodies to beta2-glycoprotein I is complement dependent and requires a priming factor. Blood. 2005;106:2340–6.

    PubMed  CAS  Google Scholar 

  47. Munakata Y, Saito T, Matsuda K, Seino J, Shibata S, Sasaki T. Detection of complement-fixing antiphospholipid antibodies in association with thrombosis. Thromb Haemost. 2000;83:728–31.

    PubMed  CAS  Google Scholar 

  48. Girardi G. Role of tissue factor in the maternal immunological attack of the embryo in the antiphospholipid syndrome. Clin Rev Allergy Immunol. 2010;39:160–5.

    PubMed  CAS  Google Scholar 

  49. Tedesco F, Pausa M, Nardon E, Introna M, Mantovani A, Dobrina A. The cytolytically inactive terminal complement complex activates endothelial cells to express adhesion molecules and tissue factor procoagulant activity. J Exp Med. 1997;185:1619–27.

    PubMed Central  PubMed  CAS  Google Scholar 

  50. Martinez de la Torre Y, Raschi E, Borghi MO. Pregnant naïve mice are protected from aPL-induced fetal loss by the injection of a synthetic peptide (TIFI) mimicking the β2GPI PL-binding site. Arthritis Rheum. 2008;58:S404 (abstract).

    Google Scholar 

  51. Magid MS, Kaplan C, Sammaritano LR, Peterson M, Druzin ML, Lockshin MD. Placental pathology in systemic lupus erythematosus: a prospective study. Am J Obstet Gynecol. 1998;179:226–34.

    PubMed  CAS  Google Scholar 

  52. Van Horn JT, Craven C, Ward K, Branch DW, Silver RM. Histologic features of placentas and abortion specimens from women with antiphospholipid and antiphospholipid-like syndromes. Placenta. 2004;25:642–8.

    PubMed  Google Scholar 

  53. Stone S, Pijnenborg R, Vercruysse L, et al. The placental bed in pregnancies complicated by primary antiphospholipid syndrome. Placenta. 2006;27:457–67.

    PubMed  CAS  Google Scholar 

  54. Chamley LW. Antiphospholipid antibodies: biological basis and prospects for treatment. J Reprod Immunol. 2002;57:185–202.

    PubMed  CAS  Google Scholar 

  55. Di Simone N, Luigi MP, Marco D, et al. Pregnancies complicated with antiphospholipid syndrome: the pathogenic mechanism of antiphospholipid antibodies: a review of the literature. Ann N Y Acad Sci. 2007;1108:505–14.

    PubMed  Google Scholar 

  56. Pierangeli SS, Chen PP, Raschi E, et al. Antiphospholipid antibodies and the antiphospholipid syndrome: pathogenic mechanisms. Semin Thromb Hemost. 2008;34:236–50.

    PubMed  CAS  Google Scholar 

  57. Chamley LW, Allen JL, Johnson PM. Synthesis of beta2 glycoprotein 1 by the human placenta. Placenta. 1997;18:403–10.

    PubMed  CAS  Google Scholar 

  58. La Rosa L, Meroni PL, Tincani A, et al. Beta 2 glycoprotein I and placental anticoagulant protein I in placentae from patients with antiphospholipid syndrome. J Rheumatol. 1994;21:1684–93.

    PubMed  Google Scholar 

  59. Tincani A, Rebaioli CB, Andreoli L, Lojacono A, Motta M. Neonatal effects of maternal antiphospholipid syndrome. Curr Rheumatol Rep. 2009;11:70–6.

    PubMed  CAS  Google Scholar 

  60. Quenby S, Mountfield S, Cartwright JE, Whitley GS, Chamley L, Vince G. Antiphospholipid antibodies prevent extravillous trophoblast differentiation. Fertil Steril. 2005;83:691–8.

    PubMed  CAS  Google Scholar 

  61. Di Simone N, Caliandro D, Castellani R, Ferrazzani S, Caruso A. Interleukin-3 and human trophoblast: in vitro explanations for the effect of interleukin in patients with antiphospholipid antibody syndrome. Fertil Steril. 2000;73:1194–200.

    PubMed  Google Scholar 

  62. Chamley LW, Konarkowska B, Duncalf AM, Mitchell MD, Johnson PM. Is interleukin-3 important in antiphospholipid antibody-mediated pregnancy failure? Fertil Steril. 2001;76:700–6.

    PubMed  CAS  Google Scholar 

  63. Di Simone N, Castellani R, Caliandro D, Caruso A. Antiphospholid antibodies regulate the expression of trophoblast cell adhesion molecules. Fertil Steril. 2002;77:805–11.

    PubMed  Google Scholar 

  64. Katsuragawa H, Kanzaki H, Inoue T, Hirano T, Mori T, Rote NS. Monoclonal antibody against phosphatidylserine inhibits in vitro human trophoblastic hormone production and invasion. Biol Reprod. 1997;56:50–8.

    PubMed  CAS  Google Scholar 

  65. Di Simone N, Caliandro D, Castellani R, Ferrazzani S, De Carolis S, Caruso A. Low-molecular weight heparin restores in vitro trophoblast invasiveness and differentiation in presence of immunoglobulin G fractions obtained from patients with antiphospholipid syndrome. Hum Reprod. 1999;14:489–95.

    PubMed  Google Scholar 

  66. Di Simone N, Meroni PL, de Papa N, et al. Antiphospholipid antibodies affect trophoblast gonadotropin secretion and invasiveness by binding directly and through adhered beta2-glycoprotein I. Arthritis Rheum. 2000;43:140–50.

    PubMed  Google Scholar 

  67. Di Simone N, Marana R, Castellani R, et al. Decreased heparin-binding epidermal growth factor expression as a new pathogenic mechanism of the antiphospholipid-mediated defective placentation. Arthritis Rheum. 2010;62:1504–12.

    PubMed  Google Scholar 

  68. Schwartz N, Shoenfeld Y, Barzilai O, et al. Reduced placental growth and hCG secretion in vitro induced by antiphospholipid antibodies but not by anti-Ro or anti-La: studies on sera from women with SLE/PAPS. Lupus. 2007;16:110–20.

    PubMed  CAS  Google Scholar 

  69. Ornoy A, Yacobi S, Matalon ST, et al. The effects of antiphospholipid antibodies obtained from women with SLE/APS and associated pregnancy loss on rat embryos and placental explants in culture. Lupus. 2003;12:573–8.

    PubMed  CAS  Google Scholar 

  70. Bose P, Black S, Kadyrov M, et al. Adverse effects of lupus anticoagulant positive blood sera on placental viability can be prevented by heparin in vitro. Am J Obstet Gynecol. 2004;191:2125–31.

    PubMed  CAS  Google Scholar 

  71. Chen Q, Viall C, Kang Y, Liu B, Stone P, Chamley L. Anti-phospholipid antibodies increase non-apoptotic trophoblast shedding: a contribution to the pathogenesis of pre-eclampsia in affected women? Placenta. 2009;30:767–73.

    PubMed  CAS  Google Scholar 

  72. Sabapatha A, Gercel-Taylor C, Taylor DD. Specific isolation of placenta-derived exosomes from the circulation of pregnant women and their immunoregulatory consequences. Am J Reprod Immunol. 2006;56:345–55.

    PubMed  CAS  Google Scholar 

  73. Goswami D, Tannetta DS, Magee LA, et al. Excess syncytiotrophoblast microparticle ­shedding is a feature of early-onset pre-eclampsia, but not normotensive intrauterine growth restriction. Placenta. 2006;27:56–61.

    PubMed  CAS  Google Scholar 

  74. Mulla MJ, Brosens JJ, Chamley LW, et al. Antiphospholipid antibodies induce a pro-inflammatory response in first trimester trophoblast via the TLR4/MyD88 pathway. Am J Reprod Immunol. 2009;62:96–111.

    PubMed Central  PubMed  CAS  Google Scholar 

  75. Blank M, Shoenfeld Y. Beta-2-glycoprotein-I, infections, antiphospholipid syndrome and therapeutic considerations. Clin Immunol. 2004;112:190–9.

    PubMed  CAS  Google Scholar 

  76. Sorice M, Longo A, Capozzi A, et al. Anti-beta2-glycoprotein I antibodies induce monocyte release of tumor necrosis factor alpha and tissue factor by signal transduction pathways involving lipid rafts. Arthritis Rheum. 2007;56:2687–97.

    PubMed  CAS  Google Scholar 

  77. Blank M, Krause I, Fridkin M, et al. Bacterial induction of autoantibodies to beta2-glycoprotein-I accounts for the infectious etiology of antiphospholipid syndrome. J Clin Invest. 2002;109:797–804.

    PubMed Central  PubMed  CAS  Google Scholar 

  78. Gotoh M, Matsuda J. Induction of anticardiolipin antibody and/or lupus anticoagulant in rabbits by immunization with lipoteichoic acid, lipopolysaccharide and lipid A. Lupus. 1996;5:593–7.

    PubMed  CAS  Google Scholar 

  79. Mulla MJ, Myrtolli K, Brosens JJ, et al. Antiphospholipid antibodies limit trophoblast migration by reducing IL-6 production and STAT3 activity. Am J Reprod Immunol. 2010;63:339–48.

    PubMed  CAS  Google Scholar 

  80. Fitzgerald JS, Poehlmann TG, Schleussner E, Markert UR. Trophoblast invasion: the role of intracellular cytokine signalling via signal transducer and activator of transcription 3 (STAT3). Hum Reprod Update. 2008;14:335–44.

    PubMed  CAS  Google Scholar 

  81. Francis J, Rai R, Sebire NJ, et al. Impaired expression of endometrial differentiation markers and complement regulatory proteins in patients with recurrent pregnancy loss associated with antiphospholipid syndrome. Mol Hum Reprod. 2006;12:435–42.

    PubMed  CAS  Google Scholar 

  82. Borghi MO, Raschi E, Broggini V. Antiphospholipid antibodies reactivity with human decidual cells: an additional mechanism of pregnancy complications in APS and a potential target for innovative therapeutic intervention. Ann Rheum Dis. 2009;68:109.

    Google Scholar 

  83. McIntyre JA, Wagenknecht DR, Sugi T. Phospholipid binding plasma proteins required for antiphospholipid antibody detection—an overview. Am J Reprod Immunol. 1997; 37:101–10.

    PubMed  CAS  Google Scholar 

  84. Tedesco F. Biodistribution of β2GPI in naïve and immunized mice and in vivo pro-thrombotic effect of an anti-β2GPI minibody isolated from human phage display library. Lupus. 2010;19:497–8.

    Google Scholar 

  85. Meroni, et al. Personal Communication. Proceedings of the 13th international congress on antiphospholipid antibodies. Galveston, Texas, 13–16 Apr 2010

    Google Scholar 

  86. Tait JF, Gibson D, Fujikawa K. Phospholipid binding properties of human placental anticoagulant protein-I, a member of the lipocortin family. J Biol Chem. 1989;264:7944–9.

    PubMed  CAS  Google Scholar 

  87. Reutelingsperger CP, Kop JM, Hornstra G, Hemker HC. Purification and characterization of a novel protein from bovine aorta that inhibits coagulation. Inhibition of the phospholipid-dependent factor-Xa-catalyzed prothrombin activation, through a high-affinity binding of the anticoagulant to the phospholipids. Eur J Biochem. 1988;173:171–8.

    PubMed  CAS  Google Scholar 

  88. Crumpton MJ, Dedman JR. Protein terminology tangle. Nature. 1990;345:212.

    PubMed  CAS  Google Scholar 

  89. Schutters K, Reutelingsperger C. Phosphatidylserine targeting for diagnosis and treatment of human diseases. Apoptosis. 2010;15:1072–82.

    PubMed Central  PubMed  CAS  Google Scholar 

  90. Gerke V, Moss SE. Annexins: from structure to function. Physiol Rev. 2002;82:331–71.

    PubMed  CAS  Google Scholar 

  91. Mortimer JC, Laohavisit A, Macpherson N, et al. Annexins: multifunctional components of growth and adaptation. J Exp Bot. 2008;59:533–44.

    PubMed  CAS  Google Scholar 

  92. Moss SE, Morgan RO. The annexins. Genome Biol. 2004;5:219.

    PubMed Central  PubMed  Google Scholar 

  93. Draeger A, Monastyrskaya K, Babiychuk EB. Plasma membrane repair and cellular damage control: the annexin survival kit. Biochem Pharmacol. 2011;81:703–12.

    PubMed  CAS  Google Scholar 

  94. Engen JR, Smithgall TE, Gmeiner WH, Smith DL. Identification and localization of slow, natural, cooperative unfolding in the hematopoietic cell kinase SH3 domain by amide hydrogen exchange and mass spectrometry. Biochemistry. 1997;36:14384–91.

    PubMed  CAS  Google Scholar 

  95. Krikun G, Lockwood CJ, Wu XX, et al. The expression of the placental anticoagulant protein, annexin V, by villous trophoblasts: immunolocalization and in vitro regulation. Placenta. 1994;15:601–12.

    PubMed  CAS  Google Scholar 

  96. Rand JH, Wu XX, Andree HA, et al. Pregnancy loss in the antiphospholipid-antibody syndrome—a possible thrombogenic mechanism. N Engl J Med. 1997;337:154–60.

    PubMed  CAS  Google Scholar 

  97. Funakoshi T, Heimark RL, Hendrickson LE, McMullen BA, Fujikawa K. Human placental anticoagulant protein: isolation and characterization. Biochemistry. 1987;26:5572–8.

    PubMed  CAS  Google Scholar 

  98. Tait JF, Sakata M, McMullen BA, et al. Placental anticoagulant proteins: isolation and ­comparative characterization four members of the lipocortin family. Biochemistry. 1988;27:6268–76.

    PubMed  CAS  Google Scholar 

  99. Reviakine II, Bergsma-Schutter W, Brisson A. Growth of protein 2-D crystals on supported planar lipid bilayers imaged in situ by AFM. J Struct Biol. 1998;121:356–61.

    PubMed  CAS  Google Scholar 

  100. Andree HA, Stuart MC, Hermens WT, et al. Clustering of lipid-bound annexin V may explain its anticoagulant effect. J Biol Chem. 1992;267:17907–12.

    PubMed  CAS  Google Scholar 

  101. van Genderen HO, Kenis H, Hofstra L, Narula J, Reutelingsperger CP. Extracellular annexin A5: functions of phosphatidylserine-binding and two-dimensional crystallization. Biochim Biophys Acta. 2008;1783:953–63.

    PubMed  Google Scholar 

  102. Wang X, Campos B, Kaetzel MA, Dedman JR. Annexin V is critical in the maintenance of murine placental integrity. Am J Obstet Gynecol. 1999;180:1008–16.

    PubMed  CAS  Google Scholar 

  103. Bogdanova N, Horst J, Chlystun M, et al. A common haplotype of the annexin A5 (ANXA5) gene promoter is associated with recurrent pregnancy loss. Hum Mol Genet. 2007;16:573–8.

    PubMed  CAS  Google Scholar 

  104. Sifakis S, Soufla G, Koukoura O, et al. Decreased annexin A5 mRNA placental expression in pregnancies complicated by fetal growth restriction. Thromb Res. 2010;125:326–31.

    PubMed  CAS  Google Scholar 

  105. Van Eerden P, Wu XX, Chazotte C, Rand JH. Annexin A5 levels in midtrimester amniotic fluid: association with intrauterine growth restriction. Am J Obstet Gynecol. 2006;194:1371–6.

    PubMed  Google Scholar 

  106. Rand JH, Arslan AA, Wu XX, et al. Reduction of circulating annexin A5 levels and resistance to annexin A5 anticoagulant activity in women with recurrent spontaneous pregnancy losses. Am J Obstet Gynecol. 2006;194:182–8.

    PubMed  CAS  Google Scholar 

  107. Arai T, Matsubayashi H, Sugi T, et al. Anti-annexin A5 antibodies in reproductive failures in relation to antiphospholipid antibodies and phosphatidylserine. Am J Reprod Immunol. 2003;50:202–8.

    PubMed  CAS  Google Scholar 

  108. de Laat B, Derksen RH, Mackie IJ, et al. Annexin A5 polymorphism (-1C–>T) and the presence of anti-annexin A5 antibodies in the antiphospholipid syndrome. Ann Rheum Dis. 2006;65:1468–72.

    PubMed Central  PubMed  Google Scholar 

  109. Esposito G, Tamby MC, Chanseaud Y, Servettaz A, Guillevin L, Mouthon L. Anti-annexin V antibodies: are they prothrombotic? Autoimmun Rev. 2005;4:55–60.

    PubMed  CAS  Google Scholar 

  110. Kaburaki J, Kuwana M, Yamamoto M, Kawai S, Ikeda Y. Clinical significance of anti-annexin V antibodies in patients with systemic lupus erythematosus. Am J Hematol. 1997;54:209–13.

    PubMed  CAS  Google Scholar 

  111. Ogawa H, Zhao D, Dlott JS, et al. Elevated anti-annexin V antibody levels in antiphospholipid syndrome and their involvement in antiphospholipid antibody specificities. Am J Clin Pathol. 2000;114:619–28.

    PubMed  CAS  Google Scholar 

  112. Satoh A, Suzuki K, Takayama E, et al. Detection of anti-annexin IV and V antibodies in patients with antiphospholipid syndrome and systemic lupus erythematosus. J Rheumatol. 1999;26:1715–20.

    PubMed  CAS  Google Scholar 

  113. Siaka C, Lambert M, Caron C, et al. Low prevalence of anti-annexin V antibodies in antiphospholipid syndrome with fetal loss. Rev Med Interne. 1999;20:762–5.

    PubMed  CAS  Google Scholar 

  114. Sugiura K, Muro Y. Anti-annexin V antibodies and digital ischemia in patients with scleroderma. J Rheumatol. 1999;26:2168–72.

    PubMed  CAS  Google Scholar 

  115. Zammiti W, Mtiraoui N, Hidar S, Fekih M, Almawi WY, Mahjoub T. Antibodies to beta2-glycoprotein I and annexin V in women with early and late idiopathic recurrent spontaneous abortions. Arch Gynecol Obstet. 2006;274:261–5.

    PubMed  CAS  Google Scholar 

  116. Zammiti W, Mtiraoui N, Kallel C, Mercier E, Almawi WY, Mahjoub T. A case-control study on the association of idiopathic recurrent pregnancy loss with autoantibodies against beta2-glycoprotein I and annexin V. Reproduction. 2006;131:817–22.

    PubMed  CAS  Google Scholar 

  117. Rand JH, Wu XX, Guller S, et al. Reduction of annexin-V (placental anticoagulant protein-I) on placental villi of women with antiphospholipid antibodies and recurrent spontaneous abortion. Am J Obstet Gynecol. 1994;171:1566–72.

    PubMed  CAS  Google Scholar 

  118. Vogt E, Ng AK, Rote NS. Antiphosphatidylserine antibody removes annexin-V and facilitates the binding of prothrombin at the surface of a choriocarcinoma model of trophoblast differentiation. Am J Obstet Gynecol. 1997;177:964–72.

    PubMed  CAS  Google Scholar 

  119. Rand JH, Wu XX, Andree HA, et al. Antiphospholipid antibodies accelerate plasma coagulation by inhibiting annexin-V binding to phospholipids: a “lupus procoagulant” phenomenon. Blood. 1998;92:1652–60.

    PubMed  CAS  Google Scholar 

  120. Rand JH, Wu XX, Quinn AS, et al. Human monoclonal antiphospholipid antibodies disrupt the annexin A5 anticoagulant crystal shield on phospholipid bilayers: evidence from atomic force microscopy and functional assay. Am J Pathol. 2003;163:1193–200.

    PubMed Central  PubMed  CAS  Google Scholar 

  121. Hanly JG, Smith SA. Anti-beta2-glycoprotein I (GPI) autoantibodies, annexin V binding and the anti-phospholipid syndrome. Clin Exp Immunol. 2000;120:537–43.

    PubMed Central  PubMed  CAS  Google Scholar 

  122. Gaspersic N, Ambrozic A, Bozic B, Majhenc J, Svetina S, Rozman B. Annexin A5 binding to giant phospholipid vesicles is differentially affected by anti-beta2-glycoprotein I and anti-annexin A5 antibodies. Rheumatology (Oxford). 2007;46:81–6.

    CAS  Google Scholar 

  123. Tomer A. Antiphospholipid antibody syndrome: rapid, sensitive, and specific flow cytometric assay for determination of anti-platelet phospholipid autoantibodies. J Lab Clin Med. 2002;139:147–54.

    PubMed  CAS  Google Scholar 

  124. Tomer A, Bar-Lev S, Fleisher S, Shenkman B, Friger M, Abu-Shakra M. Antiphospholipid antibody syndrome: the flow cytometric annexin A5 competition assay as a diagnostic tool. Br J Haematol. 2007;139:113–20.

    PubMed  CAS  Google Scholar 

  125. de Laat B, Wu XX, van Lummel M, Derksen RH, de Groot PG, Rand JH. Correlation between antiphospholipid antibodies that recognize domain I of beta2-glycoprotein I and a reduction in the anticoagulant activity of annexin A5. Blood. 2007;109:1490–4.

    PubMed  Google Scholar 

  126. Agar C, van Os GM, Morgelin M, et al. Beta2-glycoprotein I can exist in 2 conformations: implications for our understanding of the antiphospholipid syndrome. Blood. 2010;116:1336–43.

    PubMed  CAS  Google Scholar 

  127. de Laat B, Derksen RH, Urbanus RT, de Groot PG. IgG antibodies that recognize epitope Gly40-Arg43 in domain I of beta 2-glycoprotein I cause LAC, and their presence correlates strongly with thrombosis. Blood. 2005;105:1540–5.

    PubMed  Google Scholar 

  128. de Laat B, Pengo V, Pabinger I, et al. The association between circulating antibodies against domain I of beta2-glycoprotein I and thrombosis: an international multicenter study. J Thromb Haemost. 2009;7:1767–73.

    PubMed  Google Scholar 

  129. Hunt BJ, Wu XX, de Laat B, Arslan AA, Stuart-Smith S, Rand JH. Resistance to annexin A5 anticoagulant activity in women with histories for obstetric antiphospholipid syndrome. Am J Obstet Gynecol. 2011;205:485.e17–23.

    CAS  Google Scholar 

  130. Cohen D, Buurma A, Goemaere NN, et al. Classical complement activation as a footprint for murine and human antiphospholipid antibody-induced fetal loss. J Pathol. 2011;225:502–11.

    PubMed  CAS  Google Scholar 

  131. Ostertag MV, Liu X, Henderson V, Pierangeli SS. A peptide that mimics the Vth region of beta-2-glycoprotein I reverses antiphospholipid-mediated thrombosis in mice. Lupus. 2006;15:358–65.

    PubMed  CAS  Google Scholar 

  132. Rand JH, Wu XX, Quinn AS, et al. Hydroxychloroquine protects the annexin A5 anticoagulant shield from disruption by antiphospholipid antibodies: evidence for a novel effect for an old antimalarial drug. Blood. 2010;115:2292–9.

    PubMed Central  PubMed  CAS  Google Scholar 

  133. Parke AL. Antimalarial drugs, systemic lupus erythematosus and pregnancy. J Rheumatol. 1988;15:607–10.

    PubMed  CAS  Google Scholar 

  134. Parke A. Antimalarial drugs and pregnancy. Am J Med. 1988;85:30–3.

    PubMed  CAS  Google Scholar 

  135. Levy RA, Vilela VS, Cataldo MJ, et al. Hydroxychloroquine (HCQ) in lupus pregnancy: double-blind and placebo-controlled study. Lupus. 2001;10:401–4.

    PubMed  CAS  Google Scholar 

  136. Costedoat-Chalumeau N, Amoura Z, Huong DL, Lechat P, Piette JC. Safety of hydroxychloroquine in pregnant patients with connective tissue diseases. Review of the literature. Autoimmun Rev. 2005;4:111–5.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Dr. Jacob Rand would like to acknowledge his scientific collaborators who made this work possible, Dr. Xiao-Xuan Wu for her help in the preparation of this manuscript, and Dr. Lucy Wolgast for her help with Fig. 5.4. Dr. Rand’s studies were supported in part by grant HL-61331 from the NIH. Dr Salmon’s studies were supported by grants AR38889 and AR49772 from the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikki M. Abrahams PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Abrahams, V.M. et al. (2012). What is the Mechanism(s) of Antiphospholipid Antibody-Mediated Pregnancy Morbidity?. In: Erkan, D., Pierangeli, S. (eds) Antiphospholipid Syndrome. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-3194-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3194-7_5

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-3193-0

  • Online ISBN: 978-1-4614-3194-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics