Skip to main content

What is the Mechanism(s) of Antiphospholipid Antibody-Mediated Thrombosis?

  • Chapter
  • First Online:
Antiphospholipid Syndrome

Abstract

The pathophysiology of the antiphospholipid syndrome (APS) is multifaceted, complex, and as yet incompletely understood. Of central importance are pathogenic antiphospholipid antibodies (aPLs) which affect several cell types, including platelets, monocytes, trophoblastic, decidual, and endothelial cells as well as components of the coagulation and fibrinolytic systems. The result of these actions is an increased tendency towards arterial and venous thrombosis and atherosclerotic cardiovascular disease, especially when associated with inflammation and oxidative stress. The functional and molecular properties of aPL are potentially important markers in predicting clinical outcomes in APS patients. These properties of aPL could be especially useful in predicting the outcome when coupled with genomic and proteomic biomarkers of clinical events in APS. This chapter highlights the current evidence relating to the various pathophysiological mechanisms important in APS and potential biomarkers related to clinical outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harris EN. Syndrome of the black swan. Br J Rheumatol. 1987;26:324–6.

    Article  PubMed  CAS  Google Scholar 

  2. Wilson WA, Ghavari AE, Koike T, et al. International concensus statement on preliminary classification criteria for definite antiphospholipid syndrome: report of an international workshop. Arthritis Rheum. 1999;42:1309–11.

    Article  PubMed  CAS  Google Scholar 

  3. Miyakis S, lockshin MD, Atsumi I, et al. International concensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost. 2006;4:295–306.

    Article  PubMed  CAS  Google Scholar 

  4. Lin WS, Chen PC, Yang CD, et al. Some antiphospholipid antibodies recognize conformational epitopes shared by beta(2)-glycoprotein I and the homologous catalytic domains of several serine proteases. Arthritis Rheum. 2007;56:1638–47.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Meroni PL, Raschi E, Camera M, et al. Endothelial activation by aPL: a potential pathogenetic mechanism for the clinical manifestations of the syndrome. J Autoimmun. 2000;15:237–40.

    Article  PubMed  CAS  Google Scholar 

  6. Urbanus RT, Derksen RH, de Groot PG. Platelets and the antiphospholipid syndrome. Lupus. 2008;17:888–94.

    Article  PubMed  CAS  Google Scholar 

  7. Nojima J, Suehisa E, Kuratsune H, et al. Platelet activation induced by combined effects of anticardiolipin and lupus anticoagulant IgG antibodies in patients with systemic lupus erythematosus—­possible association with thrombotic and thrombocytopenic complications. Thromb Haemost. 1999;81:436–41.

    PubMed  CAS  Google Scholar 

  8. Krone KA, Allen KL, McCrae KR. Impaired fibrinolysis in the antiphospholipid syndrome. Curr Rheumatol Rep. 2010;12:53–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. D’Ippolito S, Di Simone N, Di Nicuolo F, et al. Antiphospholipid antibodies: effects on ­trophoblast and endothelial cells. Am J Reprod Immunol. 2007;58:150–8.

    Article  PubMed  Google Scholar 

  10. Di Simone N, Luigi MP, Marco D, et al. Pregnancies complicated with antiphospholipid syndrome: the pathogenic mechanism of antiphospholipid antibodies: a review of the literature. Ann N Y Acad Sci. 2007;1108:505–14.

    Article  PubMed  Google Scholar 

  11. Ames PR, Antinolfi I, Ciampa A, et al. Primary antiphospholipid syndrome: a low-grade ­auto-inflammatory disease? Rheumatology (Oxford). 2008;47:1832–7.

    Article  CAS  Google Scholar 

  12. Abrahams VM. Mechanisms of antiphospholipid antibody-associated pregnancy complications. Thromb Res. 2009;124:521–5.

    Article  PubMed  CAS  Google Scholar 

  13. Cervera R, Khamashta MA, Shoenfeld Y, Camps MT, Jacobsen S, Kiss E, et al. Morbidity and mortality in the antiphospholipid syndrome during a 5-year period: a multicentre prospective study of 1000 patients. Ann Rheum Dis. 2009;68:1428–32.

    Article  PubMed  CAS  Google Scholar 

  14. Pierangeli SS, Liu SW, Anderson G, Barker JH, Harris EN. Thrombogenic properties of murine anti-cardiolipin antibodies induced by beta 2 glycoprotein 1 and human immunoglobulin G antiphospholipid antibodies. Circulation. 1996;94:1746–51.

    Article  PubMed  CAS  Google Scholar 

  15. Jankowski M, Vreys I, Wittevrongel C, et al. Thrombogenicity of beta 2-glycoprotein I-dependent antiphospholipid antibodies in a photochemically induced thrombosis model in the hamster. Blood. 2003;101:157–62.

    Article  PubMed  CAS  Google Scholar 

  16. Fischetti F, Durigutto P, Pellis V, et al. Thrombus formation induced by antibodies to beta2-glycoprotein I is complement dependent and requires a priming factor. Blood. 2005;106:2340–6.

    Article  PubMed  CAS  Google Scholar 

  17. Arad A, Proulle V, Furie RA, Furie BC, Furie B. β2-Glycoprotein-1 autoantibodies from patients with antiphospholipid syndrome are sufficient to potentiate arterial thrombus formation in a mouse model. Blood. 2011;117:3453–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Koike T, Bohgaki M, Amengual O. Atsumi T. Antiphospholipid antibodies. Lessons from the bench. J Autoimmun. 2007;28:129–33.

    Article  PubMed  CAS  Google Scholar 

  19. Cuadrado MJ, Lopez-Pedrera C, Khamashta MA, et al. Thrombosis in primary antiphospholipid syndrome: a pivotal role for monocyte tissue factor expression. Arthritis Rheum. 1997;40:834–41.

    Article  PubMed  CAS  Google Scholar 

  20. Dobado-Berrios PM, Lopez-Pedrera Ch, Velasco F, et al. Increased levels of tissue factor mRNA in mononuclear blood cells of patients with primary antiphospholipid syndrome. Thromb Haemost. 1999;82:1578–82.

    PubMed  CAS  Google Scholar 

  21. Dobado-Berrios PM, Lopez-Pedrera Ch, Velasco F, Cuadrado MJ. The role of TF in the antiphospholipid syndrome. Arthritis Rheum. 2001;44:2467–76.

    Article  PubMed  CAS  Google Scholar 

  22. López-Pedrera Ch, Buendía P, Cuadrado MJ, et al. Antiphospholipid antibodies from antiphospholipid syndrome patients induce monocyte expression through the simultaneous activation of both NFkB/Rel proteins via p38 MAPK pathway, and the MEK1/ERK pathway. Arthritis Rheum. 2006;54:301–11.

    Article  PubMed  Google Scholar 

  23. Vega-Ostertag M, Harris EN, Pierangeli SS. Intracellular events in platelet activation induced by antiphospholipid antibodies in the presence of low doses of thrombin. Arthritis Rheum. 2004;50:2911–9.

    Article  PubMed  CAS  Google Scholar 

  24. Bohgaki M, Atsumi T, Yamashita Y, et al. The p38 mitogen-activated protein kinase (MAPK) pathway mediates induction of the tissue factor gene y monocytes stimulated with human monoclonal anti-beta2glycoprotein I antibodies. Int Immunol. 2004;16:1633–41.

    Article  PubMed  CAS  Google Scholar 

  25. Montiel-Manzano G, Romay-Penabad Z, Papalardo de Martinez E, et al. In vivo effects of an inhibitor of nuclear factor-kappa B on thrombogenic properties of antiphospholipid antibodies. Ann N Y Acad Sci. 2007;1108:540–53.

    Article  PubMed  CAS  Google Scholar 

  26. Dunoyer-Geindre S, de Moerloose P, Galve-de Rochemonteix B, et al. NFkappa B is an essential intermediate in the activation of endothelial cells by anti-beta(2)-glycoprotein 1 antibodies. Thromb Haemost. 2002;88:851–7.

    PubMed  Google Scholar 

  27. Vega-Ostertag M, Casper K, Swerlick R, et al. Involvement of p38 MAPK in the upregulation of tissue factor on endothelial cells by antiphospholipid antibodies. Arthritis Rheum. 2005;52:1545–54.

    Article  PubMed  CAS  Google Scholar 

  28. Dvorak HF. Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol. 2002;20:4368–80.

    Article  PubMed  CAS  Google Scholar 

  29. Williams FMK, Parmar K, Hughes GRV, Hunt BJ. Systemic endothelial cell markers in ­primary antiphospholipid syndrome. Thromb Haemost. 2000;84:742–6.

    PubMed  CAS  Google Scholar 

  30. Cuadrado MJ, Buendía P, Velasco F, et al. Vascular endothelial growth factor expression in monocytes from patients with primary antiphospholipid syndrome. J Thromb Haemost. 2006;4:2461–9.

    Article  PubMed  CAS  Google Scholar 

  31. Jurcut C, Jurcut R, Tanasescu C. Cardiovascular risk and rheumatoid arthritis: from mechanisms of atherosclerosis to therapeutic approach. Rom J Int Med. 2004;42:659–69.

    Google Scholar 

  32. Bruce IN. Cardiovascular disease in lupus patients should all patients be treated with statins and aspirin. Best Pract Res Clin Rheumatol. 2005;19:823–38.

    Article  PubMed  CAS  Google Scholar 

  33. Soltesz P, Veres K, Lakos G, Kiss E, Muszbek L, Szegedi G. Evaluation of clinical and laboratory features of antiphospholipid syndrome: a retrospective study of 637 patients. Lupus. 2003;12:302–7.

    Article  PubMed  CAS  Google Scholar 

  34. Jimenez S, García-Criado MA, Tassies D, et al. Preclinical vascular disease in systemic lupus erythematosus and primary antiphospholipid syndrome. Rheumatology (Oxford). 2005;44:756–61.

    Article  Google Scholar 

  35. Hasunuma Y, Matsuura E, Makita Z, Katahira T, Nishi S, Koike T. Involvement of β2-­glycoprotein I and anticardiolipin antibodies in oxidatively modified low-density lipoprotein uptake by macrophages. Clin Exp Immunol. 1997;107:569–73.

    Article  PubMed  CAS  Google Scholar 

  36. George J, Harats D, Gilburd B, et al. Immunolocalization of β2-glycoprotein I (apolipoprotein H) to human atherosclerotic plaques: potential implications for lesion progression. Circulation. 1999;99:2227–30.

    Article  PubMed  CAS  Google Scholar 

  37. Shoenfeld Y, Sherer Y, George J, Harats D. Autoantibodies associated with atherosclerosis. Ann Med. 2000;32 Suppl 1:37–40.

    PubMed  CAS  Google Scholar 

  38. Vaarala O. Antiphospholipid antibodies and atherosclerosis. Lupus. 1996;5:442–7.

    PubMed  CAS  Google Scholar 

  39. Veres K, Lakos G, Kerenyi A, et al. Antiphospholipid antibodies in acute coronary syndrome. Lupus. 2004;13:423–7.

    Article  PubMed  CAS  Google Scholar 

  40. Shoenfeld Y, Gerli R, Doria A, et al. Accelerated atherosclerosis in autoimmune rheumatic diseases. Circulation. 2005;112:3337–47.

    Article  PubMed  Google Scholar 

  41. Shoenfeld Y, Sherer Y, George J, Harats D. Autoantibodies associated with atherosclerosis. Ann Med. 2000;32:37–40.

    PubMed  CAS  Google Scholar 

  42. Delgado-Alves J, Mason LJ, Ames PR, et al. Antiphospholipid antibodies are associated with enhanced oxidative stress, decreased plasma nitric oxide and paraoxonase activity in an experimental mouse model. Rheumatology (Oxford). 2005;44:1238–44.

    Article  CAS  Google Scholar 

  43. Simoncini S, Sapet C, Camoin-Jau L, et al. Role of reactive oxygen species and p38 MAPK in the induction of the pro-adhesive endothelial state mediated by IgG from patients with anti-phospholipid syndrome. Int Immunol. 2005;17:489–500.

    Article  PubMed  CAS  Google Scholar 

  44. Lopez-Pedrera Ch, Ruiz-Limon P, Aguirre MA, et al. Oxidative stress and mitochondrial membrane potential in circulating leucocytes from Antiphospholipid Syndrome patients: key intracellular events in thrombosis development. Arthritis Rheum. 2009;60:1272 (abstract).

    Google Scholar 

  45. Pierangeli SS, Girardi G, Vega-Ostertag M, et al. Requirement of activation of complement C3 and C5 for antiphospholipid antibody-mediated thrombophilia. Arthritis Rheum. 2005;52:2120–4.

    Article  PubMed  CAS  Google Scholar 

  46. Romay-Penabad Z, Liu XX, Montiel-Manzano G, Papalardo De Martínez E, Pierangeli SS. C5a receptor-deficient mice are protected from thrombophilia and endothelial cell activation induced by some antiphospholipid antibodies. Ann N Y Acad Sci. 2007;1108:554–66.

    Article  PubMed  CAS  Google Scholar 

  47. Carrera-Marin AL, Romay-Penabad Z, Qu HC, et al. A C5a receptor antagonist ameliorates in vivo effects of antiphospholipid antibodies. Arthritis Rheum. 2009;60:s767 (abstract).

    Google Scholar 

  48. Carrera-Marin AL, Aguilar-Valenzuela R, Romay-Penabad Z, et al. Involvement of C6 and the MAC on in vivo antiphospholipid-mediated pathogenic effects. Lupus. 2010;19:507 (abstract).

    Google Scholar 

  49. Amengual O, Atsumi T, Khamashta MA, Hughes GR. The role of the tissue factor pathway in the hypercoagulable state in patients with the antiphospholipid syndrome. Thromb Haemost. 1998;79:276–81.

    PubMed  CAS  Google Scholar 

  50. Oku K, Atsumi T, Bohgaki M, et al. Complement activation in patients with primary antiphospholipid syndrome. Ann Rheum Dis. 2009;68:1030–5.

    Article  PubMed  CAS  Google Scholar 

  51. Zhu M, Olee T, Le DT, et al. Characterization of IgG monoclonal anti-cardiolipin/antiβ2GP1 antibodies from two patients with the anti-phospholipid syndrome reveals three species of antibodies. Br J Haematol. 1999;105:102–9.

    Article  PubMed  CAS  Google Scholar 

  52. Pierangeli SS, Liu XW, Espinola R, et al. Functional analyses of patient-derived IgG monoclonal anticardiolipin antibodies using in vivo thrombosis and in vivo microcirculation models. Thromb Haemost. 2000;84:388–95.

    PubMed  CAS  Google Scholar 

  53. Rao LVM, Hoang AD, Rapaport SI. Mechanism and effects of the binding of lupus anticoagulant IgG and prothrombin to surface phospholipid. Blood. 1996;88:4173–82.

    PubMed  CAS  Google Scholar 

  54. Zhao Y, Rumold R, Ahmed AE, et al. An IgG anti-prothrombin antibody enhances prothrombin binding to damaged endothelial cells and shortens plasma coagulation times. Arthritis Rheum. 1999;42:2132–8.

    Article  PubMed  CAS  Google Scholar 

  55. Vega-Ostertag M, Liu X, Kwan-Ki H, Chen P, Pierangeli S. A human monoclonal antiprothrombin antibody is thrombogenic in vivo and upregulates expression of tissue factor and E-selectin on endothelial cells. Br J Haematol. 2006;135:214–9.

    Article  PubMed  CAS  Google Scholar 

  56. Hwang K, Grossman J, Visvanathan S, et al. Identification of anti-thrombin antibodies in the antiphospholipid syndrome that interfere with the inactivation of thrombin by antithrombin. J Immunol. 2001;167:7192–8.

    Article  PubMed  CAS  Google Scholar 

  57. Escolar G, Font J, Reverter JC, et al. Plasma from systemic lupus erythematosus patients with antiphospholipid antibodies promotes platelet aggregation. Arterioscler Thromb. 1992;12: 196–200.

    Article  PubMed  CAS  Google Scholar 

  58. Marciniak E, Romond EH. Impaired catalytic function of activated protein C: a new in vitro manifestation of lupus anticoagulant. Blood. 1989;74:2426–32.

    PubMed  CAS  Google Scholar 

  59. Hwang KK, Yang CD, Yan W, Grossman JM, Hahn BH, Chen PP. A thrombin-cross-reactive anticardiolipin antibody binds to and inhibits the anticoagulant function of activated protein C. Arthritis Rheum. 2003;48:1622–30.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  60. Yang CD, Hwang KK, Yan W, et al. Identification of anti-plasmin antibodies in the antiphospholipid syndrome that inhibit degradation of fibrin. J Immunol. 2004;172:5765–73.

    Article  PubMed  CAS  Google Scholar 

  61. Kolev K, Gombas J, Varadi B, et al. Immunoglobulin g from patients with antiphospholipid syndrome impairs the fibrin dissolution with plasmin. Thromb Haemost. 2002;87:502–8.

    PubMed  CAS  Google Scholar 

  62. Lu CS, Horizon AA, Hwang KK, et al. Identification of polyclonal and monoclonal antibodies against tissue plasminogen activator in the antiphospholipid syndrome. Arthritis Rheum. 2005;52:4018–27.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  63. Cugno M, Cabibbe M, Galli M, et al. Antibodies to tissue-type plasminogen activator (tPA) in patients with antiphospholipid syndrome: evidence of interaction between the antibodies and the catalytic domain of tPA in 2 patients. Blood. 2004;103:2121–6.

    Article  PubMed  CAS  Google Scholar 

  64. Yang YH, Chien D, Wu M, et al. Novel autoantibodies against the activated coagulation factor IX (FIXa) in the antiphospholipid syndrome that interpose the FIXa regulation by antithrombin. J Immunol. 2009;182:1674–80.

    Article  PubMed  CAS  Google Scholar 

  65. Sorice M, Longo A, Capozzi A, et al. Anti-beta(2)-glycoprotein I antibodies induce monocyte release of tumor necrosis factor alpha and tissue factor by signal transduction pathways involving lipid rafts. Arthritis Rheum. 2007;56:2687–97.

    Article  PubMed  CAS  Google Scholar 

  66. Lambrianides A, Carroll C, Pericleous C, et al. Differential clinical manifestations of the antiphospholipid syndrome may be predicted by different intracellular signalling pathways. Arthritis Rheum. 2007;56:S533 (abstract).

    Google Scholar 

  67. Mulla MJ, Brosens JJ, Chamley LW, et al. Antiphospholipid antibodies induce a pro-­inflammatory response in first trimester trophoblast via the TLR4/MyD88 pathway. Am J Reprod Immunol. 2009;62:96–111.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  68. Carroll TY, Mulla MJ, Han CS, et al. Modulation of trophoblast angiogenic factor secretion by antiphospholipid antibodies is not reversed by heparin. Am J Reprod Immunol. 2011;66:286–96.

    Article  PubMed  CAS  Google Scholar 

  69. Lambrianides A, Heywood W, Mills K, et al. Proteomic analysis shows different patterns of protein expression in monocytes exposed to IgG from patients with different manifestations of APS. Lupus. 2010;19:A013.

    Article  Google Scholar 

  70. Potti A, Bild A, Dressman HK, Lewis DA, et al. Gene expression patterns predict phenotypes of immune-mediated thrombosis. Blood. 2006;107:1301–96.

    Article  Google Scholar 

  71. López-Pedrera Ch, Cuadrado MJ, Hernández V, et al. Proteomic analysis in monocytes from antiphospholipid syndrome patients: Deregulation of proteins related to the development of thrombosis. Arthritis Rheum. 2008;58:2835–44.

    Article  PubMed  Google Scholar 

  72. Goulding NJ, Dixey J, Morand EF, et al. Differential distribution of annexins-I, -II, -IV, and -VI in synovium. Ann Rheum Dis. 1995;54:841–5.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  73. Probst-Cousin S, Kowolik D, Kuchelmeister K, et al. Expression of annexin-1 in multiple sclerosis plaques. Neuropathol Appl Neurobiol. 2002;28:292–300.

    Article  PubMed  CAS  Google Scholar 

  74. Falcone DJ, Borth W, Faisal Khan KM, Hajjar KA. Plasminogen-mediated matrix invasion and degradation by macrophages is dependent on surface expression of annexin II. Blood. 2001;97:777–84.

    Article  PubMed  CAS  Google Scholar 

  75. Zhang J, McCrae KR. Annexin A2 mediates endothelial cell activation by antiphospholipid/anti-ß2 glycoprotein I antibodies. Blood. 2005;105:1964–9.

    Article  PubMed  CAS  Google Scholar 

  76. Ahamed J, Versteeg HH, Kerver M. et al; Disulfide isomerization switches TF from coagulation to cell signalling. Proc Natl Acad Sci U S A. 2006;103:13932–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  77. Amir RE, Iwai K, Ciechanover A. The NEDD8 pathway is essential for SCFß-TrCP-mediated ubiquitination and processing of the NFkB precursor p105. J Biol Chem. 2002;277:23253–9.

    Article  PubMed  CAS  Google Scholar 

  78. Rolfe BE, Worth NF, World CJ, Campbell JH, Campbell GR. Rho and vascular disease. Atherosclerosis. 2005;183:1–16.

    Article  PubMed  CAS  Google Scholar 

  79. McNeil HP, Simpson RJ, Cherterman CN, et al. Antiphospholipid antibodies are directed against a complex antigen that includes lipid binding inhibitor of coagulation: β2 glycoprotein I (apolipoprotein H). Proc Natl Acad Sci U SA. 1990;87:4120–4.

    Article  CAS  Google Scholar 

  80. Galli M, Comfurius P, Maassen C, et al. Anticardiolipin antibodies (ACA) directed not to cardiolipin but to a plasma protein cofactor. Lancet. 1990;335:1544–7.

    Article  PubMed  CAS  Google Scholar 

  81. Sebire NJ, Fox H, Backos M, et al. Defective endovascular trophoblast invasion in primary antiphospholipid antibody syndrome-associated early pregnancy failure. Hum Reprod. 2002;17:1067–71.

    Article  PubMed  CAS  Google Scholar 

  82. Di Simone N, Meroni PL, de Papa N, et al. Antiphospholipid antibodies affect trophoblast gonadotropin secretion and invasiveness by binding directly and through adhered beta2-­glycoprotein I. Arthritis Rheum. 2000;43:140–50.

    Article  PubMed  Google Scholar 

  83. Holers VM, Girardi G, Mo L, et al. Complement C3 activation is required for antiphospholipid antibody-induced fetal loss. J Exp Med. 2002;195:211–20.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  84. Girardi G, Berman J, Redecha P, et al. Complement C5a receptors and neutrophils mediate fetal injury in the antiphospholipid syndrome. J Clin Invest. 2003;112:1644–54.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  85. Lopez LR, Greco TP, Conti-Kelly AM, et al. The role of oxidized-LDL/β2-glycoprotein I complexes and anti-β2GPI antibodies in autoimmune-mediated atherosclerosis. 2010;19:504–5 (abstract).

    Google Scholar 

  86. Hua X, Su J, deFaire U, Frostegard J. Low levels of IgM antibodies to oxidized cardiolipin but not to cardiolipin increase but high levels decrease risk of cardiovascular disease: proinflammatory effects of oxidized cardiolipin. 2010;19:504 (abstract).

    Google Scholar 

  87. Ioannou Y, Zhang JY, Passam FH, Rahgozar S, Qi J et al. Naturally occurring free thiols within β2-glycoprotein I in vivo: functional implications in the regulation of oxidative stress induced endothelial cell injury. 2010;19:502 (abstract).

    Google Scholar 

  88. Ioannou Y, Zhang JY, Passam F, et al. Human endothelial cells secrete ­oxidoreductases on the cell surface and can both nitrosylate and modulate the redox state of β2-glycoprotein I. 2010;19:503 (abstract).

    Google Scholar 

  89. Aguilar-Valenzuela R, Romay-Penabad Z, Urbanus R, et al. In vivo involvement of apolipoprotein E receptor 2 (apoER2′) on thrombogenic effects of a dimer of β2-glycoprotein I(β2GPI). 2010;19:510 (abstract).

    Google Scholar 

  90. Romay-Penabad Z, Shilagard T, Vargas G, Agilar-Valenzuela R, de Groot P, Pierangeli S. Apolipoprotein E receptor 2 (apoER2) mediates thrombogenic effects of antiphospholipid (aPL) antibodies. 2010;19:511 (abstract).

    Google Scholar 

  91. Sikara MP, Routsias JG, Samiotaki M, et al. β2-glycoprotein I (β2GPI) binds platelet factor 4 (PF4): implications for the pathogenesis of antiphospholipid syndrome. 2010;19:509 (abstract).

    Google Scholar 

  92. Cesarman Maus G, Cantu C, Barinagarrementeria F, et al. Autoantibodies against the fibrinolytic receptor, annexin A2, in central venous thrombosis. 2010;19:507 (abstract).

    Google Scholar 

  93. Allen K, Kawanami D, Jain M, McCrae K. Downregulation of KLF2 by antiphospholipid antibodies affects NF-κB signaling and is modulated in part by CBP. Lupus 2010;19:506 (abstract).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia S. Pierangeli PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Willis, R., Giles, I.P., Chen, P.P., López-Pedrera, C., Cuadrado, M.J., Pierangeli, S.S. (2012). What is the Mechanism(s) of Antiphospholipid Antibody-Mediated Thrombosis?. In: Erkan, D., Pierangeli, S. (eds) Antiphospholipid Syndrome. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-3194-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3194-7_4

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-3193-0

  • Online ISBN: 978-1-4614-3194-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics