Skip to main content

Abstract

Model-based learning is both a new and old paradigm of psychology and education. In pedagogy we can find this idea since decades (and until today various conceptions of model-based learning have been developed in the fields of mathematics, physics or geography education aiming at guided discovery and exploratory learning. Traditionally, there are two major approaches of theory and research on model-based learning: A functional-pragmatic approach and a constructivist approach, which is closely related with the theory of mental models. This chapter focuses on both approaches with a particular emphasis on measuring the effects of model-based learning on different performance criteria, such as understanding and problem solving, analogical reasoning, and situation-dependent decision making.

The chapter starts with a description of the theoretical foundation of model-based learning with a particular emphasis on the learning-dependent progression of mental models and its systematic assessment by means of particular diagnostic methodologies. The epistemology and psychology of mental models as the fundamental basis of model-based learning are described whereby models will be separated from cognitive schemas, discussed as the “building blocks” of the psychological understanding of cognition. The impact of mental models on comprehension and problem solving as well as on analogical reasoning and decision making is discussed. Comprehension and reasoning in specific situations necessarily involve the use of mental models of different qualities. Besides the mental model approach, model-building activities have been emphasized in various areas of instructional research aiming at the improvement of learning and problem solving in subject matter domains, such as physics or mathematics. In contrast to the mental model approach, these instructional approaches of model-based learning correspond with functionalist-pragmatic conceptions of model-building activities within the realm of mathematics and physics education. Both approaches of model-based learning have had initiated numerous empirical studies which are summarized and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Diban, S. (2008). Progress in the diagnosis of mental models. In D. Ifenthaler, P. Pirnay-Dummer, & J. M. Spector (Eds.), Understanding models for learning and instruction: Essays in honor of Norbert M. Seel (pp. 81–102). New York, NY: Springer.

    Chapter  Google Scholar 

  • Anderson, J. R. (1983). The architecture of cognition. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Anderson, R. C. (1984). Some reflections on the acquisition of knowledge. Educational Researcher, 13(9), 5–10.

    Article  Google Scholar 

  • Bailer-Jones, D. (2009). Scientific models in philosophy of science. Pittsburgh, PA: The University of Pittsburgh Press.

    Google Scholar 

  • Berlyne, D. E. (1971). Aesthetics and psychobiology. New York, NY: Appleton-Century-Crofts.

    Google Scholar 

  • Betsch, T., & Fiedler, K. (1999). Understanding conjunction effects in probability judgment: the role of implicit mental models. European Journal of Social Psychology, 29, 75–93.

    Article  Google Scholar 

  • Blumschein, P., Hung, W., Jonassen, D. H., & Strobel, J. (Eds.) (2009). Model-based approaches to learning. Using systems models and simulations to improve understanding and problem solving in complex domains. Rotterdam, The Netherlands: Sense Publishers

    Google Scholar 

  • Borsboom, D. (2005). Measuring the mind: Conceptual issues in contemporary psychometrics. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Bower, G. H., & Morrow, D. G. (1990). Mental models in narrative comprehension. Science, 247(5), 44–48.

    Article  Google Scholar 

  • Braine, M. D. (1990). The natural logic approach to reasoning. In W. Overton (Ed.), Reasoning, necessity and logic: Developmental perspectives (pp. 133–157). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Brewer, W. F. (1987). Schemas versus mental models in human memory. In P. Morris (Ed.), Modelling cognition (pp. 187–197). Chichester, UK: Wiley.

    Google Scholar 

  • Briggs, P. (1990). The role of the user model in learning as an internally and externally directed activity. In D. Ackermann & M. J. Tauber (Eds.), Mental models and human-computer interaction 1 (pp. 195–208). Amsterdam: Elsevier.

    Google Scholar 

  • Brown, A. L. (1979). Theories of memory and the problems of development: Activity, growth, and knowledge. In L. S. Cermak & F. I. M. Craik (Eds.), Levels of processing in human memory (pp. 225–258). Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Cannon-Bowers, I. A., Salas, E., & Converse, S. (1993). Shared mental models in expert team decision making. In J. Castellan Jr. (Ed.), Current issues in individual and team decision making (pp. 221–246). Mahwah, NJ: Erllbaum.

    Google Scholar 

  • Carlson, H. L. (1991). Learning style and program design in interactive multimedia. Educational Technology Research and Development, 39(3), 41–48.

    Article  Google Scholar 

  • Chapanis, A. (1961). Men, machines, and models. American Psychologist, 16, 113–131.

    Article  Google Scholar 

  • Chaplot, V., Saleh, A., & Jaynes, D. B. (2005). Effect of the accuracy of spatial rainfall information on the modeling of water, sediment, and NO3-N loas at the watershed level. Journal of Hydrology, 312, 223–234.

    Article  Google Scholar 

  • Cheng, P. W., & Holyoak, K. J. (1985). Pragmatic reasoning schemas. Cognitive Psychology, 17, 391–426.

    Article  Google Scholar 

  • Christensen, G. L., & Olson, J. C. (2002). Mapping consumers’ mental models with ZMET. Psychology and Marketing, 19(6), 477–502.

    Article  Google Scholar 

  • Clariana, R. B., & Strobel, J. (2008). Modeling Technologies. In J. M. Spector, M. D. Merrill, J. van Merrienboer, & M. P. Driscoll (Eds.), Handbook of research on educational communications and technology (3rd ed., pp. 329–344). New York, NY: Lawrence Erlbaum.

    Google Scholar 

  • Clement, J. (1979). Students’ preconceptions in introductory mechanics. The American Journal of Physics, 50(1), 66–71.

    Article  Google Scholar 

  • *Clement, J. (2000). Model construction in scientists and students.Case studies of imagery, analogy, and physical intuition. Mahwah, NJ: Erlbaum

    Google Scholar 

  • Clement, J. (2008). Creative model construction in scientists and students: The Role of imagery, analogy, and mental simulation. Dordrecht: Springer.

    Book  Google Scholar 

  • Clement, J., & Rea-Ramirez, M. A. (Eds.). (2008). Model-based learning and instruction in science. Dordrecht: Springer.

    Google Scholar 

  • Clement, J. J., & Steinberg, M. S. (2002). Step-wise evolution of mental models of electric circuits: A “learning-aloud” case study. The Journal of the Learning Sciences, 11(4), 389–452.

    Article  Google Scholar 

  • Cobb, P., Confrey, J., diSessa, A., Lehrer, R., & Schauble, L. (2003). Design experiments in educational research. Educational Researcher, 32(1), 9–13.

    Article  Google Scholar 

  • Cone, J., & Winters, K. (2011). Mental models interviewing for more-effective communication. Corvallis, OR: Oregon Sea Grant.

    Google Scholar 

  • Craig, P. A. (2001). Situational awareness: Controlling pilot error. New York, NY: McGraw-Hill.

    Google Scholar 

  • Craik, K. J. W. (1943). The nature of explanation. Cambridge: Cambridge University Press.

    Google Scholar 

  • Darabi, A. A., Nelson, D. W., & Seel, N. M. (2009). Progression of mental models throughout the phases of a computer-based instructional simulation: Supportive information, practice, and performance. Computers in Human Behavior, 25, 723–730.

    Article  Google Scholar 

  • Doerr, H. (2006). Teachers’ ways of listening and responsing to students’ emerging mathematical models. ZDM—The International Journal on Mathematics Education, 38(3), 255–268.

    Article  Google Scholar 

  • Dougherty, M. R., Franco-Watkins, A. M., & Thomas, R. (2008). Psychological plausibility of the theory of probabilistic mental models and the fast and frugal heuristics. Psychological Review, 115(1), 199–213.

    Article  Google Scholar 

  • Doyle, J. K., Radzicki, M. J., & Trees, W. S. (2008). Measuring change in mental models of complex dynamic systems. In H. Qudrat-Ullah, M. J. Spector, & P. Davidsen (Eds.), Complex decision making: Theory and practice (pp. 269–294). Berlin: Springer.

    Google Scholar 

  • Druskat, V. U., & Pescosolido, A. T. (2002). The content of effective teamwork mental models in self-managing teams: Ownership, learning and heedful interrelating. Human Relations, 55(3), 283–314.

    Article  Google Scholar 

  • Eckblad, G. (1981). Scheme theory. A conceptual framework for cognitive-motivational processes. London: Academic Press.

    Google Scholar 

  • Endsley, M. R. (1995). Toward a theory of situation awareness in dynamic systems. Human Factors, 37(1), 32–64.

    Article  Google Scholar 

  • Endsley, M. R. (2000). Situation models: An avenue to the modelling of mental models. Proceedings of the 14th Triennial Congress of the International Ergonomics Association and the 44th Annual Meeting of the Human Factors and Ergonomics Society. Santa Monica, CA: HFES.

    Google Scholar 

  • English, L. (1997). Analogies, metaphors, and images: Vehicles for mathematical reasoning. In L. English (Ed.), Mathematical reasoning, analogies, metaphors, and images (pp. 4–18). Mahwah, NJ: Lawrence Erlbaum.

    Article  Google Scholar 

  • English, L. D., & Watters, J. J. (2005). Mathematical modeling in the early school years. Mathematics Education Research Journal, 16(3), 58–79.

    Article  Google Scholar 

  • Eppler, M. (2007). Knowledge communication problems between experts and decision makers: an overview and classification. Electronic Journal of Knowledge Management, 5(3), 291–300.

    Google Scholar 

  • Etkina, E., Warren, A., & Gentile, M. (2005). The role of models in physics instruction. Physics Teacher, 43, 15–20.

    Google Scholar 

  • Evans, J. S. B. T. (1982). The psychology of deductive reasoning. London: Routledge and Kegan Paul.

    Google Scholar 

  • Evans, J. S., & Over, D. E. (1996). Rationality and reasoning. East Sussex, England: Psychology Press.

    Google Scholar 

  • Falzer, P. R. (2004). Cognitive schema and naturalistic decision making in evidence-based practices. Journal of Biomedical Informatics, 37(2), 86–98.

    Article  Google Scholar 

  • Fiedler, K. (2001). Affective states trigger processes of assimilation and accommodation. In L. L. Martin & G. L. Clore (Eds.), Theories of mood and cognition: A user’s guidebook (pp. 85–98). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Forbus, K. D., & Gentner, D. (1997). Qualitative mental models: Simulations or memories? In Proceedings of the Eleventh International Workshop on Qualitative Reasoning. Italy: Cortona.

    Google Scholar 

  • Garnham, A. (2001). Mental models and the interpretation of anaphora. East Sussex, U.K.: Psychology Press.

    Google Scholar 

  • Garrod, S. C., & Anderson, A. (1987). Saying what you mean in dialogue: A study in conceptual and semantic coordination. Cognition, 221, 181–218.

    Article  Google Scholar 

  • Gentner, D., & Stevens, A. L. (Eds.). (1983). Mental models. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Gigerenzer, G., Hoffrage, U., & Kleinbölting, H. (1991). Probabilistic mental models: A Brunswikian theory of confidence. Psychological Review, 98(4), 506–528.

    Article  Google Scholar 

  • Goetz, T., Preckel, F., Pekrun, R., & Hall, N. C. (2007). Emotional experiences during test taking. Does cognitive ability make a difference? Learning and Individual Differences, 17, 3–16.

    Article  Google Scholar 

  • Greeno, J. G. (1989). Situations, mental models, and generative knowledge. In D. Klahr & K. Kotovsky (Eds.), Complex information processing (pp. 285–318). Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Groesser, S. (2012). Mental model of dynamic systems. In N. M. Seel (Ed.), The encyclopedia of the sciences of learning (Vol. 5, pp. 2195–2200). New York, NY: Springer.

    Google Scholar 

  • Gross, J. J. (1998). The emerging field of emotion regulation: An integrative review. Review of General Psychology, 2(3), 271–299.

    Article  Google Scholar 

  • Glaser, R. (1990). The reemergence of learning theory within instructional research. American Psychologist, 45(1), 29–39.

    Article  Google Scholar 

  • Guermond, Y. (2008). The modeling process in geography. From determinism to complexity. Hoboken, NJ: Wiley.

    Book  Google Scholar 

  • Hacker, W. (1977).Bedeutung und Analyse des Gedächtnissesfür die Arbeits- und Ingenieurpsychologie—zuGedächtnisanforderungen in der psychischen Regulation von Handlungen. In F. Klix & H. Sydow (Hrsg.), ZurPsychologie des Gedächtnisses (S. 150–174). Bern: Huber.

    Google Scholar 

  • Haig, K. M., Sutton, S., & Whittington, J. (2006). SBAR: A shared mental model for improving communication between clinicians. Journal on Quality and Patient Safety, 32(3), 167–175.

    Google Scholar 

  • *Halford, G. S. (1993). Children´s understanding. The development of mental models. Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Halford, G. S., Bain, J. D., Maybery, M. T., & Andrews, G. (1998). Induction of relational schemas: Common processes in reasoning and complex learning. Cognitive Psychology, 35(3), 201–245.

    Article  Google Scholar 

  • Heyworth, R. M., & Briggs, J. G. R. (2007). Science in focus: Chemistry ‘N’ level (2nd ed.). Singapore: Pearson Education.

    Google Scholar 

  • Hiebert, J., & Carpenter, T. P. (1992). Learning and teaching with understanding. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 65–97). New York, NY: Macmillan.

    Google Scholar 

  • Hodgson, T. (1995). Secondary mathematics modeling: Issues and challenges. School Science and Mathematics, 95(7), 351–358.

    Article  Google Scholar 

  • Holland, J., Holyoak, K. J., Nisbett, R. E., & Thagard, P. (1986). Induction: Processes of inference, learning, and discovery. Cambridge, MA: MIT Press.

    Google Scholar 

  • Holyoak, K. J., & Thagard, P. (1995). Mental leaps. Analogy in creative thought. Cambridge, MA: MIT Press.

    Google Scholar 

  • Hu, C. H., Si, X. S., & Yang, J. B. (2010). System reliability prediction model based on evidential reasoning algorithm with nonlinear optimization. Expert Systems with Applications, 37, 2550–2562.

    Article  Google Scholar 

  • Ifenthaler, D., Masduki, I., & Seel, N. M. (2011). The mystery of cognitive structures and how we can detect it: Tracking the development of cognitive structures over Time. Instructional Science, 39, 41–61.

    Article  Google Scholar 

  • Ifenthaler, D., Pirnay-Dummer, P., & Seel, N. M. (Eds.). (2010). Computer-based diagnostics and systematic analysis of knowledge. New York, NY: Springer.

    Google Scholar 

  • Ifenthaler, D., & Seel, N. M. (2005). The measurement of change: Learning-dependent progression of mental models. Technology, Instruction, Cognition and Learning, 2(4), 321–340.

    Google Scholar 

  • Ifenthaler, D., & Seel, N. M. (2011). A longitudinal perspective on inductive reasoning tasks. Illumi-nating the probability of change. Learning and Instruction, 21(4), 538–549.

    Article  Google Scholar 

  • Ifenthaler, D., & Seel, N. M. (2012). Mental models and coping: Effects of experimentally induced emotions on inductive reasoning. Paper presented at the·AERA Annual Meeting, Vancouver, BC, Canada.

    Google Scholar 

  • Jacobson, M. J. (2000). Problem solving about complex systems: Differences between experts and novices. In B. Fishman & S. O’Connor-Divelbiss (Eds.), Fourth International Conference of the Learning Sciences (pp. 14–21). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Johnson, T., & Krems, J. (2001). Use of current explanations in multicausal abductive reasoning. Cognitive Science, 25, 903–939.

    Article  Google Scholar 

  • Johnson-Laird, P. N. (1983). Mental models. Towards a cognitive science of language, inference, and consciousness. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Johnson-Laird, P. N. (1989). Mental models. In M. I. Posner (Ed.), Foundations of cognitive science (pp. 469–499). Cambridge, MA: The MIT Press.

    Google Scholar 

  • Johnson-Laird, P. N. (1994). A model theory of induction. International Studies in the Philosophy of Science, 8, 5–29.

    Article  Google Scholar 

  • Johnson-Laird, P. N. (2004). The history of mental models. In K. Manktelow & M. C. Chung (Eds.), Psychology of reasoning: Theoretical and historical perspectives (pp. 179–212). New York, NY: Psychology Press.

    Google Scholar 

  • Jonassen, D. H. (2000). Computers as mindtools for schools: Engaging critical thinking. Columbus, OH: Prentice-Hall.

    Google Scholar 

  • Jonassen, D. H., & Cho, Y. H. (2008). Externalizing mental models with mindtools. In D. Ifenthaler, P. Pirnay-Dummer, & J. M. Spector (Eds.), Understanding models for learning and instruction. Essays in the honor of Norbert M. Seel (pp. 145–159). New York, NY: Springer.

    Chapter  Google Scholar 

  • Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decisions under risk. Econometrica, 47, 263–291.

    Article  Google Scholar 

  • Khemlani, S. S., & Johnson-Laird, P. N. (2011). The need to explain. The Quarterly Journal of Experimental Psychology, 64, 1–13.

    Article  Google Scholar 

  • Kieras, D. E. (1985). The why, when, and how of cognitive simulation: A tutorial. Behavior Research Methods, Instruments, & Computers, 17(2), 279–285.

    Article  Google Scholar 

  • Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist, 41(2), 75–86.

    Article  Google Scholar 

  • Kirwan, B., & Ainsworth, L. K. (1992). A Guide to task analysis. London: Taylor & Francis.

    Google Scholar 

  • Klein, G. (1989). Recognition-primed decisions. Advances in Man–Machine Systems Research, 5, 47–92.

    Google Scholar 

  • Klein, G., & Calderwood, R. (1991). Decision models: Some lessons from the field. IEEE Transactions on Systems, Man, and Cybernetics, 21(5), 1018–1026.

    Article  Google Scholar 

  • Klein, G., Calderwood, R., & Clinton-Cirocco, A. (1986). Rapid decision making on the fire ground. In Proceedings 30th annual human factors society (pp. 576–580). Santa Monica, CA: Human Factors Society.

    Google Scholar 

  • Köhler, W. (1947). Gestalt psychology: An introduction to new concepts in modern psychology. New York, NY: Liveright Publishing.

    Google Scholar 

  • Krohne, H. W., Pieper, M., Knoll, N., & Breimer, N. (2002). The cognitive regulation of emotions. The role of success versus failure experience and coping dispositions. Cognition and Emotion, 16(2), 217–243.

    Article  Google Scholar 

  • Kuhl, J. (1983). Emotion, kognition und motivation. I: Auf dem Weg zu einer systemtheoretischen Betrachtung der Eomtionsgenese. Sprache und Kognition, 2, 1–27.

    Google Scholar 

  • Kurland, D. M., & Pea, R. D. (1985). Children’s mental models of recursive Logo programs. Journal of Educational Computing Research, 1(2), 235–243.

    Article  Google Scholar 

  • Laubichler, M. D., & Müller, G. B. (Eds.). (2007). Modeling biology. Cambridge, MA: MIT Press.

    Google Scholar 

  • Lehrer, R. (2009). Designing to develop disciplinary dispositions: Modeling natural systems. The American Psychologist, 64(8), 759–771.

    Article  Google Scholar 

  • Lehrer, R., Kim, M., & Schauble, L. (2007). Supporting the development of conceptions of statistics by engaging students in modeling and measuring variability. International Journal of Computers for Mathematical Learning, 12, 195–216.

    Article  Google Scholar 

  • Lehrer, R., & Pritchard, C. (2002). Symbolizing space into being. In K. Gravemeijer, R. Lehrer, B. van Oers, & L. Verschaffel (Eds.), Symbolizing, modeling and tool use in mathematics education (pp. 59–86). Dordrecht, The Netherlands: Kluwer.

    Chapter  Google Scholar 

  • Lehrer, R., & Schauble, L. (2003). Origins and evolution of model-based reasoning in mathematics and science. In R. Lesh & H. M. Doerr (Eds.), Beyond constructivism. Models and modelling perspectives on mathematics problem solving, learning, and teaching (pp. 59–70). Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Lehrer, R., & Schauble, L. (2006). Cultivating model-based reasoning in science education. In K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (pp. 371–387). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Lehrer, R., & Schauble, L. (2010). What kind of explanation is a model? In M. K. Stein & L. Kucan (Eds.), Instructional explanations in the disciplines (pp. 9–22). New York, NY: Springer.

    Chapter  Google Scholar 

  • Lesh, R. (2006). Modeling students modeling abilities: The teaching and learning of complex systems in education. The Journal of the Learning Sciences, 15(1), 45–52.

    Article  Google Scholar 

  • Lesh, R., & Doerr, H. M. (2000). Symbolizing, communicating, and mathematizing: Key components of models and modeling. In P. Cobb, E. Yackel, & K. McClain (Eds.), Symbolizing and communicating in mathematics classrooms. Perspectives on discourse, tools, and instructional design (pp. 361–383). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • *Lesh, R., & Doerr, H. M. (Eds.) (2003). Beyond constructivism: A models and modeling perspective on mathematics problem solving, learning and teaching. Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Lesh, R., & Sriraman, B. (2005). Mathematics education as a design science. ZentralblattfürDidaktik der Mathematik, 37(6), 490–505.

    Article  Google Scholar 

  • *Magnani, L. (2009). Abductive cognition. The epistemological and ego-cognitive dimensions of hypothetical reasoning. Berlin/Heidelberg: Springer

    Google Scholar 

  • Mandl, H., & Levin, J. R. (Eds.). (1989). Knowledge acquisition from text and pictures. Amsterdam: North-Holland.

    Google Scholar 

  • Mandler, J. M. (1984). Stories, scripts, and scenes: Aspects of schema theory. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Markman, A. B. (1998). Knowledge representation. Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Marshall, S. (1995). Schemas in problem solving. New York, NY: Cambridge University Press.

    Book  Google Scholar 

  • Mathieu, J. E., Heffner, T. S., Goodwin, G. F., Salas, E., & Cannon-Bowers, J. A. (2000). The influence of shared mental models on team process and performance. Journal of Applied Psychology, 85(2), 273–283.

    Article  Google Scholar 

  • Mayer, R. E. (1989). Models for understanding. Review of Educational Research, 59(1), 43–64.

    Article  Google Scholar 

  • McClary, L., & Talanquer, V. (2011). College chemistry students’ mental models of acids and acid strength. Journal of Research in Science Teaching, 48(4), 396–413.

    Article  Google Scholar 

  • Mohammed, S., Klimoski, R., & Rentsch, J. (2000). The measurement of team mental models: We have no shared schema. Organizational Research Methods, 3(2), 123–165.

    Article  Google Scholar 

  • *Morgan, M. G., Fischhoff, B., Bostrom, A., & Atman, C. J. (2002). Risk communication: A mental models approach. New York, NY: Cambridge University Press.

    Google Scholar 

  • Norman, D. A. (1983). Some observations on mental models. In D. Gentner & A. L. Stevens (Eds.), Mental models (pp. 7–14). Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Norman, D. A., & Rumelhart, D. E. (1978). Gedächtnis und Wissen. In D. A. Norman & D. E. Rumelhart (Hrsg.), Strukturen des Wissens.Wege der Kognitionsforschung (S. 21–47). Stuttgart: Klett-Cotta.

    Google Scholar 

  • Oliver, K., & Hannafin, M. J. (2001). Developing and refining mental models in open-ended learning environments: A case study. Educational Techology Research and Devlopment, 49(4), 5–32.

    Article  Google Scholar 

  • Pearson, R. G., et al. (2006). Model-based uncertainty in species range prediction. Journal of Biogeography, 33, 1704–1711.

    Article  Google Scholar 

  • Peirce, C. S. (1883). Studies in logic. Boston, MA: Little, Brown & Co.

    Article  Google Scholar 

  • Penner, D. E. (2001). Cognition, computers, and synthetic science: Building knowledge and meaning through modeling. Review of Research in Education, 25, 1–35.

    Google Scholar 

  • Penner, D. E., Giles, N. D., Lehrer, R., & Schauble, L. (1997). Building functional models: Designing an elbow. Journal of Research in Science Teaching, 34(2), 1–20.

    Article  Google Scholar 

  • Penner, D. E., Lehrer, R., & Schauble, L. (1998). From physical models to biomechanics: A design-based modeling approach. The Journal of the Learning Sciences, 7(3 & 4), 429–449.

    Google Scholar 

  • Piaget, J. (1945). La formation du symbole chez l’enfant. Imitation, jeu et rêve, image et représen-tation. Neuchatel: Delachaux et Niestlé S.A.

    Google Scholar 

  • Piaget, J. (1976). Die Äquilibration der kognitiven Strukturen. Stuttgart: Klett.

    Google Scholar 

  • Pirnay-Dummer, P., Ifenthaler, D., & Spector, J. M. (2010). Highly integrated model assessment technology and tools. Educational Technology Research and Development, 58(1), 3–18.

    Article  Google Scholar 

  • Prinz, W. (1983). Wahrnehmung und Tätigkeitssteuerung. Heidelberg: Springer.

    Book  Google Scholar 

  • Rickheit, G., & Habel, C. (Eds.). (1999). Mental models in discourse processing and reasoning. Amsterdam: Elsevier.

    Google Scholar 

  • Rips, L. J. (1987). Mental muddles. In M. Brand & R. M. Harnish (Eds.), The representation of knowledge and belief (pp. 259–286). Tucson: University of Arizona Press.

    Google Scholar 

  • Rumelhart, D. E., Smolensky, P., McClelland, J. L., & Hinton, G. E. (1986). Schemata and sequential thought processes in PDP models. In J. L. McClelland & D. E. Rumelhart (Eds.), Parallel distributed processing. Explorations in the microstructure of cognition. Volume 2: Psychological and biological models (pp. 7–57). Cambridge, MA: MIT Press.

    Google Scholar 

  • Sasse, M. (1991). How to t(r)ap users’ mental models. In M. J. Tauber & D. Ackermann (Eds.), Mental models and human-computer interaction 2 (pp. 59–79). Amsterdam: North Holland.

    Google Scholar 

  • Schaffernicht, M. (2006). Detecting and monitoring change in models. System Dynamics Review, 22(1), 73–88.

    Article  Google Scholar 

  • Schaffernicht, M., & Groesser, S. N. (2011). A comprehensive method for comparing mental models of dynamic systems. European Journal of Operational Research, 210(1), 57–67.

    Article  Google Scholar 

  • Scheele, B., & Groeben, N. (1984). Die Heidelberger Struktur-Lege-Technik (SLT): Eine Dialog-Konsens-MethodezurErhebungsubjektiverTheorienmittlererReichweite. Weinheim: Beltz.

    Google Scholar 

  • Schichl, H. (2004). Models and the history of models. In J. Kallrath (Ed.), Modeling languages in mathematical optimization (pp. 279–292). Boston: Kluwer.

    Chapter  Google Scholar 

  • Schnotz, W. (2002). WissenserwerbmitTexten, Bildern und Diagrammen. In L. J. Issing & P. Klimsa (Hrsg.), Information und Lernenmit Multimedia und Internet (3., vollst. überarb. Aufl., S. 65–81). Weinheim: PsychologieVerlags Union.

    Google Scholar 

  • Schnotz, W., & Bannert, M. (2003). Construction and interference in learning from multiple representation. Learning and Instruction, 13, 141–156.

    Article  Google Scholar 

  • Schorr, R., & Koellner-Clarke, K. (2003). Using a modeling approach to analyze the ways in which teachers consider new ways to teach mathematics. Mathematical Thinking and Learning, 5(2, 3), 109–130.

    Google Scholar 

  • Schvaneveldt, R. W. (1990). Pathfinder associative networks: Studies in knowledge organization. Norwood, NJ: Ablex.

    Google Scholar 

  • Schwarz, N. (2000). Emotion, cognition, and decision making. Cognition and Emotion, 14, 433–440.

    Article  Google Scholar 

  • Seel, N. M. (1986). Wissenserwerb durch Medien und “mentale Modelle”. Unterrichtswissenschaft, 14(4), 384–401.

    Google Scholar 

  • Seel, N. M. (1991). Weltwissen und mentaleModelle. Göttingen: Hogrefe.

    Google Scholar 

  • Seel, N. M. (1999). Educational diagnosis of mental models: Assessment problems and technology-based solutions. Journal of Structural Learning and Intelligent Systems, 14(2), 153–185.

    Google Scholar 

  • Seel, N. M. (2003). Model-centered learning and instruction. Technology, Instruction, Cognition and Learning, 1(1), 59–85.

    Google Scholar 

  • Seel, N. M. (2006). Mental models and complex problem solving. Instructional effects. In J. Elen & R. E. Clark (Eds.), Handling complexity in learning environments. Theory and research (pp. 43–66). Amsterdam: Kluwer.

    Google Scholar 

  • Seel, N. M. (2009). Bonjour triste sse: Why don’t we research as we have been taught? Methodological considerations on simulation-based modelling. Technology, Instruction, Cognition and Learning, 6(3), 151–176.

    Google Scholar 

  • Seel, N. M. (2012). Context and semantic sensitivity in learning. In N. M. Seel (Ed.), The Encyclopedia of the sciences of learning (pp. 790–794). New York, NY: Springer.

    Chapter  Google Scholar 

  • Seel, N. M., & Dinter, F. R. (1995). Instruction and mental model progression: Learner-dependent effects of teaching strategies on knowledge acquisition and analogical transfer. Educational Research and Evaluation, 1(1), 4–35.

    Article  Google Scholar 

  • Seel, N. M., & Ifenthaler, D. (2012). Learning-dependent progression of mental models. In N. M. Seel (Ed.), The Encyclopedia of the sciences of learning (pp. 2032–2036). New York, NY: Springer.

    Chapter  Google Scholar 

  • Seel, N. M., Ifenthaler, D., & Pirnay-Dummer, P. (2009). Mental models and problem solving: Technological solutions for measurement and assessment of the development of expertise. In P. Blumschein, W. Hung, D. H. Jonassen, & J. Strobel (Eds.), Model-based approaches to learning: Using systems models and simulations to improve understanding and problem solving in complex domains (pp. 17–40). Rotterdam: Sense Publishers.

    Google Scholar 

  • Senge, P. M. (1990). The fifth discipline: The art and practice of the learning organizations. New York, NY: Doubleday/Currency.

    Google Scholar 

  • Shavelson, R. J., Phillips, D. C., Towne, L., & Feuer, M. (2003). On the science of education design studies. Educational Researcher, 32(1), 25–28.

    Article  Google Scholar 

  • Sparkes, J., & Huf, S. (2003). Mental models theory and military decision-making: A pilot experimental model. Edinburgh, South Australia: DSTO Systems Sciences Laboratory.

    Google Scholar 

  • Stachowiak, H. (1973). Allgemeine Modelltheorie. Wien: Springer.

    Book  Google Scholar 

  • Steiger, D. N., & Steiger, N. M. (2009). Discovering a decision maker’s mental model with instance-based cognitive mining: A theoretical justification and implementation. Interdisciplinary Journal of Information, Knowledge, and Management, 4, 1–22.

    Google Scholar 

  • Steinbuch, K. (1961). Automat und Mensch. Heidelberg: Übermenschliche und maschinelleIntelligenz.

    Book  Google Scholar 

  • Stewart, N., Chater, N., Stott, H. P., & Reimers, S. (2003). Prospect relativity: How choice options influence decision under risk. Journal of Experimental Psychology, 102, 269–283.

    Google Scholar 

  • Stewart, J., Hafner, R., Johnson, S., & Finkel, E. (1992). Science as model building: Computers and high-school genetics. Educational Psychologist, 27(3), 317–336.

    Article  Google Scholar 

  • Stott, P. A., Jones, G. S., Lowe, J. A., Thorne, P., Durman, C., Johns, T. C., et al. (2006). Transient climate simulations with the HadGEM1 climate model: Causes of past warming and future climate change. Journal of Climate, 19, 2763–2782.

    Article  Google Scholar 

  • Veldhuyzen, W., & Stassen, H. G. (1977). The internal model concept: An application to modelling human control of large ships. Human Factors, 19, 367–380.

    Google Scholar 

  • Vosniadou, S., & Brewer, W. F. (1992). Mental models of the earth: A study of conceptual change in childhood. Cognitive Psychology, 24, 535–585.

    Article  Google Scholar 

  • Wang, W. (2007). An adaptive predictor for dynamic systems forecasting. Mechanical Systems and Signal Processing, 21, 809–823.

    Article  Google Scholar 

  • Wartofsky, M. W. (1979). Models. Representation and the scientific understanding. Dordrecht: Reidel Publishing.

    Google Scholar 

  • Wittgenstein, L. (1922). Tractatus Logico-Philosophicus. New York: Harcourt.

    Google Scholar 

  • Wilhelm, O. (2004). Measuring reasoning ability. In O. Wilhelm & R. W. Engle (Eds.), Handbook of understanding and measuring intelligence (pp. 373–392). Thousand Oaks, CA: Sage Publications.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert M. Seel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Seel, N.M. (2014). Model-Based Learning and Performance. In: Spector, J., Merrill, M., Elen, J., Bishop, M. (eds) Handbook of Research on Educational Communications and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3185-5_37

Download citation

Publish with us

Policies and ethics