Skip to main content

The Dependence of Clinical Metrics of Cardiac Function on Lead Position in Cardiac Resynchronization Therapy: A Biophysical Modeling Study

  • Conference paper
  • First Online:
  • 1001 Accesses

Abstract

Lead placement in cardiac resynchronization therapy (CRT) has been identified as an important variable that can potentially be manipulated at the time of implantation. Recent studies have demonstrated the variability of the acute hemodynamic response of patients to different lead positions and have proposed different strategies to identify the optimal lead location. In clinical studies of lead position the maximum rate of pressure development is used as a single scalar measure of the efficacy of an individual pacing location, despite limited clinical evidence that this correlates with long term outcomes. In this study, we use a patient-specific computational model to evaluate metrics of cardiac function for different lead positions. The model predicts a large, common, optimal location for all evaluated metrics. This supports use of the maximum rate of pressure development as a representation of general cardiac function for optimizing CRT.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    www.cmiss.org/cmgui

  2. 2.

    www.cmiss.org

  3. 3.

    www.meshing.at

  4. 4.

    www.hector.ac.uk

  5. 5.

    www.osc.ox.ac.uk

References

  1. Abraham, W.T., Fisher, W.G., Smith, A.L., Delurgio, D.B., Leon, A.R., Loh, E., Kocovic, D.Z., Packer, M., Clavell, A.L., Hayes, D.L., Ellestad, M., Trupp, R.J., Underwood, J., Pickering, F., Truex, C., McAtee, P., Messenger, J.: The MSG. Cardiac resynchronization in chronic heart failure. New Engl. J. Med. 346, 1845–1853 (2002)

    Article  Google Scholar 

  2. Ginks, M.R., Lambiase, P.D., Duckett, S.G., Bostock, J., Chinchapatnam, P., Rhode, K., McPhail, M.J.W., Simon, M., Bucknall, C., Carr-White, G., Razavi, R., Rinaldi, C.A.: A simultaneous x-ray/mri and noncontact mapping study of the acute hemodynamic effect of left ventricular endocardial and epicardial cardiac resynchronization therapy in humans / clinical perspective. Circ. Heart Fail. 4, 170–179 (2011)

    Article  Google Scholar 

  3. Niederer, S.A., Gernot, P., Chinchapatnam, P., Ginks, M., Lamata, P., Rhode, K., Rinaldi, C., Razavi, R., Smith, N.P.: Length-dependent tension in the failing heart and the efficacy of cardiac resynchronisation therapy. Cardiovasc. Res. 89(2), 336–343 (2010). doi:10.1093/cvr/cvq318

    Article  Google Scholar 

  4. Clayton, R.H., Bernus, O., Cherry, E.M., Dierckx, H., Fenton, F.H., Mirabella, L., Panfilov, A.V., Sachse, F.B., Seemann, G., Zhang, H: Models of cardiac tissue electrophysiology: Progress, challenges and open questions. Progress in Biophysics and Molecular Biology. In Press, Corrected Proof

    Google Scholar 

  5. ten Tusscher, K.H.W.J., Panfilov, A.V.: Alternans and spiral breakup in a human ventricular tissue model. Am. J. Physiol. Heart Circ. Physiol. 291, H1088–H1100 (2006)

    Article  Google Scholar 

  6. Niederer, S., Mitchell, L., Smith, N., Plank, G.: Simulating human cardiac electrophysiology on clinical time-scales. Front. Physiol. 2, 14 (2011)

    Article  Google Scholar 

  7. Nordsletten, D.A., Niederer, S.A., Nash, M.P., Hunter, P.J., Smith, N.P.: Coupling multi-physics models to cardiac mechanics. Prog. Biophys. Mol. Biol. 104, 77–88 (2011)

    Article  Google Scholar 

  8. Little, W.C., Badke, F.R., O'Rourke, R.A.: Effect of right ventricular pressure on the end-diastolic left ventricular pressure-volume relationship before and after chronic right ventricular pressure overload in dogs without pericardia. Circ. Res. 54, 719–730 (1984)

    Google Scholar 

  9. Bemis, C.E., Serur, J.R., Borkenhagen, D., Sonnenblick, E.H., Urschel, C.W.: Influence of right ventricular filling pressure on left ventricular pressure and dimension. Circ. Res. 34, 498–504 (1974)

    Google Scholar 

  10. Mathison, M., Edgerton, J.R., Horswell, J.L., Akin, J.J., Mack, M.J.: Analysis of hemodynamic changes during beating heart surgical procedures. Ann. Thorac. Surg. 70, 1355–1360 (2000)

    Article  Google Scholar 

  11. Guccione, J.M., Costa, K.D., McCulloch, A.D.: Finite-element stress-analysis of left-ventricular mechanics in the beating dog heart. J. Biomech. 28, 1167–1177 (1995)

    Article  Google Scholar 

  12. Kerckhoffs, R.C.P., Bovendeerd, P.H.M., Prinzen, F.W., Smits, K., Arts, T.: Intra- and interventricular asynchrony of electromechanics in the ventricularly paced heart. J. Eng. Math. 47, 201–216 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Karamanoglu, M., Bennett, T.: A right ventricular pressure waveform based pulse contour cardiac output algorithm in canines. Cardiovasc. Eng. 6, 83–92 (2006)

    Article  Google Scholar 

  14. Santamore, W.P., Burkhoff, D.: Hemodynamic consequences of ventricular interaction as assessed by model analysis. Am. J. Physiol. Heart Circ. Physiol. 260, H146–H157 (1991)

    Google Scholar 

  15. Heerdt, P.M., Gandhi, C.D., Dickstein, M.L.: Disparity of isoflurane effects on left and right ventricular afterload and hydraulic power generation in swine. Anesth. Analg. 87, 511–521 (1998)

    Google Scholar 

  16. Durrer, D., Van Dam, R.T., Freud, G.E., Janse, M.J., Meijler, F.L., Arzbaecher, R.C.: Total excitation of the isolated human heart. Circulation 41, 899–912 (1970)

    Google Scholar 

  17. Bax, J.J., Bleeker, G.B., Marwick, T.H., Molhoek, S.G., Boersma, E., Steendijk, P., van der Wall, E.E., Schalij, M.J.: Left ventricular dyssynchrony predicts response and prognosis after cardiac resynchronization therapy. J. Am. Coll. Cardiol. 44, 1834–1840 (2004)

    Article  Google Scholar 

  18. Singh, J.P., Klein, H.U., Huang, D.T., Reek, S., Kuniss, M., Quesada, A., Barsheshet, A., Cannom, D., Goldenberg, I., McNitt, S., Daubert, J.P., Zareba, W., Moss, A.J.: Left ventricular lead position and clinical outcome in the multicenter automatic defibrillator implantation trial-cardiac resynchronization therapy (madit-crt) trial. Circulation 123, 1159–1166 (2011)

    Article  Google Scholar 

  19. Helm, R.H., Byrne, M., Helm, P.A., Daya, S.K., Osman, N.F., Tunin, R., Halperin, H.R., Berger, R.D., Kass, D.A., Lardo, A.C.: Three-dimensional mapping of optimal left ventricular pacing site for cardiac resynchronization. Circulation 115, 953–961 (2007)

    Article  Google Scholar 

  20. Nowak, B., Sinha, A.M., Schaefer, W.M., Koch, K.-C., Kaiser, H.-J., Hanrath, P., Buell, U., Stellbrink, C.: Cardiac resynchronization therapyhomogenizes myocardial glucosemetabolism and perfusion in dilatedcardiomyopathy and left bundle branch block. J. Am. Coll. Cardiol. 41, 1523–1528 (2003)

    Article  Google Scholar 

  21. Serri, K., Lafitte, S., Réant, P., Amyot, R., Sauvé, C., Bordachar, P., Roudaut, R.: Effect of cardiac resynchronization therapy on regional left ventricular function: A speckle tracking strain analysis. Eur. J. Echocardiogr. 11, 278–282 (2010)

    Article  Google Scholar 

  22. Derval, N., Steendijk, P., Gula, L.J., Deplagne, A., Laborderie, J., Sacher, F., Knecht, S., Wright, M., Nault, I., Ploux, S., Ritter, P., Bordachar, P., Lafitte, S., Réant, P., Klein, G.J., Narayan, S.M., Garrigue, S., Hocini, M., Haissaguerre, M., Clementy, J., Jaïs, P.: Optimizing hemodynamics in heart failure patients by systematic screening of left ventricular pacing sites: The lateral left ventricular wall and the coronary sinus are rarely the best sites. J. Am. Coll. Cardiol. 55, 566–575 (2010)

    Article  Google Scholar 

  23. Spragg, D.D., Dong, J., Fetics, B.J., Helm, R., Marine, J.E., Cheng, A., Henrikson, C.A., Kass, D.A., Berger, R.D.: Optimal left ventricular endocardial pacing sites for cardiac resynchronization therapy in patients with ischemic cardiomyopathy. J. Am. Coll. Cardiol. 56, 774–781 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Niederer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Niederer, S., Plank, G., Rezavi, R., Rinaldi, A., Smith, N. (2012). The Dependence of Clinical Metrics of Cardiac Function on Lead Position in Cardiac Resynchronization Therapy: A Biophysical Modeling Study. In: Nielsen, P., Wittek, A., Miller, K. (eds) Computational Biomechanics for Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3172-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3172-5_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3171-8

  • Online ISBN: 978-1-4614-3172-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics